Карпатські матем. публ. 2013, Т.5, №2, С.196–198

VERKALETS N.B., ZAGORODNYUK A.V.

ON GEOMETRIC EXTENSION OF POLYNOMIALS ON BANACH SPACES

We consider some questions related to Aron-Berner extensions of polynomials on infinitely dimensional complex Banach spaces, using natural extensions of their zeros.

Key words and phrases: homogeneous polynomials on Banach spaces, zeros of polynomials, Aron-Berner extension.

 $Vasyl\ Stefanyk\ Precarpathian\ National\ University, 57\ Shevchenka\ str., 76018,\ Ivano-Frankivsk,\ Ukraine\ E-mail:\ nadyaverkalets@ukr.net\ (Verkalets\ N.B.),\ andriyzag@yahoo.com\ (Zagorodnyuk\ A.V.)$

INTRODUCTION AND PRELIMINARIES

Let X be a complex Banach space, $\mathcal{P}(X)$ be the algebra of all continuous complex valued polynomials on X and $\mathcal{P}(^nX)$ be a subspace of $\mathcal{P}(X)$ of n-homogeneous polynomials. Since every polynomial $P \in \mathcal{P}(X)$ admits an unique (up to a multiplicative constant) factorization $P = P_1^{m_1} \cdot \ldots \cdot P_k^{m_k}$ in $\mathcal{P}(X)$ into irreducible polynomials, where $m_1, \ldots, m_k \in \mathbb{N}$, deg $P_j > 0$, $j = 1, \ldots, k$, we can denote the radical of P as $\mathrm{Rad}(P) = P_1 \cdot \ldots \cdot P_k$.

In the general case, let $J = (P_1, ..., P_n)$ be the ideal generated by $P_1, ..., P_n \in \mathcal{P}(X)$, that is

$$J = \left\{ \sum_{i=1}^{n} P_i Q_i : \ Q_i \in \mathcal{P}(X) \right\},\tag{1}$$

then the set Rad J is called the *radical* of J, if $P^k \in J$ for some positive integer k implies $P \in \text{Rad } J$. For a given ideal $J \subset \mathcal{P}(X)$, V(J) denotes the *zero* of J, that is, the common set of zeros of all polynomials in J.

Let *G* be a subset of *X*. Then I(G) denotes the hull of *G*, that is the set of all polynomials in $\mathfrak{P}(X)$ which vanish on *G*.

Ideals of the form (1) is called *finitely generated* in $\mathcal{P}(X)$. The following theorem is an analogue of the well known Hilbert Nulstellensatz for the infinite-dimension case (see [4, 5]).

Theorem 1. Let *J* be a finitely generated in P(X). Then I[V(J)] = Rad J.

This theorem implies, in particular, that every irreducible polynomial in $\mathcal{P}(X)$ is defined (up to a multiplicative constant) by its zeros.

In this paper we consider questions related to extensions of polynomials, using their zeros. Here we will use the fact in [3] that zero set of every homogeneous polynomial on a complex infinite-dimensional Banach space X contains an infinite-dimensional linear subspace. Also, we will use the well known Aron-Berner extension of polynomials in $\mathcal{P}(X)$ to the second dual X'' and the fact that the extension operator $P \leadsto \widetilde{P}$ is a topological homomorphism of algebras $\mathcal{P}(X)$ and $\mathcal{P}(X'')$ (see [1, 2]).

УДК 517.98

2010 Mathematics Subject Classification: 46A20, 46A22.

1 GEOMETRIC EXTENSION OF POLYNOMIALS

Let $P \in \mathcal{P}(X)$, dim $X = \infty$. Since Ker P consists of infinite-dimensional closed linear subspaces ([3]), we can present Ker $P = \bigcup_{\alpha} V_{\alpha}$, where V_{α} are *maximal* closed linear subspaces in Ker P and α goes over a set of indexes. As usually,

$$V_{\alpha}^{\perp} = \left\{ f \in X' : f(x) = 0, \forall x \in V_{\alpha} \right\}.$$

So, $V_{\alpha}^{\perp \perp}$ naturally contains V_{α} and

$$V_{lpha}^{\perp\perp}=\left\{ arphi\in X^{\prime\prime}:arphi(f)=0,orall f\in V_{lpha}^{\perp}
ight\} .$$

Proposition 1. $V_{\alpha}^{\perp \perp} = V_{\alpha}^{"}$.

Proof. $V_{\alpha}^{\perp\perp}\supset V_{\alpha}''$. By the Goldstain's theorem for every $\varphi\in V_{\alpha}''$ there is a net $(x_{\beta})\in V_{\alpha}$ such that $x_{\beta}\xrightarrow{*-weak}\varphi$ that is $f(x_{\beta})\to\varphi(f)$ for all $f\in X'$. Hence if $f\in V_{\alpha}^{\perp}$, then $f(x_{\beta})=0$ for all β . So, we have $\varphi(f)=0$ and $V_{\alpha}^{\perp\perp}\supset V_{\alpha}''$.

On the other hand, if we have $\varphi \in V_{\alpha}^{\perp \perp}$, then $\varphi \in X''$. For any $g \in V_{\alpha}'$ by the Hahn-Banach theorem there exists an extension $\widetilde{g} \in X'$. Let $\widetilde{g_1}$, $\widetilde{g_2}$ be extensions of g to some elements in X', then $\widetilde{g_1} - \widetilde{g_2} = 0$ on V_{α} , i.e. $\widetilde{g_1} - \widetilde{g_2} \in V_{\alpha}^{\perp}$. Since $\varphi \in V_{\alpha}^{\perp \perp}$, then $\varphi(\widetilde{g_1} - \widetilde{g_2}) = 0$ and so, $\varphi(\widetilde{g_1}) = \varphi(\widetilde{g_2})$.

Therefore we can define

$$\varphi(g) := \varphi(\widetilde{g}),$$

where \tilde{g} is an arbitrary extension.

We have proved that $\varphi \in V''_{\alpha}$, which means that $V_{\alpha}^{\perp \perp} \subset V''_{\alpha}$. It follows that $V_{\alpha}^{\perp \perp} = V''_{\alpha}$.

The main question of this paper is: does $Ker \widetilde{P} = \bigcup_{\alpha} V_{\alpha}^{\perp \perp}$, where \widetilde{P} is the Aron-Berner extension of P?

We have an affirmative answer for some partial cases.

Proposition 2. Ker $\widetilde{P} \supset \bigcup_{\alpha} V_{\alpha}^{\perp \perp}$.

Proof. Since each $V_{\alpha}^{\perp \perp}$ is naturally identified with $V_{\alpha}^{"}$, then the restriction of \widetilde{P} on $V_{\alpha}^{\perp \perp}$ coincide with the Aron-Berner extension of restriction of P onto V_{α} . But P vanishes on V_{α} and so, $V_{\alpha}^{\perp \perp} \subset \operatorname{Ker} \widetilde{P}$.

Corollary 1. If $\bigcup_{\alpha} V_{\alpha}^{\perp \perp}$ is a zero-set of a polynomial R on X'', then $Ker \widetilde{P} = \bigcup_{\alpha} V_{\alpha}^{\perp \perp}$.

Proof. Without lost of the generality, we can assume that R is radical. By the Proposition 2, Ker $\widetilde{P} \supset \operatorname{Ker} R$, that is $\widetilde{P} \in I[V(R)]$. By Theorem 1, $\widetilde{P} = RQ$ for some $Q \in \mathcal{P}(X'')$. Note that Ker $P = \operatorname{Ker} R|_X$ and Ker $P = \operatorname{Ker} R|_X \cup \operatorname{Ker} Q|_X$. So, Ker $Q|_X \subset \operatorname{Ker} P|_X$ and we have that Ker $Q \subset \operatorname{Ker} R$. Hence Ker $\widetilde{P} = \operatorname{Ker} RQ = \operatorname{Ker} R = \bigcup_{\alpha} V_{\alpha}^{\perp \perp}$.

Corollary 2. If X is a complemented subspace in X'', then $Ker \widetilde{P} = \bigcup_{\alpha} V_{\alpha}^{\perp \perp}$.

Proof. Let $T: X'' \to X$ be a projection. Then T maps $V_{\alpha}^{\perp \perp}$ onto V_{α} . Let $R = P \circ T$. So $\cup_{\alpha} V_{\alpha}^{\perp \perp} \subset \text{Ker } R$.

On the other hand, if $z \notin \bigcup_{\alpha} V_{\alpha}^{\perp \perp}$, then $T(z) \notin \bigcup_{\alpha} V_{\alpha}$ and so $R(z) \neq 0$, that is $\bigcup_{\alpha} V_{\alpha}^{\perp \perp} = R$. By the Corollary 1, Ker $\widetilde{P} = \bigcup_{\alpha} V_{\alpha}^{\perp \perp}$.

Since every dual Banach space is complemented in its second dual we have the following corollary.

Corollary 3. *If* X *is a dual space to a Banach space, then* $Ker P = \bigcup_{\alpha} V_{\alpha}^{\perp \perp}$.

REFERENCES

- [1] Aron R.M., Berner P.D. A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. France 1978, **106**, 3–24.
- [2] Carne T.K., Cole B., Gamelin T.W. *A uniform algebra of analytic functions on a Banach spaces*. Trans. Amer. Math. Soc. 1989, **314** (2), 639–659. doi:10.1090/S0002-9947-1989-0986022-0
- [3] Plichko A., Zagorodnyuk A. On automatic continuity and three problems of "The Scottish Book" concerning the boundedness of polynomials functionals. J. Math. Anal. Appl. 1998, 220 (2), 477–494. doi:10.1006/jmaa.1997.5826
- [4] Zagorodnyuk A.V. Spectra of algebras of analytic functions and polynomials on Banach spaces. Contemp. Math. 2007, 435, 381–394.
- [5] Zagorodnyuk A.V. *The Nulstellensatz on infinite-dimentional complex spaces*. J. Math. Sci. 1999, **96** (2), 2951–2956. doi:10.1007/BF02169686

Received 22.08.2013

Веркалець Н.Б., Загороднюк А.В. Геометричне продовження поліномів на банахових просторах // Карпатські математичні публікації. — 2013. — Т.5, \mathbb{N}^2 2. — С. 196–198.

У роботі розглянуті деякі питання, пов'язані з продовженням Арона-Бернера поліномів на нескінченно вимірних комплексних банахових просторах, використовуючи природне продовження їхніх нулів.

Ключові слова і фрази: однорідні поліноми на банахових просторах, нулі поліномів, продовження Арона-Бернера.

Веркалец Н.Б., Загороднюк А.В. *Геометрическое продолжение полиномов на банаховых пространствах* // Карпатские математические публикации. — 2013. — Т.5, \mathbb{N}^2 . — С. 196–198.

У роботе рассмотрены некотрые вопросы, связанные с продолжением Арона-Бернера полиномов на бесконечно измеримых комплексных банаховых пространствах, используя естественное продолжение их нулей.

Ключевые слова и фразы: однородные полиномы на банаховых пространствах, нули полиномов, продолжение Арона-Бернера.