1. Accardi L., Fagnola F., Quaegebeur J. A representation free quantum stochastic calculus. J. Funct. Anal. 1992, 104 (1), 149-197. doi: 10.1016/0022-1236(92)90094-Y
  2. Benth F.E., Di Nunno G., Lokka A., Øksendal B., Proske F. Explicit representation of the minimal variance portfolio in markets driven by Lévy processes. Math. Finance 2003, 13 (1), 55-72. doi: 10.1111/1467-9965.t01-1-00005
  3. Benth F.E., Lokka A. Anticipative calculus for Lévy processes and stochastic differential equations. Stoch. Stoch. Rep. 2004, 76 (3), 191-211. doi: 10.1080/10451120410001716880
  4. Berezansky Yu.M., Lytvynov E.W., Mierzejewski D.A. The Jacobi field of a Lévy process. Ukrainian Math. J. 2003, 55 (6), 853-858. doi: 10.1023/B:UKMA.0000010261.64329.4c
  5. Berezansky Yu.M., Sheftel Z.G., Us G.F. Functional Analysis. Birkhauser Verlag, Basel-Boston-Berlin, 1996.
  6. Bertoin J. Lévy Processes. Cambridge University Press, Cambridge, 1996.
  7. Dermoune A. Distributions sur l’espace de P. Lévy et calcul stochastic. Ann. Inst. H. Poincará Probab. Statist. 1990, 26 (1), 101-119.
  8. Di Nunno G., Meyer-Brandis T., Øksendal B., Proske F. Malliavin calculus and anticipative Ito formulae for Lévy processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2005, 8 (2), 235-258. doi: 10.1142/S0219025705001950
  9. Di Nunno G., Øksendal B., Proske F. Malliavin Calculus for Lévy Processes with Applications to Finance, Universitext. Springer-Verlag, Berlin, 2009.
  10. Di Nunno G., Øksendal B., Proske F. White noise analysis for Lévy processes. J. Funct. Anal. 2004, 206 (1), 109-148. doi: 10.1016/S0022-1236(03)00184-8
  11. Es-Sebaiy K., Tudor C.A. Lévy processes and Ito-Skorokhod integrals. Theory Stoch. Process 2008, 14 (2), 10-18.
  12. Gihman I.I., Skorohod A.V. Theory of Random Processes, Vol. 2. Nauka, Moscow, 1973. (in Russian)
  13. Holden H., Øksendal B., Uboe J., Zhang T.-S. Stochastic Partial Differential Equations—a Modeling, White Noise Functional Approach. Birkhauser, Boston, 1996.
  14. Ito K. Spectral type of the shift transformation of differential processes with stationary increments. Trans. Amer. Math. Soc. 1956, 81, 253-263. doi: 10.1090/S0002-9947-1956-0077017-0
  15. Kabanov Yu.M. Extended stochastic integrals. Theory Probab. Appl. 1975, 20 (4), 725-737. (in Russian)
  16. Kabanov Yu.M., Skorohod A.V. Extended stochastic integrals. In: Proc. “School-Symposium Theory Stoch. Processes”, Vilnus, USSR, 1975, Inst. Phys. Math., Vilnius, 1975, 123-167. (in Russian).
  17. Kachanovsky N.A. On an extended stochastic integral and the Wick calculus on the connected with the generalized Meixner measure Kondratiev-type spaces. Methods Funct. Anal. Topology 2007, 13 (4), 338-379.
  18. Kachanovsky N.A. On the extended stochastic integral connected with the Gamma-measure on an infinitedimensional space. Methods Funct. Anal. Topology 2002, 8 (2), 10-32.
  19. Kachanovsky N.A., Tesko V.A. Stochastic integral of Hitsuda-Skorohod type on the extended Fock space. Ukrainian Math. J. 2009, 61 (6), 733-764. doi: 10.1007/s11253-009-0257-2
  20. Kondratiev Yu.G., Lytvynov E.W. Operators of gamma white noise calculus. Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 2000, 3 (3), 303-335. doi: 10.1142/S0219025700000236
  21. Lee Y.-J., Shih H.-H. Analysis of generalized Lévy white noise functionals. J. Funct. Anal. 2004, 211 (1), 1-70. doi: 10.1016/j.jfa.2003.07.002
  22. Lytvynov E.W. Orthogonal decompositions for Lévy processes with an application to the gamma, Pascal, and Meixner processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2003, 6 (1), 73-102. doi: 10.1142/S0219025703001031
  23. Meyer P.A. Quantum Probability for Probabilists. In: Lect. Notes in Math., 1538. Springer Verlag, New-York, 1993.
  24. Nualart D., Schoutens W. Chaotic and predictable representations for Lévy processes. Stochastic Process. Appl. 2000, 90 (1), 109-122. doi: 10.1016/S0304-4149(00)00035-1
  25. Øksendal B. Stochastic partial differential equations driven by multy-parameter white noise of Lévy processes. Quart. Appl. Math. 2008, 66 (3), 521-537. doi: 10.1090/S0033-569X-08-01090-5
  26. Protter P. Stochastic Integration and Differential Equations. Springer, Berlin, 1990.
  27. Rodionova I.V. Analysis connected with generating functions of exponential type in one and infinite dimensions. Methods Funct. Anal. Topology 2005, 11 (3), 275-297.
  28. Sato K. Lévy Processes and InfinitelyDivisible Distributions. In: Cambridge University Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999.
  29. Schoutens W. Stochastic Processes and Orthogonal Polynomials. In: Lect. Notes in Statist., 146. Springer-Verlag, Berlin, 2000.
  30. Solé J.L., Utzet F., Vives J. Chaos expansions and Malliavin calculus for Lévy processes. Stoch. Anal. Appl., Abel Symposia 2007, 2, 595-612. doi: 10.1007/978-3-540-70847-6_27
  31. Surgailis D. On $L^2$ and non-$L^2$ multiple stochastic integration. In: Lect. Notes in Control and Information Sciences, 36. Springer-Verlag, Berlin, 1981, 212-226.
  32. Skorohod A.V. Integration in Hilbert Space, Springer, New York-Heidelberg, 1974.
  33. Skorohod A.V. On a generalization of a stochastic integral. Theory Probab. Appl. 1975, 20 (2), 223-238. (in Russian)