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Namioka property of generalized ordered spaces

Karlova O.1,2

A topological space X is called Namioka, if for every compact space K and every separately con-

tinuous function f : X × K → R there exists a dense Gδ-set A ⊆ X such that f is jointly continuous

at every point of A × K.

We introduce a notion of a topological space with countable resolvable set condition (i.e. in every

separable subspace of such space each well-ordered strictly increasing (or decreasing) family of

resolvable sets is at most countable) and prove that every hereditarily Baire perfect generalized

ordered space with countable resolvable set condition is Namioka.
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1 Introduction

A linearly ordered topological space (LOTS) is a triple (X, τ,≤), where (X,≤) is a linearly

ordered set and τ is the usual open-interval topology of the order ≤. Note that a subspace

of LOTS is not necessarily LOTS as the example of Sogrenfrey line shows: it is a subspace of

the double arrow space which is compact and linearly ordered, but the Sogrenfrey line is not

LOTS. A subspace of a linearly ordered topological space is called a generalized ordered space or

GO-space.

A topological space X is called Namioka, if for every compact space K and every separately

continuous function f : X × K → R there exists a dense Gδ-set A ⊆ X such that f is jointly

continuous at every point of A × K. The classical result of I. Namioka [9, Theorem 1.2] states

that every Čech-complete space is Namioka. J. Saint-Raymond [10, Theorem 3] proved that

every completely regular Namioka space is Baire. Moreover, he showed that in the class of all

metrizable spaces, Namioka and Baire spaces coincide and that every separable Baire space is

Namioka.

In [2], it was proved that every quarter-stratifiable Baire space is Namioka and the

Sorgenfrey line is a hereditarily Namioka space. Namioka property of GO-spaces in terms of

topological games was considered by V. Mykhaylyuk [8]. He introduced a modification of the

classical weak Choquet σ-game (see [8, Section 2]) and showed that this new game coincides

with the σ-game in the class of GO-spaces.
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Theorem 1 ([8, Theorem 5.3]). Let X be a GO-space which can be covered by a sequence

(Aξ)0≤ξ<ω1
of nowhere dense subsets Aξ ⊆ X. Then X is Namioka if and only if the player β

has no winning strategy in o-game.

The next open question was formulated in [8, Question 6.3] and became the starting point

for the investigations of current manuscript.

Question 1. Let X be a Namioka GO-space. Is it true that the player β has no winning strategy

in o-game?

In the given note we show that every hereditarily Baire perfect GO-space X with countable

resolvable set condition (see Definition 1) is Namioka. In view of Theorem 1 one can reformu-

late Question 1 in the following form.

Question 2. Let X be a hereditarily Baire perfect GO-space with countable resolvable set con-

dition. Can X be covered by a sequence (Aξ)0≤ξ<ω1
of nowhere dense subsets Aξ ⊆ X?

The last question is still open and we will investigate it in our future research.

2 Auxiliary facts

Recall that a topological space X without isolated points is called crowded.

Lemma 1. Let A be a partition of a first countable Hausdorff space X by nowhere dense sets.

Then there exists a countable crowded subspace Q ⊆ X such that |A ∩ Q| ≤ 1 for all A ∈ A .

Proof. Let A = {As : s ∈ S} be a partition of X by nowhere dense sets, As 6= At if s 6= t. For

every x ∈ X we consider a countable base {Ux
m : m ∈ N} of a point x such that Ux

m+1 ⊆ Ux
m

for each m.

We take an arbitrary point x0 ∈ X and let x0 ∈ As0 for a unique s0 ∈ S. The set B1 = X \ As0

is dense in X, hence Ux0
1 ∩ B1 6= ∅. Let x1 ∈ Ux0

1 ∩ B1. There exists s1 6= s0 such that x1 ∈ As1 .

We put m1 = 1. Since X is Hausdorff, there is m2 > m1 such that Ux0
m2

∩ Ux1
m2

= ∅. Moreover,

there exist x10 ∈ Ux0
m2

∩ B2 and x11 ∈ Ux1
m2

∩ B2, where the set B2 = X \ (As0 ∪ As1) is everywhere

dense.

Assume we have chosen points xi1
, . . . , xin and an increasing sequence 1 = m1 < · · · < mn

of integers for some n ≥ 1 such that

(i) ik ∈ {0, 1}k, 1 ≤ k ≤ n;

(ii) xik+1
= xik

, if ik+1 = (0, ik), 1 ≤ k < n;

(iii) x(1,ik)
∈ U

xik
mk+1

, 1 ≤ k < n;

(iv) |A ∩ Qn| ≤ 1 for all A ∈ A , where Qn =
n
⋃

k=1
{xik

: ik ∈ {0, 1}k}.

Now we choose 2n+1 points xin+1
, where in+1 ∈ {0, 1}n+1. We put xin+1

= xin , if in+1 = (0, in).

Since X is Hausdorff, there exist mn+1 > mn such that U
xin
mn+1

∩ U
xjn
mn+1

= ∅ for all distinct

in, jn ∈ {0, 1}n. Let xin ∈ Asin
for some sin ∈ S and notice that Asin

6= Asjn
for all distinct
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in, jn ∈ {0, 1}n. Since the set Bn+1 = X \
⋃

in∈{0,1}n
Asin

is everywhere dense in X, there exists

x(1,in) ∈ U
xin
mn+1

∩ Bn+1.

It is easy to see that we get the sequence xi1
, . . . , xin , . . . satisfying (i)–(iv) for every n ≥ 1.

We put Q =
∞
⋃

n=1
{xin : in ∈ {0, 1}n}. Note that property (iii) implies that Q is crowded.

A subset A of a topological space X is an H-set or resolvable in the sense of Hausdorff, if there

exists a decreasing sequence (Fξ)ξ∈[0,α) of closed subsets of X such that

A =
⋃

ξ<α, ξ is odd

(Fξ \ Fξ+1).

Notice that each open or closed set in a topological space is resolvable and the class of all H-

sets in a hereditarily Baire perfect paracompact space coincides with the class of all sets, which

are Fσ and Gδ simultaneously (see [5, Theorem 1, Proposition 3.1]). More relations between

resolvable and Borel sets in topological spaces can be found in [11].

Definition 1. We say that a topological space X satisfies Countable Resolvable Set Condition or is

CRSC, if in every separable subspace of X each well-ordered strictly increasing (or decreasing)

family of H-sets is at most countable.

By [7, §24] every metric separable space is CRSC. Notice that if X is CRSC, then every its

separable subspace should satisfy the Countable Chain Condition. A common example of a

separable non-metrizable topological space that fails the Countable Chain Condition is the

Niemytzki plane. Another classic example often used in set theory is a Suslin Line, which

is a totally ordered space with the lexicographical order that is separable but fails Countable

Chain Condition because it contains an uncountable antichain of points, each with disjoint

neighborhoods.

Lemma 2. Let X be a hereditarily Baire perfect GO-space with Countable Resolvable Set Con-

dition, A be a σ-disjoint family of sets with empty interior such that ∪A ′ is Fσ in X for any

A ′ ⊆ A . Then the union ∪A has empty interior.

Proof. Assume to the contrary that G = int(∪A ) 6= ∅. Then we can also assume that A covers

X, because otherwise we can replace X by a hereditarily Baire perfect GO-space G and A by

the family (A ∩ G)A∈A .

Let A =
⋃

n An and every family An consists of mutually disjoint sets. Notice that every

An =
⋃

An is an Fσ-set in X and (An)n∈N is a covering of a Baire space X. Then there is N ∈ N

such that X0 = int AN 6= ∅. Let us observe that X0 is a hereditarily Baire perfect GO-space.

We put

A0 = (A ∩ X0)A∈AN
.

Let (Aξ)ξ<α be any well-ordering of A0. Since
⋃

A ′ is Fσ in X0 for any subfamily A ′ ⊆ A0

and A0 is a partition of X0, every set Aξ is Fσ and Gδ simultaneously. Moreover, intX0
Aξ = ∅,

because X0 is an open subset of X and intX Aξ = ∅.

Fix ξ < α. Then there exist sequences (Un) and (Fn) of subsets in X0 such that

Aξ =
∞
⋃

n=1

Un =
∞
⋂

n=1

Fn,
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each Un is open and each Fn is closed and nowhere dense in X0. Assume that Aξ is somewhere

dense and find an open set V ⊆ X0 such that Aξ ∩ V is dense in V. Then for every n the set

Bn = (X0 \ V) ∪ (Un \ Fn)

is open dense subset of X0. Since X0 is Baire,
∞
⋂

n=1
Bn is dense in X0 (and in V). From the other

hand, we have
(

∞
⋂

n=1

Bn

)

∩ V ⊆

(

∞
⋂

n=1

Un \ Fn

)

∩ V = ∅.

Hence, our assumption is not valid, which follows that Aξ is nowhere dense in X0.

Therefore, A0 is a partition of X0 by nowhere dense sets. Note that every perfect GO-space

is first countable [1, Theorem 3.1]. By Lemma 1 there exists a countable crowded set Q ⊆ X

such that

every Aξ contains at most one point from Q. (∗)

We put

Y = Q and Bξ = Aξ ∩ Y

for all ξ < α. Suppose that there is ξ < α such that W = intYBξ 6= ∅. Then W ⊆ Aξ and it

contains infinitely many points from Q, which contradicts to (∗). Hence, every Aξ has empty

interior in Y. Therefore, B = (Bξ)ξ<α is a partition of Y by sets with empty interior such that

every union of members of B is Fσ in Y. We put

Cξ =
⋃

η≤ξ

Bη

for all ξ < α and obtain strictly increasing sequence of Fσ- and Gδ-sets Cξ such that the family

(Cξ)ξ<α covers a hereditarily Baire perfect GO-space Y.

Since every Cξ is an H-set [5, Proposition 3.1] and Y has CRSC, there exists β < ω1 such

that Cξ = Cξ+1 = . . . for all ξ ≥ β. Hence, (Cξ)ξ≥β is at most countable covering of Y by

nowhere dense sets. This is a contradiction, since Y is Baire.

3 Classification of maps on GO-spaces

The definition of Namioka space is equivalent to the following: X is Namioka if and only

if for every compact space K any continuous function f : X → Cp(K) is continuous at every

point of a dense Gδ-subset of X as a function with values in Cu(K), where Cp(K) and Cu(K) are

spaces of all continuous functions between K and R equipped with the topologies of pointwise

and uniform convergences, respectively.

Recall that a function f : X → Y between topological spaces X and Y has the point of

continuity property, if for every nonempty closed set F ⊆ X the restriction f |F has a point of

continuity.

Theorem 2. Let X be a hereditarily Baire perfect GO-space with Countable Resolvable Set

Condition, (Y, ̺) be a metric space. Then every Borel 1 function f : X → Y has point of

continuity property.

Proof. Fix any Fσ-measurable map f : X → Y, ε > 0 and a closed non-empty set F ⊆ X. Since

X is hereditarily Baire, it is sufficient to assume that F = X and to prove that there exists an

open set G in X such that diam f (G) < ε.
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Since Y is paracompact, we choose a σ-disjoint covering V of Y by open sets of diameters

less than ε. Then the family A = { f−1(V) : V ∈ V } is a σ-disjoint covering of X. Moreover,
⋃

A ′ is an Fσ-set in X for all A ′ ⊆ A , since f is Borel-one map. Lemma 2 implies that there

exists V ∈ V such that G = int f−1(V) 6= ∅. Then diam f (G) ≤ diam V < ε.

Lemma 3. Let X be a topological space and (Y, | · − · |) be a metric space. Let Cp = Cp(X, Y)

and Cu = Cu(X, Y) be spaces of all continuous maps between X and Y equipped with the

topologies of pointwise and uniform convergence, respectively. Then the identity map

id : Cp → Cu is Borel-one map.

Proof. Consider the metric ̺ on Cu, ̺( f , g) = supx∈X | f (x) − g(x)|, which generates the topo-

logy on uniform convergence. Fix any open set G ⊆ Cu. Then

G =
⋃

n∈N

{

x ∈ Cp : ̺(x, Cp \ G) ≤ 1
n

}

.

It is easy to see that the function d : Cp → [0,+∞), defined by d(x) = ̺(x, Cp \ G) for all

x ∈ Cp, is lower semi-continuous on Cp. This implies that the set
{

x ∈ Cp : ̺(x, Cp \ G) ≤ 1
n

}

is closed in Cp. Hence, G is an Fσ-set in Cp.

Theorem 3. Let X be a hereditarily Baire perfect GO-space with Countable Resolvable Set

Condition, Y be a topological space, Z be a metric space and f : X → Cp(Y, Z) be a continuous

map. If Z is equiconnected or dimX = 0, then f belongs to the first Baire class as a map with

values in Cu(Y, Z).

Proof. Lemma 3 implies that f : X → Cu(Y, Z) is Fσ-measurable. By Theorem 2 we get that

f : X → Cu(Y, Z) is barely continuous. It remains to apply [2, Theorem 4.3] in case when

dimX = 0, and [2, Proposition 2.2] as well as [3, Theorem 10] in case when Z is equi-

connected.

Remark. In general, the identity id : Cp(X) → Cu(X) is not of the first Baire class. Let X = 2ω

be the compact space of all {0, 1}-valued sequences. Assume that id : Cp(2ω) → Cu(2ω) is a

Baire-one map. Then it should be strongly functionally σ-discrete [4, Theorem 2.5], which im-

plies that there exist a sequence (Bn)n∈ω of families of sets in Cp(2ω) and a sequence (Un)n∈ω

of discrete families Un = (UB)B∈Bn of open sets such that B ⊆ UB for all B ∈ Bn, n ∈ ω,

and the family
⋃

n∈ω Bn is a base for f (this means that the preimage f−1(V) of any open set

V ⊆ Cu(2ω) is a union of some members of families Bn).

Notice that Cp(2ω) has Countable Chain Condition. Then every family Un (and every

family Bn) is at most countable. Since Cu(2ω) is not separable, there exists a discrete set

D ⊆ Cu(2ω) of cardinality ℵ1. Consider the restriction id|D. Then the base B for id|D con-

tains all singletons {y} for y ∈ D, which implies that |D| < ℵ1, a contradiction.

Theorem 4. Every hereditarily Baire perfect GO-space X with Countable Resolvable Set Con-

dition is Namioka.

Proof. It is sufficient to prove that for a compact Hausdorff space K any continuous map

f : X → Cp(K) is continuous at every point of a dense Gδ-subset of X as a function with

values in Cu(K). So, let K be a compact Hausdorff space and f : X → Cp(K) be a continuous

map. Lemma 3 and Theorem 2 imply that f : X → Cu(K) is barely continuous. Then the

discontinuity point set of f is an Fσ-set of the first category in X by [6, Theorem 2.3]. Since X

is Baire, the set of all continuity points of f is dense and Gδ in X.
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The following problem arises naturally.

Question 3. Does every hereditarily Baire perfect GO-space satisfy the Countable Resolvable

Set Condition?
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Топологiчний простiр X називають намiоковим, якщо для кожного компактного простору

K i кожної нарiзно неперервної функцiї f : X × K → R iснує всюди щiльна Gδ-множина A ⊆ X

така, що f є сукупно неперервною в кожнiй точцi множини A × K.

Ми вводимо поняття топологiчного простору з умовою злiченностi розкладних множин

(тобто, в кожному його сепарабельному пiдпросторi довiльна цiлком впорядкована строго

зростаюча (або спадна) сiм’я розкладних множин є не бiльше, нiж злiченною) i доводимо, що

кожний досконалий спадково берiвський узагальнений впорядкований простiр з умовою злi-

ченностi розкладних множини є намiоковим.

Ключовi слова i фрази: узагальнений впорядкований простiр, властивiсть Намiоки, умова

злiченностi розкладних множин, функцiя першого класу Бера.


