Structure and Morphology of Anthraquinone Triazene Films on Silicon Substrate

  • V. I. Shupenyuk Vasyl Stefanyk Precarpathian National University
  • S. V. Mamykin V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine
  • T. N. Taras Vasyl Stefanyk Precarpathian National University
  • M. P. Matkivskyi Vasyl Stefanyk Precarpathian National University
  • O. P. Sabadakh Vasyl Stefanyk Precarpathian National University
  • O. M. Matkivskyi Vasyl Stefanyk Precarpathian National University
Keywords: aromatic buffer layers, triazene films, aromatic substituents, anthraquinone, electron density

Abstract

An optimal imposition method of anthraquinone triazenes on silicon lining was selected. This allowed to create a nanometer film that can be used as dielectric aromatic buffer layers. A morphological research of triazene films shows the existence of delocalized globular anthraquinone macromolecular microformation on the background of triazene uneven layers. The oxidized surface of the triazene substrate is applied better than those without the oxide. This is caused by distribution of electron density in triazene which creates an additional Si/SiO2 coupling system and by presence of voluminous aromatic substituents which impairs the uniformity of film deposition and reduces its thickness.

References

Rapp L., Diallo A.K., Nenon S. at. al.: Thin Solid Films 520, 3043 (2012) (https://doi.org/10.1016/j.tsf.2011.10.159).

Kumar S., Lies B., Zhang X. at. al.: Polymer International 68(8), 1391 (2019) (https://doi.org/10.1002/pi.5834).

Yager K.G., Barrett C.J., Curr. Opin. Solid State Mater. Sci. 5, 487 (2001).

Lippert T., Hauer M., Phipps C.R., Wokaun A., Appl. Phys. A 77, 259 (2003) (https://10.1007/s00339-003-2111-y).

Zhao P., Zhang Z., Wang P.J., Liu D.S., Physica B 404, 3462 (2009) (https://doi.org/10.1016/j.physb.2009.05.036).

Griffini G., Douglas J. D., Piliego C. at. al.: Adv. Mater 23, 1660 (2011) (https://doi.org/10.1002/adma.201004743).

Hai-ying L., Liang-cai L., Synthetic Comm. 31(1), 155 (2001) (https://doi.org/10.1081/SCC-100000193).

Zhang Y., Zhuang H., Yang Y. at. al.: J. Phys.Chem. C 116(43), 22832 (2012) (https://dx.doi.org/10.1021/jp305556u).

Li, H.; Li, N.J.; Gu, H.W. at. al.: J. Phys. Chem. C 114, 6117 (2010) (https://doi.org/10.1021/jp910772m).

Sabadakh O.P., Taras T.N., Luchkevich E.R., Novikov V.P., Russ. J. Org. Chem. 51(2), 277 (2015) (https://doi.org/10.1134/S1070428015020244).

Taras T.M., Dejchakivsky Y.I., Shupeniuk V.I. at. al.: Chem., Technol. and Application of Substances 2(1), 92 (2019) (https://doi.org/10.23939/ctas2019.01.092).

Shupeniuk V.I., Taras T.M., Sabadakh O.P. at. al.: Chem., Technol. and Application of Substances 2(2), 135 (2019) (https://doi.org/10.23939/ctas2019.02.135).

Tabone R., Barra M., Dyes and Pigments 88, 180 (2011) (https://doi.org/10.1016/j.dyepig.2010.06.006).

Barra M, Chen N. J Org. Chem. 65, 5739 (2000) (https://doi.org/10.1021/jo000599l).

Zhang H, Barra M., J. Phys. Org. Chem. 18, 498 (2005) (https://doi.org/10.1002/poc.900).

Published
2020-03-29
How to Cite
Shupenyuk, V. I., Mamykin, S. V., Taras, T. N., Matkivskyi, M. P., Sabadakh, O. P., & Matkivskyi, O. M. (2020). Structure and Morphology of Anthraquinone Triazene Films on Silicon Substrate. Physics and Chemistry of Solid State, 21(1), 117-123. https://doi.org/10.15330/pcss.21.1.117-123
Section
Scientific articles