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Namioka property of generalized ordered spaces

Karlova O.12

A topological space X is called Namioka, if for every compact space K and every separately con-
tinuous function f : X x K — R there exists a dense Gs-set A C X such that f is jointly continuous
at every point of A x K.

We introduce a notion of a topological space with countable resolvable set condition (i.e. in every
separable subspace of such space each well-ordered strictly increasing (or decreasing) family of
resolvable sets is at most countable) and prove that every hereditarily Baire perfect generalized
ordered space with countable resolvable set condition is Namioka.
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1 Introduction

A linearly ordered topological space (LOTS) is a triple (X, T, <), where (X, <) is a linearly
ordered set and 7 is the usual open-interval topology of the order <. Note that a subspace
of LOTS is not necessarily LOTS as the example of Sogrenfrey line shows: it is a subspace of
the double arrow space which is compact and linearly ordered, but the Sogrenfrey line is not
LOTS. A subspace of a linearly ordered topological space is called a generalized ordered space or
GO-space.

A topological space X is called Namioka, if for every compact space K and every separately
continuous function f : X X K — R there exists a dense Gs-set A C X such that f is jointly
continuous at every point of A x K. The classical result of I. Namioka [9, Theorem 1.2] states
that every Cech-complete space is Namioka. J. Saint-Raymond [10, Theorem 3] proved that
every completely regular Namioka space is Baire. Moreover, he showed that in the class of all
metrizable spaces, Namioka and Baire spaces coincide and that every separable Baire space is
Namioka.

In [2], it was proved that every quarter-stratifiable Baire space is Namioka and the
Sorgenfrey line is a hereditarily Namioka space. Namioka property of GO-spaces in terms of
topological games was considered by V. Mykhaylyuk [8]. He introduced a modification of the
classical weak Choquet o-game (see [8, Section 2]) and showed that this new game coincides
with the o-game in the class of GO-spaces.
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Theorem 1 ([8, Theorem 5.3]). Let X be a GO-space which can be covered by a sequence
(Ag)o<g<w, of nowhere dense subsets Az C X. Then X is Namioka if and only if the player
has no winning strategy in o-game.

The next open question was formulated in [8, Question 6.3] and became the starting point
for the investigations of current manuscript.

Question 1. Let X be a Namioka GO-space. Is it true that the player p has no winning strategy
in o-game?

In the given note we show that every hereditarily Baire perfect GO-space X with countable
resolvable set condition (see Definition 1) is Namioka. In view of Theorem 1 one can reformu-
late Question 1 in the following form.

Question 2. Let X be a hereditarily Baire perfect GO-space with countable resolvable set con-
dition. Can X be covered by a sequence (Ag)o<¢<w, of nowhere dense subsets Az C X?

The last question is still open and we will investigate it in our future research.

2 Auxiliary facts

Recall that a topological space X without isolated points is called crowded.

Lemma 1. Let o/ be a partition of a first countable Hausdorff space X by nowhere dense sets.
Then there exists a countable crowded subspace Q C X such that |[ANQ| <1 forall A € &.

Proof. Let o = {As : s € S} be a partition of X by nowhere dense sets, A; # A; if s # t. For
every x € X we consider a countable base {Uj, : m € IN} of a point x such that U} ., C Uj,
for each m.

We take an arbitrary point xp € X and let xg € As, for a unique sy € S. Theset By = X \ Ay,
is dense in X, hence Llfo N B # J. Letx; € Ufo N By. There exists s; # sp such that x; € As,.
We put m; = 1. Since X is Hausdorff, there is mp > my such that U,’ffz N U,’f}z = J. Moreover,
there exist x19 € Uy, N By and xq17 € Uy, N By, where the set By = X \ (As, U Ay, ) is everywhere
dense.

Assume we have chosen points x;,, ..., xj, and an increasing sequence 1 = m; < --- < my
of integers for some n > 1 such that

(i) ix € {0,1}F,1 <k <n;
(i) xy,, = %y, ifig = (0,ik), 1 <k <n;

(iii) x4 € Unt,, 1 <k <n;

M1/

(iv) |[ANQyu| <1lforall A € o, where Q, = LnJ {x;, ix € {0, 1}F}.
k=1

Now we choose 21 points Xi,.,, Wherei, ;1 € {0, 1}"+1. We put Xi, ., = Xi,, if i,01 = (0,1n).
Since X is Hausdorff, there exist m,,1 > m, such that Un AU = o for all distinct

My My 41

in,jn € {0,1}". Let x;, € As, for some s;, € S and notice that As; # A, for all distinct

Xin
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in,jun € {0,1}". Since theset B,;1 = X\ U A, is everywhere dense in X, there exists
ine{0,1}"
xin
X(1,i,) € umnﬂ N By
It is easy to see that we get the sequence xj,, ..., Xj,, ... satisfying (i)-(iv) for every n > 1.

Weput Q = U {xj, : in € {0,1}"}. Note that property (iii) implies that Q is crowded. O
n=1

A subset A of a topological space X is an H-set or resolvable in the sense of Hausdorff, if there
exists a decreasing sequence (Fz)zc|o ) Of closed subsets of X such that

A= U (FE\FEw).
&<a, & isodd

Notice that each open or closed set in a topological space is resolvable and the class of all H-
sets in a hereditarily Baire perfect paracompact space coincides with the class of all sets, which
are F, and G; simultaneously (see [5, Theorem 1, Proposition 3.1]). More relations between
resolvable and Borel sets in topological spaces can be found in [11].

Definition 1. We say that a topological space X satisfies Countable Resolvable Set Condition or is
CRSC, if in every separable subspace of X each well-ordered strictly increasing (or decreasing)
family of H-sets is at most countable.

By [7, §24] every metric separable space is CRSC. Notice that if X is CRSC, then every its
separable subspace should satisfy the Countable Chain Condition. A common example of a
separable non-metrizable topological space that fails the Countable Chain Condition is the
Niemytzki plane. Another classic example often used in set theory is a Suslin Line, which
is a totally ordered space with the lexicographical order that is separable but fails Countable
Chain Condition because it contains an uncountable antichain of points, each with disjoint
neighborhoods.

Lemma 2. Let X be a hereditarily Baire perfect GO-space with Countable Resolvable Set Con-
dition, </ be a o-disjoint family of sets with empty interior such that U</’ is F, in X for any
/' C of . Then the union U</ has empty interior.

Proof. Assume to the contrary that G = int(U</) # @. Then we can also assume that <7 covers
X, because otherwise we can replace X by a hereditarily Baire perfect GO-space G and </ by
the family (AN G) ac.y-

Let & = U, 4, and every family o7, consists of mutually disjoint sets. Notice that every
Ap = U o is an Fy-setin X and (A )qen is a covering of a Baire space X. Then thereis N € IN
such that Xp = int Ay # &. Let us observe that X is a hereditarily Baire perfect GO-space.
We put

= (AN Xo) pcory-
Let (Ag)z<q be any well-ordering of <. Since |J«’ is Fy in X for any subfamily o' C .
and .o is a partition of X, every set Ag is Fy and G4 simultaneously. Moreover, intx,A; = &,
because X is an open subset of X and intxA; = @.

Fix ¢ < a. Then there exist sequences (U, ) and (F,) of subsets in Xy such that

A== N,
n=1 n=1
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each Uy, is open and each F, is closed and nowhere dense in Xy. Assume that Az is somewhere
dense and find an open set V C X such that Az NV isdensein V. Then for every n the set

B, = (XO\V)U(UH\FH)

is open dense subset of Xj. Since Xy is Baire, () By is dense in Xy (and in V). From the other
n=1
hand, we have

(ﬁan> nvc (ﬁlun\a> NV =a.

Hence, our assumption is not valid, which follows that A is nowhere dense in Xj.

Therefore, .2 is a partition of Xy by nowhere dense sets. Note that every perfect GO-space
is first countable [1, Theorem 3.1]. By Lemma 1 there exists a countable crowded set Q C X
such that

every Az contains at most one point from Q. ()
We put
YZQ and BQ':A,JTHY

for all { < a. Suppose that there is { < a such that W = intyB; # @. Then W C Az and it
contains infinitely many points from Q, which contradicts to (). Hence, every Az has empty
interior in Y. Therefore, # = (Bg¢)z<, is a partition of Y by sets with empty interior such that
every union of members of # is F, in Y. We put

Ce=UBy
n<¢
for all { < a and obtain strictly increasing sequence of F,- and G;-sets Cg such that the family
(C¢)e<q covers a hereditarily Baire perfect GO-space Y.
Since every C¢ is an H-set [5, Proposition 3.1] and Y has CRSC, there exists f < w; such
that Cz = Cgyq = ... forall ¢ > B. Hence, (Cg)s>p is at most countable covering of Y by
nowhere dense sets. This is a contradiction, since Y is Baire. O

3 Classification of maps on GO-spaces

The definition of Namioka space is equivalent to the following: X is Namioka if and only
if for every compact space K any continuous function f : X — C,(K) is continuous at every
point of a dense Gs-subset of X as a function with values in C, (K), where C,(K) and C,(K) are
spaces of all continuous functions between K and R equipped with the topologies of pointwise
and uniform convergences, respectively.

Recall that a function f : X — Y between topological spaces X and Y has the point of
continuity property, if for every nonempty closed set F C X the restriction f|r has a point of
continuity.

Theorem 2. Let X be a hereditarily Baire perfect GO-space with Countable Resolvable Set
Condition, (Y,0) be a metric space. Then every Borel 1 function f : X — Y has point of
continuity property.

Proof. Fix any F,-measurable map f : X — Y, ¢ > 0 and a closed non-empty set F C X. Since
X is hereditarily Baire, it is sufficient to assume that F = X and to prove that there exists an
open set G in X such that diamf(G) < e.
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Since Y is paracompact, we choose a o-disjoint covering #" of Y by open sets of diameters
less than e. Then the family & = {f~1(V) : V € ¥} is a o-disjoint covering of X. Moreover,
U’ is an Fy-set in X for all &’ C <7, since f is Borel-one map. Lemma 2 implies that there
exists V € 7 such that G = intf (V) # @. Then diam f(G) < diam V < e. O

Lemma 3. Let X be a topological space and (Y, | - — - |) be a metric space. Let C, = C,(X,Y)
and C, = C,(X,Y) be spaces of all continuous maps between X and Y equipped with the
topologies of pointwise and uniform convergence, respectively. Then the identity map
id : C, — Cy, is Borel-one map.

Proof. Consider the metric ¢ on Cy, 0(f,8) = sup,.x |f(x) — g(x)|, which generates the topo-
logy on uniform convergence. Fix any open set G C C,. Then
G=U {reGawG\G) <1}
nelN

It is easy to see that the functiond : C, — [0,4c0), defined by d(x) = o(x,Cp \ G) for all
x € Cp, is lower semi-continuous on Cp. This implies that the set {x € C, : 0(x,Cp \ G) < %}
is closed in C;,. Hence, G is an Fy-set in Cy,. O
Theorem 3. Let X be a hereditarily Baire perfect GO-space with Countable Resolvable Set
Condition, Y be a topological space, Z be a metric space and f : X — C,(Y, Z) be a continuous
map. If Z is equiconnected or dimX = 0, then f belongs to the first Baire class as a map with
values in C, (Y, Z).

Proof. Lemma 3 implies that f : X — C,(Y,Z) is F,-measurable. By Theorem 2 we get that
f X — Cu(Y,2Z) is barely continuous. It remains to apply [2, Theorem 4.3] in case when
dimX = 0, and [2, Proposition 2.2] as well as [3, Theorem 10] in case when Z is equi-
connected. O

Remark. In general, the identityid : C,(X) — C,(X) is not of the first Baire class. Let X = 2
be the compact space of all {0,1}-valued sequences. Assume thatid : C,(2¥) — C,(2¥) is a
Baire-one map. Then it should be strongly functionally o-discrete [4, Theorem 2.5], which im-
plies that there exist a sequence (% )new of families of sets in C,(2“) and a sequence (% )new
of discrete families %, = (Up)pecs, of open sets such that B C Ug forall B € %,, n € w,
and the family |, c,, %y is a base for f (this means that the preimage f~!(V) of any open set
V C C,(2¥) is a union of some members of families %,,).

Notice that C,(2“) has Countable Chain Condition. Then every family %, (and every
family %,) is at most countable. Since C,(2%) is not separable, there exists a discrete set
D C C,(2%) of cardinality R;. Consider the restriction id|p. Then the base % for id|p con-
tains all singletons {y} fory € D, which implies that |D| < ¥y, a contradiction.

Theorem 4. Every hereditarily Baire perfect GO-space X with Countable Resolvable Set Con-
dition is Namioka.

Proof. 1t is sufficient to prove that for a compact Hausdorff space K any continuous map
f + X = Cp(K) is continuous at every point of a dense Gs-subset of X as a function with
values in C,(K). So, let K be a compact Hausdorff space and f : X — C,(K) be a continuous
map. Lemma 3 and Theorem 2 imply that f : X — C,(K) is barely continuous. Then the
discontinuity point set of f is an F,-set of the first category in X by [6, Theorem 2.3]. Since X
is Baire, the set of all continuity points of f is dense and G, in X. O
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The following problem arises naturally.

Question 3. Does every hereditarily Baire perfect GO-space satisty the Countable Resolvable

Set Condition?
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Tonoaoriusmit mpocTip X Ha3sMBAIOTb HAMIOKOSUM, SIKIIO AASI KOKHOTO KOMIIAKTHOTO IIPOCTOPY
K i xoxHo1 HapisHo HemepepsHOi dyHKII f : X X K — R icHye Bcroay minbHa Gs-MHOXMHa A C X
TakKa, IO f € CYKYIIHO HellepepBHOIO B KOXHIl Touni MHOXMHN A X K.

Mu BBOAMMO THOHSITTSI TOIMIOAOTiYHOTO MPOCTOPY 3 YMOBOIO 3AIUEHHOCTI PO3KAaAHMX MHOXIH
(TO6TO, B KOXXHOMY 110TO cerapabeAbHOMY IAIPOCTOPi AOBiABHA ILAKOM BIOPSIAKOBaHAa CTPOTO
3pocratoya (abo criapHa) CiM’st po3KAaAHMX MHOXKMH € He OiAbIIle, HiXX 3AiUeHHOIO) i AOBOAVMIMO, IIIO
KOXXHII AOCKOHAAMI CIIAAKOBO 6epiBChbKMIT y3araAbHEHMIT BIIOPSIAKOBAHMIA IIPOCTIP 3 YMOBOIO 3Ai-
YeHHOCTi PO3KAaAHVX MHOXMHI € HAMiOKOBMM.

Kntouosi cnosa i ppasu: y3araAbHeHWMI BIOPSAKOBaHMI ITPOCTip, BAacTuBicTh Hamioxy, ymoBa
3AIUEHHOCTI pO3KAAAHMX MHOXMH, (PYHKIISI IIepIIoro xaacy bepa.



