Miniband Electroconductivity in Superlattices of Cubic Quantum Dots of the InAs/GaxIn1-xAs Heterosystem

  • V.I. Boichuk
  • I.V. Bilynskyi Drohobych Ivan Franko State Pedagogical University
  • R.I. Pazyuk Drohobych Ivan Franko State Pedagogical University
Keywords: quantum dot, superlattice, electronic states, miniband, electroconductivity

Abstract

In this paper, the model of InAs/GaxIn1-xAs cubic quantum dot superlattices (CQDS) of various dimensionality has been proposed. The energy spectra of electrons and holes of the quantum dot superlattice have been determined in the effective mass approximation and modified Kronig-Penney model. In the frame of this model, the spectra of charges of 3D, 2D and 1D-superlattices can be obtained by changing respective distances between the elements of the superlattice. The energy dependence of the electron and hole subbands (under-the-barrier subbands and over-the-barrier subbands) on the wave vector of the superlattice has been calculated. The number of under-the-barrier subbands is determined by QD size and width of each subband is defined by QD size, distances between superlattice elements and subband numerical index.

The dependences of the Fermi energy and concentration of charge carriers on temperature, concentration of impurities, energy of impurity levels have been obtained and analyzed. We have taken account of the dependence of electron relaxation time on temperature caused by scattering of carriers on both phonons and donor centers. The effect of the impurity system on electroconductivity of the CQDS is investigated. 

References

[1] P. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2010).
[2] R. Tsu. Superlattice to nanoelectronics (Oxford, Elsevier, 2010).
[3] F. Kanouni, A. Brezini, N. Sekkel, A. Saidane, D. Chalabi, A. Mostefa, Journal of New Technology and Materials JNTM 01(00), 55 (2011).
[4] V. А. Holovatsky, Naukovij vìsnik Cernìvec’kogo unìversitetu. Fìzika, elektronìka. 92, 9 (2000). (in Ukrainian).
[5] M. V. Tkach, Yu. O. Seti, Semiconductors, 45, 387 (2011).
[6] M. V. Tkach, Yu. O. Seti, O. M. Voitsekhivska, G. G. Zegrya, Rom. J. Phys. 57, 620 (2012).
[7] V. I. Boichuk, I. V. Bilynskyi, O. A. Sokolnyk, I. O. Shakleina Condensed Matter Physics 16(3) 33702: 1 (2013).
[8] V. I. Boichuk, I. V. Bilynskyi, R. I. Pazyuk, Actual problems of semiconductor physics. VIII International School-Conference (Publishing House “UKRPOL” Ltd., Drohobych, 2013), p.7.
[9] M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev., B 54, R2300 (1996).
[10] C. Goffaux, V. Lousse, and J. P. Vigneron, Phys. Rev., B 62, 7133 (2000).
[11] Jianping Wang, Ming Gong, Guang-Can Guo, Lixin He, Journal of Physics: Condensed Matter, 24(47), 475302(12) (2012).
[12] G. Bastard, Phys. Rev. B25, 7584 (1982).
[13] A. S.Davydov Quantum Mechanics (Nauka, Moscow, 1972). (in Russian).
Published
2017-03-15
How to Cite
Boichuk, V., Bilynskyi, I., & Pazyuk, R. (2017). Miniband Electroconductivity in Superlattices of Cubic Quantum Dots of the InAs/GaxIn1-xAs Heterosystem. Physics and Chemistry of Solid State, 18(1), 94-101. https://doi.org/10.15330/pcss.18.1.94-101
Section
Scientific articles