The Electrical Conductivity in Superlattices of Spherical Quantum Dots

Array

Authors

  • V.I. Boichuk Ivan Franko Drohobych State Pedagogical University
  • R.I. Pazyuk Ivan Franko Drohobych State Pedagogical University
  • I.V. Bilynskyi Ivan Franko Drohobych State Pedagogical University

DOI:

https://doi.org/10.15330/pcss.17.3.320-328

Keywords:

quantum dot, superlattice, electronic states, density of states, electrical conductivity

Abstract

The electrical properties of semiconductor systems of spherical GaAs / AlxGa1-xAs quantum dots of various dimensions, depending on the energy of the Fermi level and temperature, and the concentration of aluminum in the matrix, are investigated. Dependences of group velocity of electrons on the index of minisons were obtained. Reducing the CT radius, as well as increasing the aluminum concentration in the matrix, results in an increase in group velocity. The change in the sign of the group velocity of individual minisons is caused by the behavior of the isoenergetic surfaces of these minisons. The electrical conductivity is calculated, containing the contributions of the s- and three p-minisons for given parameters of the system, the maximum of which is near the center of the minisone. The increase in electrical conductivity is observed with a decrease in the CT radius and the aluminum concentration, as well as with the decrease of the GaAs / AlxGa1-xAs superlattice dimension. The temperature dependence of electrical conductivity for various parameters of such systems is also investigated.

References

[1] I.D. Rukhlenko, et al, Opt. Express 17, 17570 (2009).
[2] X. L. Wu & F.S. Xue, Appl. Phys. Lett. 84, 2808 (2004).
[3] O. B. Shchekin, G. Park, D.L. Huffaker, D.G. Deppe, Appl. Phys. Lett. 77, 466 (2000).
[4] A.V. Fedorov, I. D. Rukhlenko, A.V. Baranov, S.Y. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petesburg, 2011).
[5] Y. Masumoto, T. Takagahara (Eds.), Semiconductor Quantum Dots (Springer- Verlag, Berlin, 2002).
[6] S.M. Reimann, M. Manninen, Rev. Mod. Phys.74, 1283 (2002).
[7] A. D. Yoffe, Advances Phys. 50, 1 (2001).
[8] I. D. Rukhlenko et al., Opt. Express 20, 27612 (2012).
[9] A.S. Baimuratov, V.K. Turkov, I.D. Rukhlenko, A.V. Fedorov, Opt. Lett. 37, 4645 (2012).
[10] D. Press, T.D. Ladd, , D. P. Y. Yamamotol, B. Zhang, Nature 456, 218 (2008).
[11] A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, Y. Masumoto, Phys.Rev. B 68, 205318 (2003).
[12] A.J. Shields, Nat. Photon. 1, 215 (2007).
[13] K.J. Vahala, Nature 424, 839 (2003).
[14] V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, Science 290, 314 (2000).
[15] Z.L. Yuan et al., Science 295, 102 (2002).
[16] A.J. Bennett et al., Appl. Phys. Lett. 86, 181102 (2005).
[17] P. Michler et al., Science 290, 2282 (2000).
[18] K. Tanabe, K. Watanabe, Y. Arakawa, Scientific Rep. 2, 349 (2012).
[19] J. Jasieniak, B.I. MacDonald, S. E. Watkins, P. Mulvaney, Nano Lett. 11, 2856 (2011).
[20] I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Science 310, 462 (2005).
[21] P. Prabhakaran, W.J. Kim, , K.-S. Lee, P.N. Prasad, Opt. Mater. Express 2, 578 (2012).
[22] S.A. McDonald et al., Nat. Mater. 4, 138 (2005).
[23] D. Qi, M. Fischbein, M. Drndic, S. Selmic, Appl. Phys. Lett. 86, 093103 (2005).
[24] N.V. Tkach, Yu.A. Sety, Fyz. tekhn. polupr. 45, 387 (2011).
[25] M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska, G.G. Zegrya, Rom. J. Phys. 57, 620 (2012).
[26] Ju.O. Seti, M.V. Tkach, I.V. Boyko, J. Optoelectron. Adv. Mater. 14, 393 (2012).
[27] V.A. Holovatsky, V.I. Gutsul, O.M. Makhanets, Rom. Journ. Phys. 52, 327 (2007).
[28] V.I. Boichuk, I.V. Bilynskyi, R.I. Paziuk Zhurnal fizychnykh doslidzhen 19(1/2), 1601 (2015).
[29] O.L. Lazarenkova, A.A. Balandin, Journal of Applied Physics 89(10), 5509 (2001).
[30] . O.L. Lazarenkova, A.A. Balandin Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlatice, Phys. Rev. B 66, 245319 (2002).
[31] V.I. Boichuk, I.V. Bilynskyi, R.I. Paziuk, I.O. Shakleina, Fizyka i khimiia tverdoho tila 10(4), 752 (2009).
[32] V. Boichuk, Osnovy teorii tverdoho tila: navchalnyi posibnyk (Kolo, Drohobych, 2010).
[33] J. Singh, Physics of Semiconductors and Their Heterostructures, McGraw-Hill Series in Electrical and Computer Engineering(New York, 1993).
[34] K. Zeeher, Fyzyka poluprovodnykov (Myr, Moskva, 1977).

Published

2016-09-15

How to Cite

Boichuk, V., Pazyuk, R., & Bilynskyi, I. (2016). The Electrical Conductivity in Superlattices of Spherical Quantum Dots: Array. Physics and Chemistry of Solid State, 17(3), 320–328. https://doi.org/10.15330/pcss.17.3.320-328

Issue

Section

Scientific articles