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RECONSTRUCTION OF ENERGY-DEPENDENT STURM-LIOUVILLE EQUATIONS

FROM TWO SPECTRA. II

We study the problem of reconstruction of singular energy-dependent Sturm-Liouville equation

from two spectra. We suggest a new method of solving this inverse problem by establishing its

connection with the problem of reconstruction from one spectrum and the set of norming constants.
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INTRODUCTION

The main object of our study is energy-dependent Sturm-Liouville equation

−y′′ + qy + 2λpy = λ2y (1)

on (0, 1); here λ ∈ C is the spectral parameter, p is a real-valued function in L2(0, 1) and q

is a real-valued distribution in the Sobolev space W−1
2 (0, 1), i.e. q = r′ with a real-valued r ∈

L2(0, 1). We consider this equation under two types of boundary conditions: the Dirichlet ones

y(0) = y(1) = 0 (2)

and the so-called mixed conditions

y(0) = y[1](1) + Hy(1) = 0,

where H ∈ R is some constant and y[1] := y′ − ry is a quasi-derivative of the function y used in

the regularization procedure due to Savchuk and Shkalikov (see [19, 20] and the next section

for details). Since primitive of q is defined only up to an additive constant, by replacing r with

r − H we reduce the above mixed boundary conditions to the following ones:

y(0) = y[1](1) = 0. (3)

In what follows, we shall denote by LD(p, r) and LM(p, r) the spectral problems (1), (2) and

(1), (3) respectively. Our main aim in this paper is to solve the inverse problem of reconstruct-

ing the potentials p and r given the spectra of LD(p, r) and LM(p, r).
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The spectral problem under study often arise in classical and quantum mechanics. In parti-

cular, the equations of the form (1) are used in modelling of the motion of relativistic massless

particles, in describing the interactions of colliding spinless particles, in modelling of the me-

chanical system vibrations in viscous media etc.

The spectral equation (1) was considered on the line and studied in the context of inverse

scattering problems (see, e.g. [1, 7, 9, 10, 12, 18, 21], and [5] for a more extensive reference

list). The inverse spectral problems for (1) with p ∈ W1
2 (0, 1) and q ∈ L2(0, 1) and with Robin

boundary conditions were discussed by M. Gasymov and G. Guseinov in their short paper [3]

of 1981 containing no proofs. Such problems were also considered in [2, 4, 13, 14, 22], but only

Borg-type uniqueness results were obtained therein.

We studied the inverse problems of reconstruction of (1) with potentials p ∈ L2(0, 1)

and q ∈ W−1
2 (0, 1) from the spectra of LD(p, r) and LM(p, r) in [17] and from one spectrum

and the set of norming constants in [5]. In this paper, we suggest another method of recon-

structing (1) from two spectra that exploits connection of this problem with the problem of

reconstructing (1) from one spectrum and the set of norming constants.

Namely, given two sequences λ and µ, which are supposed to be the spectra of LD(p, r)

and LM(p, r) with the sought potentials p and q = r′, we construct another sequence, which

turns out to consist of the norming constants for LD(p, r). Then, using the results of [5], we

reconstruct the potentials p and q of (1) such that λ is the spectrum of (1), (2) with these p

and q. Next we show that the primitive r of q can be chosen uniquely so that the spectrum

of LM(p, r) coincides with the given sequence µ. The main result of the paper is the exis-

tence and uniqueness theorem giving a complete characterisation of the spectra of the prob-

lems LD(p, r) and LM(p, r) as well as the reconstruction algorithm.

1 PRELIMINARIES AND MAIN RESULTS

In this section we introduce the necessary definitions and formulate the main results of the

paper. To start with, consider the differential expression

ℓ(y) = −y′′ + qy

and recall that q = r′ is a real-valued distribution from W−1
2 (0, 1). Therefore we need to define

the action of ℓ(y) more rigourously. To do this we use the regularization procedure due to

Savchuk and Shkalikov (see [19, 20]) based on the notion of quasi-derivatives. Namely, for

every absolutely continuous function y we denote by y[1] := y′ − ry its quasi-derivative and

define ℓ(y) as

ℓ(y) = −
(

y[1]
)′
− ry[1] − r2y

on the domain

dom ℓ = {y ∈ AC(0, 1) | y[1] ∈ AC[0, 1], ℓ(y) ∈ L2(0, 1)}.

It is straightforward to see that so defined ℓ(y) coincides with −y′′ + qy in the distributional

sense.

Now we can recast the spectral equation (1) as

ℓ(y) + 2λpy = λ2y. (4)
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Then a number λ ∈ C is called an eigenvalue of the problem LD(p, r) (resp. LM(p, r)) if equa-

tion (4) possesses a nontrivial solution satisfying the boundary conditions (2) (resp. (3)). This

solution is then called an eigenfunction of the problem LD(p, r) (resp. LM(p, r)) corresponding

to λ.

In this paper we study the following inverse spectral problem:

(IP1) Given the spectra of the problems LD(p, r) and LM(p, r), determine the potentials p

and r.

A complete solution of this problem is only possible under some extra assumption, which we

formulate further. Denote by Tj, j = 1, 2, the operator pencils defined via

Tj(λ)y := ℓ(y) + 2λp − λ2y

on the λ-independent domains

dom T1 := {y ∈ dom ℓ | y(0) = y(1) = 0},

dom T2 := {y ∈ dom ℓ | y(0) = y[1](1) = 0}.

Note that the spectra of the problems LD(p, r) and LM(p, r) coincide with those of the pen-

cils T1 and T2 respectively. Our standing assumption is the following:

(A) there is a µ∗ ∈ R such that the operator T2(µ∗) is positive.

Under this assumption all the eigenvalues of both problems LD(p, r) and LM(p, r) are real

and simple (see [16]). Moreover, they can be enumerated in increasing order as λn and µn so

that the pair of sequences ((λn), (µn)) forms an element of the set SD1 defined below (see [17]).

Definition 1. We denote by SD1 the family of all pairs (λ, µ) of increasing sequences λ :=

(λn)n∈Z∗ , Z
∗ := Z \ {0}, and µ := (µn)n∈Z of real numbers satisfying the following condi-

tions:

(i) asymptotics: there is an h ∈ R such that

λn = πn + h + λ̃n, µn = π
(

n − 1
2

)

+ h + µ̃n, (5)

where (λ̃n) is a sequence in ℓ2(Z
∗) and (µ̃n) is from ℓ2(Z);

(ii) almost interlacing:

µk < λk < µk+1 for every k ∈ Z
∗. (6)

Remark 1. (a) If the eigenvalues λn of LD(p, r) and µn of LM(p, r) are ordered so that (i)

and (ii) of the above definition hold, then the number µ∗ in assumption (A) satisfies the

inequalities µ0 < µ∗ < µ1, see [16]. Moreover, then assumption (A) holds with every µ∗

from (µ0, µ1).

(b) For the most of the paper, it will be convenient to assume that µ∗ in (A) is zero. If this

does not hold, we can shift the spectral parameter via λ = λ̂ + µ∗; then the spectral

equation (1) can be recast as

−y′′ + q̂y + 2λ̂p̂y = λ̂2y
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with the new potentials p̂ := p − µ∗ and q̂ := q + 2µ∗p − µ2
∗. Moreover, choosing the

primitive r̂ := r −
∫ 1

x (2µ∗p − µ2
∗) of q̂ so that (r̂ − r)(1) = 0 and introducing the cor-

responding quasi-derivative y[1] := y′ − r̂y, we see that the boundary conditions (2)

and (3) remain unchanged. Now if λn (resp. µn) are eigenvalues of the problem LD(p, r)

(resp. LM(p, r)), then λ̂n := λn − µ∗ (resp. µ̂n := µn − µ∗) are eigenvalues of the problem

LD(p̂, r̂) (resp. LM(p̂, r̂)), while the eigenfunctions for the corresponding eigenvalues

are the same. In particular, the problems LD(p̂, r̂) and LM(p̂, r̂) satisfy assumption (A)

with µ∗ = 0. Having p̂, q̂ and r̂ we can find p, q and r by formulae

p = p̂ + µ∗, q = q̂ − 2µ∗p − µ2
∗, r = r̂ +

∫ 1

x
(2µ∗ p̂ + µ2

∗). (7)

In view of the above remark, without loss of generality we can work under a simplifying

assumption

(A0) the operator T2(0) is positive.

However, the main results of the paper will be proved under the general assumption (A).

Clearly, under assumption (A0) the eigenvalues of LD(p, r) and LM(p, r) can be enumer-

ated in increasing order as λn and µn so that the pair of sequences ((λn), (µn)) forms an ele-

ment of the set SD1 with µ0 < 0 < µ1.

In this paper we establish connection between the inverse problem (IP1) and the inverse

problem (IP2) formulated below; it was already studied in [5]. Namely, for an eigenvalue λ of

the problem LD(p, r), denote by y the corresponding eigenfunction normalized by the initial

conditions y(0) = 0 and y[1](0) = 1. The quantity

α := 2λ2
∫ 1

0
y2(t)dt − 2λ

∫ 1

0
p(t)y2(t)dt (8)

is called the norming constant corresponding to the eigenvalue λ. Then (λ, α) is called the

(spectral) eigenpair of LD(p, r). The spectral data sd(p, r) of the problem LD(p, r) is the set of all

eigenpairs (λ, α) of LD(p, r).

The inverse spectral problem (IP2) reads as follows:

(IP2) Given the spectral data sd(p, r) of LD(p, r), determine the potentials p and r.

The results of [5] imply that under assumption (A0) the spectral data sd(p, r) form an ele-

ment of the set SD2 defined below.

Definition 2. We denote by SD2 the family of all sets {(λn, αn)}n∈Z∗ , which consist of pairs

(λn, αn) of real numbers satisfying the following properties:

(i) λn are nonzero, strictly increase with n ∈ Z
∗, and have the representation λn = πn +

h + λ̃n for some h ∈ R and a sequence (λ̃n) in ℓ2(Z
∗);

(ii) αn > 0 for all n ∈ Z∗ and the numbers α̃n := αn − 1 form an ℓ2(Z
∗)-sequence.

The main results of [5] are the following:

Theorem A (Uniqueness). Under assumption (A0), the potentials p and q = r′ of equation (1)

are uniquely determined by its spectral data sd(p, r).
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Theorem B (Existence). For every sd ∈ SD2, there exist real-valued p from L2(0, 1) and q

from W−1
2 (0, 1) such that sd is the spectral data for the problem LD(p, r) with the potentials p

and with r a primitive of q, i.e. sd = sd(p, r).

Note that neither the spectrum of LD(p, r) nor the set of norming constants depend on

the particular choice of the primitive r of q. That is why the results of [5] guarantee unique

reconstruction of q but leave r determined up to an additive constant. However, the boundary

conditions (3) for the problem LM(p, r) do depend on the choice of r, and we shall show that r

is determined uniquely in the inverse problem (IP1).

To investigate the connection between (IP1) and (IP2) we use the characteristic functions

of the problems LD(p, r) and LM(p, r). Denote by y(x, z) the solution of (4) with z instead

of λ and subject to the initial conditions y(0) = 0, y[1](0) = 1. Then λ is an eigenvalue of

the problem LD(p, r) if and only if it is a zero of its characteristic function ϕ(z) := y(1, z).

Analogously a number µ is an eigenvalue of the problem LM(p, r) if and only if µ is a zero

of the corresponding characteristic function ψ(z) := y[1](1, z). It was shown in [15] that the

functions ϕ and ψ can be written in factorized form in terms of their zeros, namely

ϕ(λ) =















V.p. ∏
n∈Z∗

λn − λ

πn
, if p0 6= πl, l ∈ Z,

(−1)l V.p. ∏
n∈Z∗

λn − λ

πn
, if p0 = πl, l ∈ Z,

(9)

ψ(µ) =











−V.p. ∏
n∈Z

µn − µ

π (n + 1/2)
, if p0 6=

π

2
+ πl, l ∈ Z,

(−1)l+1(µ0 − µ)V.p. ∏
n∈Z∗

µn − µ

πn
, if p0 =

π

2
+ πl, l ∈ Z,

(10)

where p0 =
∫ 1

0 p. The link between (IP1) and (IP2) is given by (9), (10) and the following for-

mula, which relates the characteristic functions (and so the spectra) of LD(p, r) and LM(p, r)

and the norming constants of LD(p, r) (see [16]):

αn = λn ϕ̇(λn)ψ(λn). (11)

In the next section we shall prove the following theorem:

Theorem 1. Given the pair of sequences (λ, µ) from SD1 with µ0 < 0 < µ1, construct (αn)n∈Z∗

via (9), (10) and (11). Then the αn are positive and the sequence (αn − 1)n∈Z∗ belongs to ℓ2(Z
∗).

As a result, the set of pairs {(λn, αn)}n∈Z∗ , with given numbers λn and the numbers αn

constructed as in (11), forms an element of SD2. Therefore by Theorems A and B there exist

unique real-valued p ∈ L2(0, 1) and q ∈ W−1
2 (0, 1) such that {(λn , αn)}n∈Z∗ coincides with the

spectral data sd(p, r), with every primitive r of q. Then we show that this primitive r can be

uniquely chosen as to make µn the eigenvalues of LM(p, r). This will lead to the main result

of the paper (cf. [17]):

Theorem 2. Assume that a pair (λ, µ) of sequences of real numbers is an element of SD1.

Then there exist unique real-valued p, r ∈ L2(0, 1) such that λ and µ are the spectra of the

problems LD(p, r) and LM(p, r). In particular, the singular potential q in (1) is equal to r′.



320 PRONSKA N.I.

2 CONNECTION BETWEEN (IP1) AND (IP2)

2.1 Proof of Theorem 1

This subsection is devoted to the proof of Theorem 1, which establishes connection be-

tween (IP1) and (IP2).

Suppose we have two sequences λ := (λn)n∈Z∗ and µ := (µn)n∈Z with µ0 < 0 < µ1, which

form an element (λ, µ) of the set SD1. Set λ0 := 0, and denote by λ∗ the sequence (λn)n∈Z,

which is λ augmented with λ0. Then λ∗ and µ strictly interlace. By means of these sequences

we construct the functions

s1(z) : =















zV.p. ∏
n∈Z∗

λn − z

πn
, if h 6= πl, l ∈ Z,

(−1)lz V.p. ∏
n∈Z∗

λn − z

πn
, if h = πl, l ∈ Z,

(12)

c(z) : =











−V.p. ∏
n∈Z

µn − z

π (n + 1/2)
, if h 6=

π

2
+ πl, l ∈ Z,

(−1)l+1(µ0 − z)V.p. ∏
n∈Z∗

µn − z

πn
, if h =

π

2
+ πl, l ∈ Z,

(13)

where h is the number in the asymptotics (i) of Definition 1.

Observe that λ∗ is the sequence of zeros of s1 and µ is that of c. The results of [6] imply that

there exist functions f and g from L2(0, 1) such that

s1(z) = sin(z − h) +
∫ 1

0
f (t)eiz(1−2t)dt and c(z) = cos(z − h) +

∫ 1

0
g(t)eiz(1−2t)dt. (14)

Note that

ṡ1(λn) = cos(λn − h) +
∫ 1

0
f (t)i(1 − 2t)eiλn(1−2t)dt.

Next put s(z) := s1(z)
z ; since λn, n ∈ Z, are zeros of s1 we have ṡ(λn) =

ṡ1(λn)
λn

for every n ∈ Z∗.

Now we shall prove the following auxiliary lemma.

Lemma 1. Let F be a function from L2(0, 1). Then the sequence ( fn)n∈Z with

fn :=
∫ 1

0
F(t)eiλn(1−2t)dt (15)

belongs to ℓ2(Z).

Proof. Let us firstly make a change of variables u := 1− 2t in the integral of the righthand side

of (15). We obtain

fn :=
∫ 1

−1
G(u)eiωnudu,

where G(u) = 1
2 F(1−u

2 )eihu is the function from L2(−1, 1) and ωn = πn + λ̃n. To complete the

proof it is enough to show that the system eiωnu forms a Riesz basis in L2(−1, 1); then fn are

the Fourier coefficients of G relative to the system eiωnu and so form a sequence from ℓ2(Z)

(see e.g. [23, Ch. 1]).

Note firstly that the system {eiπnu} is an orthogonal basis in L2(−1, 1). One can find a

constant L < π/4 and a sufficiently large N such that |λ̃n| < L for all n, |n| > N. Then Kadec’s

1/4-Theorem (see [23, Ch. 1], [8]) yields that the system {eiω̃nu} with
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ω̃n =

{

πn + λ̃n, |n| > N,

πn, |n| ≤ N,

forms a Riesz basis. It remains to observe that the sequence (ωn) is obtained from (ω̃n) by

changing a finite number of elements. Theorems 3.11 and 1.12 of [23] imply that the sys-

tem {eiωnu} is a Riesz basis.

The above lemma yields that

ṡ1(λn) = (−1)n cos λ̃n +
∫ 1

0
f (t)i(1 − 2t)eiλn(1−2t)dt = (−1)n(1 + sn),

c(λn) = (−1)n cos λ̃n +
∫ 1

0
g(t)eiλn(1−2t)dt = (−1)n(1 + cn)

(16)

with ℓ2-sequences (sn)n∈Z and (cn)n∈Z. Define the sequence (αn)n∈Z∗ as follows

αn := λn ṡ(λn)c(λn) = ṡ1(λn)c(λn). (17)

Then (16) implies that αn = (−1)n(1 + sn)(−1)n(1 + cn) = 1 + α̃n with ℓ2-sequence (α̃n).

Since the sequences λ∗ and µ interlace a straightforward analysis of definitions (12), (13)

and formula (17) gives that all αn, n ∈ Z
∗, are of the same sign and thus are positive thus

finishing the proof of Theorem 1.

2.2 Solution of (IP2)

Theorem 1 together with Theorems A and B yields that for the given sequence (λn)n∈Z∗

and the constructed (αn)n∈Z∗ we can uniquely determine potentials p and q such that the

problem LD(p, r) with r an arbitrary primitive of q has (λn)n∈Z∗ as its spectrum and (αn)n∈Z∗

as the corresponding norming constants.

From [15] we know that the shift h in the asymptotics (5) of eigenvalues of LD(p, r) equals

to p0 =
∫ 1

0 p.

2.3 Solution of (IP1)

Now we show that the potentials p and q constructed in the previous subsection also pro-

vide a solution to the (IP2). Namely, we shall show that there exists a primitive r of q such

that µn, n ∈ Z, are all the eigenvalues of the problem LM(p, r).

To start with, note that a primitive r of q is determined up to an additive constant. We

choose r in the following way. Let y(x, µ0) be the solution of the equation (1) with µ0 instead

of λ satisfying the initial condition y(0, µ0) = 0. Then y(1, µ0) is not equal to 0 as µ0 is not in

the spectrum of LD(p, r). This allows us to choose r uniquely so that y[1](1, µ0) = 0. Then µ0 is

an eigenvalue of the problem LM(p, r) with this fixed r. Denote by νn, n ∈ Z, the eigenvalues

of LM(p, r) enumerated in increasing order so that ν0 = µ0.

Lemma 2. νn = µn for all n ∈ Z.

Proof. Recall that the eigenvalues νn of LM(p, r) satisfy the asymptotics νn = π(n − 1/2) +

p0 + ν̃n with an ℓ2-sequence (ν̃n) and that the corresponding characteristic function ψ is given

by (10) with νn instead of µn. The function ψ can be represented in an integral form, (see [6, 15])

ψ(z) = cos(z − p0) +
∫ 1

0
g1(t)e

iz(1−2t)dt (18)
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with some g1 ∈ L2(0, 1). We are going to show that ψ coincides with the function c of (13).

Since νn, n ∈ Z, are zeros of ψ and µn, n ∈ Z, are those of c, this will finish the proof.

Suppose, on the contrary, that ψ 6= c, i.e., that the function ψ̂ := ψ − c is not identically

zero. On account of the equality h = p0 the representations (14) and (18) for the functions c

and ψ give that

ψ̂(z) =
∫ 1

0
(g1(t)− g(t))eiz(1−2t)dt

and so, by a refined version of the Riemann-Lebesgue lemma [11, Lemma 1.3.1],

ψ̂(z) = o(e|Imz|), |z| → ∞. (19)

Taking (9) and the equality h = p0 into account, we observe that s(z) defined as s1(z)/z

with s1 of (12) coincides with the characteristic function ϕ of the problem LD(p, r). Comparing

the construction (17) of αn and the relation (11) for the norming constants of LD(p, r), we

conclude that ṡ(λn)ψ(λn) = ṡ(λn)c(λn), n ∈ Z
∗. As the sequence λ strictly increases, each

zero of s is simple and so ṡ(λn) 6= 0, n ∈ Z
∗. Therefore c(λn) = ψ(λn) or equivalently ψ̂(λn) =

0 for every n ∈ Z∗. Clearly, c(µ0) = ψ(µ0) = 0 giving that ψ̂(µ0) = 0. Hence {λn}n∈Z∗ ∪ {µ0}

are zeros of the function ψ̂(z).

Let us show that ψ̂ possesses no other zeros. Denote by n(t) the number of zeros of ψ̂ in

the disk |z| ≤ t; then, in view of (19), the Jensen’s formula gives
∫ r

0

n(t)

t
dt ≤

2r

π
+ C1 (20)

with some constant C1 ∈ R. If ψ̂ possessed other zeros apart from {λn}n∈Z∗ ∪ {µ0}, then the

asymptotics of λn would guarantee that there exists ε ∈ (0, 1
2) and N sufficiently large such

that for every l ≥ N n(π(l + ε)) ≥ 2l + 2. Put tl := π(l + ε) and use Stirling’s approximation

of the Euler gamma-function to obtain
∫ tn+1

tm

n(t)

t
dt ≥

n

∑
l=m

(2l + 2) log
tl+1

tl
= (2n + 2) log tn+1 − 2

n

∑
l=m

log tl − 2m log tm

≥ (2n + 2) log
tn+1

π
− 2 log Γ

(

tn+1

π

)

+ C2 ≥
2tn+1

π
+ (1 − 2ε) log

tn+1

π
+ C3

with some constants C2 and C3. This estimate contradicts (20) and thus shows that ψ̂ has no

other zeros besides {λn}n∈Z∗ ∪ {µ0}.

The function ψ̂ is of exponential type less than or equal to 1. Using this and the Hadamard

factorization theorem, we obtain that

ψ̂(z) = eAz+B

(

1 −
z

µ0

)

V.p. ∏
n∈Z∗

(

1 −
z

λn

)

e
z

λn

with some constants A and B. Since

V.p. ∑
n∈Z∗

1

λn
=

∞

∑
n=1

(

1

λn
+

1

λ−n

)

=
∞

∑
n=1

π2n2

λnλ−n
·

λn + λ−n

π2n2
,

with absolutely convergent series ∑
∞
n=1

λn+λ−n

π2n2 and uniformly bounded sequence
(

π2n2

λnλ−n

)

, the

series ∑
z

λn
is convergent. Therefore,

ψ̂(z) = eA′z+B

(

1 −
z

µ0

)

V.p. ∏
n∈Z∗

(

1 −
z

λn

)
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with a suitable constant A′.

Let us now fix θ ∈ (0, π) ∪ (π, 2π) and take z of the form z = ρeiθ , ρ > 0. By (19),

ψ̂(z)

sin(z − h)
→ 0, ρ → ∞. (21)

Recall (see e.g. [23, Ch.2]) that the function sin(z − h) can be factorized as follows

sin(z − h) = (z − h)V.p. ∏
n∈Z∗

πn + h − z

πn
,

so that
ψ̂(z)

sin(z − h)
= eA′z+B µ0 − z

(z − h)µ0
V.p. ∏

n∈Z∗

πn

λn
·

λn − z

πn + h − z
.

By Lemma 3 of [15], the product V.p. ∏n∈Z∗
πn
λn

is convergent and, by Lemma 4 of [15], the

product V.p. ∏n∈Z∗
λn−z

πn+h−z converges to 1 as ρ → ∞ and θ 6= 0, π. In view of (21), this means

that eA′z+B converges to 0 as ρ → ∞. But this is impossible; the contradiction derived shows

that our assumption that ψ̂ 6≡ 0 is false. Therefore ψ̂ ≡ 0 and νn = µn for all n ∈ Z. The proof

is complete.

3 PROOF OF MAIN RESULTS

In this section we turn to assumption (A) and proof Theorem 2 in the case of arbitrary µ∗ ∈

R. Then we formulate a reconstruction algorithm.

3.1 Proof of Theorem 2

Given (λ, µ) ∈ SD1, we firstly put µ∗ := (µ0 + µ1)/2 and shift the sequences λ and µ

by −µ∗ to obtain new sequences λ̂ := (λ̂n)n∈Z∗ and µ̂ := (µ̂n)n∈Z from SD1 with µ̂0 < 0 <

µ̂1. To prove the theorem it is enough to show that for the sequences λ̂ and µ̂ there exist

unique real-valued p̂ and r̂ from L2(0, 1) such that λ̂ is the spectrum of LD(p̂, r̂) and µ̂ is that

of LM(p̂, r̂). Then by formulae (7) with µ∗ = (µ0 + µ1)/2 we can uniquely determine poten-

tials p and r from p̂ and r̂ such that λ and µ are the spectra of problems LD(p, r) and LM(p, r)

respectively.

By means of sequences λ̂ and µ̂ construct the functions s1 and c by formulae (12) and (13)

and then the sequence (αn) by (17). Due to Theorem 1, the set of pairs sd = {(λ̂n, αn)}n∈Z∗

with the given λ̂n and the constructed αn belongs to SD2. Then, using Theorem B, we construct

potentials p̂ and q̂ such that λ̂ is the spectrum of LD(p̂, r̂) with the constructed p̂ and any

primitive r̂ of q̂. Next we fix the primitive r̂ of q̂ as explained in Subsection 2.3; then µ̂ is the

spectrum of LM(p̂, r̂) by Lemma 2. This establishes the existence part.

To prove uniqueness we assume that there are two pairs of potentials p̂1, r̂1 and p̂2, r̂2

such that the sequence λ̂ is the spectrum of both problems LD(p̂1, r̂1) and LD(p̂2, r̂2) and the

sequence µ̂ is the spectrum of both LM(p̂1, r̂1) and LM(p̂2, r̂2). This means that the norming

constants of the problems LD(p̂1, r̂1) and LD(p̂2, r̂2) coincide as they are uniquely determined

by two spectra λ̂ and µ̂ (see (11)). Then Theorem A implies that p̂1 = p̂2 and r̂′1 = r̂′2; in

particular, r̂1 − r̂2 = H with some constant H. To complete the proof it is enough to show

that H = 0.
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Observe that equations (1) for the problems LM(p̂1, r̂1) and LM(p̂2, r̂2) are the same. As a

result, eigenfunctions for the both problems corresponding to the common eigenvalue µ̂0 coin-

cide as well; denote it by y. Then (y′ − r̂1y)(1) = (y′ − r̂2y)(1) = 0 or equivalently Hy(1) = 0.

However µ̂0 is not in the spectra of LD(p̂1, r̂1) and LD(p̂2, r̂2), hence y(1) 6= 0. Therefore H = 0

thus finishing the proof.

3.2 Reconstruction algorithm

To sum up we formulate the reconstruction algorithm.

Suppose we have a pair of sequences (λ, µ) from SD1. Then we

1) put µ∗ := (µ0 + µ1)/2 and consider a new pair of sequences (λ̂, µ̂) such that λ̂ :=

(λ̂n)n∈Z∗ with λ̂n := λn − µ∗ and µ̂ := (µ̂n)n∈Z with µ̂n := µn − µ∗;

2) augment λ̂ with λ̂0 := 0 and denote the new sequence by λ̂∗;

3) by means of sequences λ̂∗ and µ̂ construct the functions s1 and c by formulae (12) and (13)

with λ̂n and µ̂n instead of λn and µn respectively;

4) construct the sequence (αn) by (17) with λ̂n instead of λn;

5) having the set of pairs sd = {(λ̂n, αn)}n∈Z∗ , which, due to Theorem 1, belongs to SD2,

construct potentials p̂ and q̂ using the procedure of [5];

6) choose the primitive r̂ of q̂ as to make µ̂0 an eigenvalue of LM(p̂, r̂);

7) determine potentials p and r from p̂ and r̂ using formulae (7).
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[3] Gasymov M.G., Guseı̆nov G.Š. Determination of a diffusion operator from spectral data. Akad. Nauk

Azerbaı̆dzhan. SSR Dokl. 1981, 37 (2), 19–23.

[4] Guseı̆nov I.M., Nabiev I.M. An inverse spectral problem for pencils of differential operators. Mat. Sb. 2007, 198 (11),

47–66. doi:10.1070/SM2007v198n11ABEH003897

[5] Hryniv R., Pronska N. Inverse spectral problems for energy-dependent Sturm-Liouville equation. Inverse Problems

2012, 28 (8), 085008(21pp.). doi:10.1088/0266-5611/28/8/085008

[6] Hryniv R.O., Mykytyuk Y.V. On zeros of some entire functions. Trans. Amer. Math. Soc. 2009, 361 (4), 2207–

2223. doi:10.1090/S0002-9947-08-04714-4

[7] Jaulent M., Jean C. The inverse problem for the one-dimensional Schrödinger equation with an energy-dependent
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Пронська Н.I. Вiдновлення енергозалежних рiвнянь Штурма-Лiувiлля за двома спектрами. II //

Карпатськi математичнi публiкацiї. — 2013. — Т.5, №2. — C. 315–325.

Вивчається задача вiдновлення сингулярних енергозалежних рiвнянь Штурма-Лiувiлля за

двома спектрами. Ми пропонуємо новий метод розв’язання цiєї задачi, дослiджуючи її зв’язок

iз задачею вiдновлення за одним спектром i множиною нормiвних множникiв.

Ключовi слова i фрази: оберненi задачi, рiвняння Штурма-Лiувiлля, енергозалежнi потенцi-

али, сингулярнi потенцiали.

Пронська Н.И. Восстановление уравнений Штурма-Лиувилля зависящих от энергии по двум спек-

трам. II. // Карпатские математические публикации. — 2013. — Т.5, №2. — C. 315–325.

Изучается задача восстановление сингулярного уравнения Штурма-Лиувилля зависяще-

го от энергии по двум спектрам. Предложен новый метод решения этой обратной задачи,

который использует ее связь с задачей восстановления по одному спектру и множеством нор-

мирующих множителей.

Ключевые слова и фразы: обратные задачи, уравнения Штурма-Лиувилля, энергозависимые

потенциалы, сингулярные потенциалы.


