Electron-beam recording of surface structures on As-S-Se chalcogenide thin films

  • L. Revutska National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute
  • O. Shylenko Safarik University
  • A. Stronski V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine
  • V. Komanicky Safarik University
  • V. Bilanych Uzhhorod National University
Keywords: chalcogenide thin films, electron beam irradiation, surface nanostructures

Abstract

The effect of electron beam irradiation on the amorphous chalcogenide film As38S36Se26 was studied. The formation of cones with a Gaussian profile on the surfaces of the films was found after local electron irradiation. Exposition dependent evolution of height surface nanostructures has been detected. The dependence of the height of surface nanostructures on the dose of irradiation is analyzed. Charge accumulation model into interaction region between the film and the electron beam was used to explain the electron-induced phenomena of the surface structure of amorphous As38S36Se26 films. Charges relaxation times, and electron beam penetration depth into film, and the initial and inverse doses are determined.

References

K. Shportko, L. Revutska, O. Paiuk, J. Baran, A. Stronski, A. Gubanova, E. Venger, Compositional dependencies in the vibrational properties of amorphous Ge-As-Se and Ge-Sb-Te chalcogenide alloys studied by Raman spectroscopy, Opt. Mater. (Amst) 73, 489–496 (2017) (https://doi.org/10.1016/j.optmat.2017.08.042).

A. Stronski, L. Revutska, A. Meshalkin, O. Paiuk, E. Achimova, A. Korchovyi, K. Shportko, A.Y. Gudymenko, A. Prisacar, A. Gubanova, G. Triduh, Structural properties of Ag–As–S chalcogenide glasses in phase separation region and their application in holographic grating recording, Opt. Mater. (Amst) 94, 393–397 (2019) (https://doi.org/10.1016/j.optmat.2019.06.016).

A. Stronski, T. Kavetskyy, L. Revutska, I. Kaban, K. Shportko, J. Baran, M. Trzebiatowska, Stoichiometric deviations in bond distances in the mixed As2S3-As2Se3 system: Raman spectroscopy and EXAFS studies, J. Non. Cryst. Solids. 521, 119533 (2019) (https://doi.org/10.1016/j.jnoncrysol.2019.119533).

M.A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic, Boston, 2000).

A. V Stronski, M. Vlcek, A. Sklenar, P.E. Shepeljavi, S.A. Kostyukevich, Application of As40S60-xSex layers for high-effciency grating production, J. Non. Cryst. Solids. 266–269 973–978 (2000) (https://doi.org/10.1016/S0022-3093(00)00032-6).

O.M. Efimov, L.B. Glebov, K.A. Richardson, E. Van Stryland, Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses, Opt. Mater. (Amst) 17 379–386 (2001) (https://doi.org/10.1016/S0925-3467(01)00062-3).

M. Asobe, K. Suzuki, T. Kanamori, K. Kubodera, Nonlinear refractive index measurement in chalcogenide glass fibers by selfphase modulation, Appl. Phys. Lett. 60, 1153–1154 (1992) (https://doi.org/10.1063/1.107388).

A. Saliminia, A. Villeneuve, T. V Galstyan, S. Larochelle, K. Richardson, First- and Second-Order Bragg Gratings in Single-Mode Planar Waveguides of Chalcogenide Glasses, J. Light. Technol. 17, 837–842 (1999) (https://doi.org/10.1109/50.762901).

A.V. Stronski, M. Vlcek, Imaging properties of As40S40Se20 layers, Opto-Electronics Rev. 8, 263–267 (2000).

M. Vlcek, A. V Stronski, A. Sklenar, T. Wagner, S.O. Kasap, Structure and imaging properties of As40S60-xSex glasses, J. Non. Cryst. Solids. 266–269, 964–968 (2000).

A. V Stronski, M. Vlcek, P.F. Oleksenko, Fourier Raman spectroscopy studies of the As40S60-xSex glasses, Semicond. Physics, Quantum Electr. Optoelectron. 4, 210–213 (2001).

M. V Sopinskyy, P.E. Shepeliavyi, A. V Stronski, E.F. Venger, Ellipsometry and AFM study of post-deposition transformation in vacuum-evaporated As-S-Se films, J. Optoelectron. Adv. Mater. 7, 2255–2266 (2005).

J. Teteris, Amorphous As–S–Se semiconductor resists for holography and lithography, J. Non. Cryst. Solids. 299–302, 978–982 (2002).

M. Reinfelde, R. Grants, J. Teteris, Photoinduced mass transport in amorphous As-S-Se films, Phys. Status Solidi C 9, 2586–2589 (2012) (https://doi.org/10.1002/pssc.201200433).

M. Reinfelde, J. Teteris, I. Kuzmina, Amorphous As-S-Se films for holographic recording, in: SPIE Adv. Opt. Devices, Technol. Med. Appl., 2003: pp. 125–132.

V. Kuzma, V. Bilanych, M. Kozejova, D. Hlozna, A. Feher, V. Rizak, V. Komanicky, Study of dependence of electron beam induced surface relief formation on Ge- As-Se thin films on the film elemental composition, J. Non. Cryst. Solids (2016) (https://doi.org/10.1016/j.jnoncrysol.2016.10.033).

V. Bilanych, V. Komanicky, M. Kozejova, A. Feher, A. Kovalcikova, F. Lofaj, V. Kuzma, V. Rizak, Surface pattering of Ge–As–Se thin films by electric charge accumulation, Thin Solid Films 616, 86–94 (2016) (https://doi.org/10.1016/j.tsf.2016.07.073).

O. Shylenko, V. Bilanych, A. Feher, V. Rizak, V. Komanicky, Evaluation of sensitivity of Ge9As9Se82 and Ge16As24Se60 thin fi lms to irradiation with electron beam, J. Non. Cryst. Solids 505, 37–42 (2019) (https://doi.org/10.1016/j.jnoncrysol.2018.10.042).

K. Kanaya, S. Okayama, Penetration and energy-loss theory of electrons in solid targets, J.Phys. D 5, 43–58 (1972) (https://doi.org/10.1088/0022-3727/5/1/308).

E. R. Barney, N. S. Abdel-Moneim, J. J. Towey, J. Titman, J. E. McCarthy, H. T. Bookey, A. B. Seddon, Correlating structure with non-linear optical properties in xAs40Se60•(1−x)As40S60 glasses. Physical Chemistry Chemical Physics 17(9), 6314–6327 (2015) (https://doi.org/10.1039/c4cp05599c).

Published
2020-03-29
How to Cite
Revutska, L., Shylenko, O., Stronski, A., Komanicky, V., & Bilanych, V. (2020). Electron-beam recording of surface structures on As-S-Se chalcogenide thin films. Physics and Chemistry of Solid State, 21(1), 146-150. https://doi.org/10.15330/pcss.21.1.146-150
Section
Scientific articles