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RECONSTRUCTION OF ENERGY-DEPENDENT STURM-LIOUVILLE EQUATIONS
FROM TWO SPECTRA. II

We study the problem of reconstruction of singular energy-dependent Sturm-Liouville equation
from two spectra. We suggest a new method of solving this inverse problem by establishing its
connection with the problem of reconstruction from one spectrum and the set of norming constants.
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INTRODUCTION
The main object of our study is energy-dependent Sturm-Liouville equation
—y" +ay +2Apy = A%y (1)

n (0,1); here A € C is the spectral parameter, p is a real-valued function in L,(0,1) and g
is a real-valued distribution in the Sobolev space W, 1(0,1), i.e. ¢ = 7’ with a real-valued r €
L>(0,1). We consider this equation under two types of boundary conditions: the Dirichlet ones

y(0)=y(1) =0 2)

and the so-called mixed conditions

y(0) = y!(1) + Hy(1) = 0,

where H € R is some constant and y!!/ := 1/ — ry is a quasi-derivative of the function y used in
the regularization procedure due to Savchuk and Shkalikov (see [19, 20] and the next section
for details). Since primitive of q is defined only up to an additive constant, by replacing r with
r — H we reduce the above mixed boundary conditions to the following ones:

y(0) =yU(1) =o0. 3)

In what follows, we shall denote by 2 (p, ) and Ly (p, r) the spectral problems (1), (2) and
(1), (3) respectively. Our main aim in this paper is to solve the inverse problem of reconstruct-
ing the potentials p and r given the spectra of Zp(p,r) and Ly (p, 7).
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The spectral problem under study often arise in classical and quantum mechanics. In parti-
cular, the equations of the form (1) are used in modelling of the motion of relativistic massless
particles, in describing the interactions of colliding spinless particles, in modelling of the me-
chanical system vibrations in viscous media etc.

The spectral equation (1) was considered on the line and studied in the context of inverse
scattering problems (see, e.g. [1, 7, 9, 10, 12, 18, 21], and [5] for a more extensive reference
list). The inverse spectral problems for (1) with p € W, (0,1) and q € L,(0,1) and with Robin
boundary conditions were discussed by M. Gasymov and G. Guseinov in their short paper [3]
of 1981 containing no proofs. Such problems were also considered in [2, 4, 13, 14, 22], but only
Borg-type uniqueness results were obtained therein.

We studied the inverse problems of reconstruction of (1) with potentials p € L,(0,1)
and g € W, 1(0,1) from the spectra of #p(p,r) and Ly (p,r) in [17] and from one spectrum
and the set of norming constants in [5]. In this paper, we suggest another method of recon-
structing (1) from two spectra that exploits connection of this problem with the problem of
reconstructing (1) from one spectrum and the set of norming constants.

Namely, given two sequences A and u, which are supposed to be the spectra of Zp(p, )
and %y (p, r) with the sought potentials p and g = r/, we construct another sequence, which
turns out to consist of the norming constants for .Zp(p, r). Then, using the results of [5], we
reconstruct the potentials p and g of (1) such that A is the spectrum of (1), (2) with these p
and g. Next we show that the primitive r of g can be chosen uniquely so that the spectrum
of Zy(p,r) coincides with the given sequence . The main result of the paper is the exis-
tence and uniqueness theorem giving a complete characterisation of the spectra of the prob-
lems %p(p,r) and Ly (p, r) as well as the reconstruction algorithm.

1 PRELIMINARIES AND MAIN RESULTS

In this section we introduce the necessary definitions and formulate the main results of the
paper. To start with, consider the differential expression

(y) =—y" +qy

and recall that g = 1’ is a real-valued distribution from W, 1(0,1). Therefore we need to define
the action of ¢(y) more rigourously. To do this we use the regularization procedure due to
Savchuk and Shkalikov (see [19, 20]) based on the notion of quasi-derivatives. Namely, for
every absolutely continuous function y we denote by y! := ' — ry its quasi-derivative and
define ¢(y) as

Uy) = — (M) —ryl — 12y
on the domain

dom (¢ = {y € AC(0,1) | y!) € AC[0,1], £(y) € Ly(0,1)}.

It is straightforward to see that so defined ¢(y) coincides with —y” + gy in the distributional
sense.
Now we can recast the spectral equation (1) as

((y) + 2Apy = A%y (4)
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Then a number A € C is called an eigenvalue of the problem 2 (p, r) (resp. ZLm(p, t)) if equa-
tion (4) possesses a nontrivial solution satisfying the boundary conditions (2) (resp. (3)). This
solution is then called an eigenfunction of the problem Zp (p, r) (resp. Zum(p, r)) corresponding
to A

In this paper we study the following inverse spectral problem:

(IP1) Given the spectra of the problems Zp(p,r) and Zyu(p,r), determine the potentials p
and r.

A complete solution of this problem is only possible under some extra assumption, which we
formulate further. Denote by T;, j = 1, 2, the operator pencils defined via

Ti(A)y == L(y) +2Ap — )\zy

on the A-independent domains
domT; := {y € dom/ | y(0) = y(1) =0},
dom T, := {y € dom/ | y(0) = y!'I(1) = 0}.

Note that the spectra of the problems .Zp(p,r) and £y (p, r) coincide with those of the pen-
cils T; and T; respectively. Our standing assumption is the following;:

(A) thereisa p. € R such that the operator T, () is positive.

Under this assumption all the eigenvalues of both problems .2 (p,r) and £y (p, r) are real
and simple (see [16]). Moreover, they can be enumerated in increasing order as A, and i, so
that the pair of sequences ((A;), (1n)) forms an element of the set SD; defined below (see [17]).

Definition 1. We denote by SD; the family of all pairs (A, u) of increasing sequences A :=
(A)nez+, Z* = Z\ {0}, and p := (pin)nez of real numbers satisfying the following condi-
tions:

(i) asymptotics: there is an h € R such that
An:ﬂfi’l—}—h—}—}tn, “Lln:ﬂ'(?’l—%)‘{’h‘{‘ﬂn; (5)

where (A,) is a sequence in {>(Z*) and (ji,) is from {5 (Z);

(ii) almost interlacing;:
U < Ay < pgyq foreveryk € Z*. (6)

Remark 1. (a) If the eigenvalues A, of 4p(p,r) and u, of £y(p,r) are ordered so that (i)
and (ii) of the above definition hold, then the number . in assumption (A) satisties the
inequalities py < ps < p1, see [16]. Moreover, then assumption (A) holds with every

from (po, H1)-

(b) For the most of the paper, it will be convenient to assume that y.. in (A) is zero. If this
does not hold, we can shift the spectral parameter via A = A + j.; then the spectral
equation (1) can be recast as

—y" + gy +2Apy = A%y
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with the new potentials p := p — . and § := q + 2u.p — u2. Moreover, choosing the
primitive # := r — fxl (2usp — u2) of 4 so that (# — r)(1) = 0 and introducing the cor-
responding quasi-derivative yl!! := y' — #y, we see that the boundary conditions (2)
and (3) remain unchanged. Now if A, (resp. ji,) are eigenvalues of the problem 4p(p,r)
(resp. Zpm(p, 7)), then A, := Ay — p (vesp. fly := py — 1) are eigenvalues of the problem
Zp(p,7) (resp. £Lm(p, 7)), while the eigenfunctions for the corresponding eigenvalues
are the same. In particular, the problems ¢p(p,#) and £y (p, ) satisfy assumption (A)
with u, = 0. Having p, § and # we can find p, q and r by formulae

1
p=P+e =4 2up— 12, r:f+/x(2ﬂ*ﬁ+ﬂi)- (7)

In view of the above remark, without loss of generality we can work under a simplifying
assumption

(A0) the operator T,(0) is positive.

However, the main results of the paper will be proved under the general assumption (A).

Clearly, under assumption (A0) the eigenvalues of Zp(p,r) and Zp(p,r) can be enumer-
ated in increasing order as A, and p, so that the pair of sequences ((Ay), (tn)) forms an ele-
ment of the set SD; with g < 0 < 3.

In this paper we establish connection between the inverse problem (IP1) and the inverse
problem (IP2) formulated below; it was already studied in [5]. Namely, for an eigenvalue A of
the problem %p(p,r), denote by y the corresponding eigenfunction normalized by the initial
conditions y(0) = 0 and y!l(0) = 1. The quantity

& =212 /O "2 (0dt — 20 /0 Loy (1)t 8)

is called the norming constant corresponding to the eigenvalue A. Then (A, «) is called the
(spectral) eigenpair of £p(p, ). The spectral data sd(p, ) of the problem .#p(p, ) is the set of all
eigenpairs (A, a) of £p(p, 7).

The inverse spectral problem (IP2) reads as follows:

(IP2) Given the spectral data sd(p, r) of Zp(p,r), determine the potentials p and r.

The results of [5] imply that under assumption (A0) the spectral data sd(p,r) form an ele-
ment of the set SD, defined below.

Definition 2. We denote by SD, the family of all sets {(Ay, &y) }nez+, which consist of pairs
(An, &) of real numbers satisfying the following properties:

(i) Ay are nonzero, strictly increase with n € Z*, and have the representation A, = 7tn +
h+ Ay for someh € R and a sequence (Ay,) in o(Z*);

(ii) an > 0 for alln € Z* and the numbers &, := a, — 1 form an {,(Z*)-sequence.
The main results of [5] are the following;:

Theorem A (Uniqueness). Under assumption (A0), the potentials p and q = ' of equation (1)
are uniquely determined by its spectral data sd(p,r).
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Theorem B (Existence). For every sd € SD,, there exist real-valued p from L(0,1) and g
from W, 1(0,1) such that sd is the spectral data for the problem %1 (p, r) with the potentials p
and with r a primitive of g, i.e. sd = sd(p, r).

Note that neither the spectrum of .Zp(p,r) nor the set of norming constants depend on
the particular choice of the primitive r of 4. That is why the results of [5] guarantee unique
reconstruction of g but leave r determined up to an additive constant. However, the boundary
conditions (3) for the problem .%)(p, r) do depend on the choice of r, and we shall show that r
is determined uniquely in the inverse problem (IP1).

To investigate the connection between (IP1) and (IP2) we use the characteristic functions
of the problems Zp(p,r) and £y (p,r). Denote by y(x,z) the solution of (4) with z instead
of A and subject to the initial conditions y(0) = 0, y[!/(0) = 1. Then A is an eigenvalue of
the problem #p(p,r) if and only if it is a zero of its characteristic function ¢(z) = y(1,z).
Analogously a number y is an eigenvalue of the problem .%)(p,r) if and only if y is a zero
of the corresponding characteristic function (z) := yl¥(1,z). It was shown in [15] that the
functions ¢ and ¥ can be written in factorized form in terms of their zeros, namely

VP %* Ann;A' if po # ml, 1 € Z,
p(A) = ne - o
(=1 Vp. I = Hpo=nllez
nezZ*
[ _Hnmp . 7T
o) — V.p.nglz T 11/2) ifpo # 5 + 7l 1€Z, o
(—1)l+1(}lo —u)Vp. T1 M, if po = T +7l, lez,
nezx Tth 2

where py = fol p. The link between (IP1) and (IP2) is given by (9), (10) and the following for-
mula, which relates the characteristic functions (and so the spectra) of Zp(p,r) and Zu(p,r)
and the norming constants of .Zp(p, r) (see [16]):

In the next section we shall prove the following theorem:

Theorem 1. Given the pair of sequences (A, u) from SDy with iy < 0 < pq, construct (&, )nez+
via (9), (10) and (11). Then the a,, are positive and the sequence («, — 1),cz+ belongs to l(Z*).

As a result, the set of pairs {(Ay, ay) }nez+, with given numbers A, and the numbers a,
constructed as in (11), forms an element of SD,. Therefore by Theorems A and B there exist
unique real-valued p € L,(0,1) and g € W, (0, 1) such that {(Ay, ax) }nez+ coincides with the
spectral data sd(p,r), with every primitive r of g. Then we show that this primitive r can be
uniquely chosen as to make i, the eigenvalues of Zj(p, r). This will lead to the main result
of the paper (cf. [17]):

Theorem 2. Assume that a pair (A, ) of sequences of real numbers is an element of SD;.
Then there exist unique real-valued p,r € L,(0,1) such that A and u are the spectra of the
problems % (p,r) and £p(p, ). In particular, the singular potential g in (1) is equal to 1.
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2 CONNECTION BETWEEN (IP1) AND (IP2)

2.1 Proof of Theorem 1

This subsection is devoted to the proof of Theorem 1, which establishes connection be-
tween (IP1) and (IP2).

Suppose we have two sequences A := (A, ),ez+ and p := (Un)nez with pp < 0 < pq, which
form an element (A, i) of the set SDy. Set Ay := 0, and denote by A* the sequence (A,),cz,
which is A augmented with Ag. Then A* and p strictly interlace. By means of these sequences
we construct the functions

( An_z

zVp. T1 , ifth#mnl,1eZ,
s1(z) : = nez+ T P (12)
(-Dlzvp. [T ===, ifh=rnl1€2Z,
L nezZ+ Tn
-z T
—V. — ith# ~-+4+mnl, | €2,
C(Z) - P nIE_IZ (1’1 + 1/2) # 3[ (13)
(~)"* (o —2)Vp. T1 H=F, ifh=" 47l leZ,
nezs TN 2

where & is the number in the asymptotics (i) of Definition 1.
Observe that A* is the sequence of zeros of s; and p is that of c. The results of [6] imply that
there exist functions f and g from L;(0, 1) such that

1 )
s1(z) = sin(z — h) + / F(He*1-20dt and  ¢(z) = cos(z — h) + / e21-20g;  (14)
0

Note that
s1(An) = cos(A +/ f(t) t)etn(1=2) g,

Next put s(z) := #; since Ay, n € Z, are zeros of s; we have $(A,,) = w for every n € Z*.

Now we shall prove the following auxiliary lemma.

Lemma 1. Let F be a function from L,(0,1). Then the sequence (f,)ncz with

1 ,
fu = / F(t)e(1-20 ¢ (15)
0
belongs to l»(Z).

Proof. Let us firstly make a change of variables u := 1 — 2t in the integral of the righthand side
of (15). We obtain
fn = /11 G(u)e“n"du,

where G(u) = JF(15%)e™ is the function from Ly(—1,1) and wy, = 7t + A,.. To complete the
proof it is enough to show that the system ¢/“r* forms a Riesz basis in L,(—1,1); then f,, are
the Fourier coefficients of G relative to the system ¢/“* and so form a sequence from /»(Z)
(see e.g. [23, Ch. 1]).

Note firstly that the system {¢!™*} is an orthogonal basis in Ly(—1,1). One can find a
constant L < 77/4 and a sufficiently large N such that |A,| < L forall n, |n| > N. Then Kadec’s
1/4-Theorem (see [23, Ch. 1], [8]) yields that the system {e'“*} with
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5 mm+ Ay, |n| >N,
"\ o, |n| <N,

forms a Riesz basis. It remains to observe that the sequence (w;) is obtained from (@,) by
changing a finite number of elements. Theorems 3.11 and 112 of [23] imply that the sys-
tem {e“7*} is a Riesz basis. O

The above lemma yields that

1 .
51 (An) = (—1)"cosxn+/0 F(B)i(1 = 20)eM-2048 — (Z1)7(1 +5,),

(16)
1 .
c(Ay) = (=1)"cos A, +/ g(H)e™ =204 — (—1)"(1 4 c,)
0
with ¢p-sequences (s, )nez and (¢, )nez. Define the sequence (&, ),cz+ as follows
ay = Apd(An)c(An) = s1(An)c(An). (17)

Then (16) implies that o, = (—1)"(1+5,)(—1)"(1+¢cn) = 1 + &, with £,-sequence (&y,).

Since the sequences A* and pu interlace a straightforward analysis of definitions (12), (13)
and formula (17) gives that all a;,, n € Z*, are of the same sign and thus are positive thus
finishing the proof of Theorem 1.

2.2 Solution of (IP2)

Theorem 1 together with Theorems A and B yields that for the given sequence (Ay),cz
and the constructed («,),ez+ we can uniquely determine potentials p and g such that the
problem .Zp(p, r) with r an arbitrary primitive of g has (A,),ez+ as its spectrum and (ay, ) ez
as the corresponding norming constants.

From [15] we know that the shift /1 in the asymptotics (5) of eigenvalues of p(p, r) equals

1
to po = fo p.
2.3 Solution of (IP1)

Now we show that the potentials p and g constructed in the previous subsection also pro-
vide a solution to the (IP2). Namely, we shall show that there exists a primitive r of g such
that y,, n € Z, are all the eigenvalues of the problem % (p, ).

To start with, note that a primitive r of g is determined up to an additive constant. We
choose r in the following way. Let y(x, j19) be the solution of the equation (1) with i instead
of A satisfying the initial condition y(0, o) = 0. Then y(1, yo) is not equal to 0 as p is not in
the spectrum of .#p (p, r). This allows us to choose r uniquely so that y!1(1, ug) = 0. Then g is
an eigenvalue of the problem .%)(p, r) with this fixed r. Denote by v,,, n € Z, the eigenvalues
of Zm(p, r) enumerated in increasing order so that vy = pp.

Lemma 2. v, = y, foralln € Z.

Proof. Recall that the eigenvalues v, of £ (p,r) satisfy the asymptotics v, = 7(n —1/2) +
po + 7 with an fp-sequence (7, ) and that the corresponding characteristic function 1 is given
by (10) with v, instead of y,,. The function ¢ can be represented in an integral form, (see [6, 15])

1 .
¥(z) = cos(z — po) + /0 a1 (£)e1-20 gy (18)
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with some g1 € Lp(0,1). We are going to show that ¢ coincides with the function ¢ of (13).
Since vy, n € Z, are zeros of i and u,, n € Z, are those of c, this will finish the proof.

Suppose, on the contrary, that ¢ # ¢, i.e., that the function 1/3 := 1 — c is not identically
zero. On account of the equality i = py the representations (14) and (18) for the functions c
and ¥ give that

1 .
9@ = [ (&) — g0 2ar
0
and so, by a refined version of the Riemann-Lebesgue lemma [11, Lemma 1.3.1],
$(z) = o(el™2l), |z| = oo, (19)

Taking (9) and the equality 1 = pg into account, we observe that s(z) defined as s1(z)/z
with sy of (12) coincides with the characteristic function ¢ of the problem .2 (p, r). Comparing
the construction (17) of a;, and the relation (11) for the norming constants of .#p(p,r), we
conclude that $(A,)¢(Ay) = $(Au)c(An), n € Z*. As the sequence A strictly increases, each
zero of s is simple and so §(A,,) # 0, n € Z*. Therefore c(A,,) = (A,) or equivalently P(A,,) =
0 for every n € Z*. Clearly, c(19) = ¥(po) = 0 giving that {(p) = 0. Hence {Ay, } ez U {mo}
are zeros of the function §(z).

Let us show that § possesses no other zeros. Denote by 7(t) the number of zeros of ¥ in
the disk |z| < ¢t; then, in view of (19), the Jensen’s formula gives

/Or ()dt<g+C1 (20)

with some constant C; € R. If § possessed other zeros apart from {A, },cz+ U {10}, then the
asymptotics of A, would guarantee that there exists ¢ € (0, %) and N sufficiently large such
that for every I > N n(7t(l +¢€)) > 21 4+ 2. Put t; := 7(l + ¢) and use Stirling’s approximation
of the Euler gamma-function to obtain

thyi g
/tm i)dt> Z (21 +2) log = (2n+2)logty1 — 2;108151—2”“08%

> (2n+2)log% —2logT <t”;1> +Cp > Zt”nﬂ +(1—28)10g tni1 +C

with some constants C; and Cs. This estimate contradicts (20) and thus shows that ¢ has no
other zeros besides {Ay }nez: U {0}

The function ¢ is of exponential type less than or equal to 1. Using this and the Hadamard
factorization theorem, we obtain that

N z z
P(z) = A8 (1 ) V. <1 - —) el
Ho b nIE;* A”
with some constants A and B. Since
1 ® /1 1 ® 2n? A+ Ay,
Ve L A_n_,;<A_n+An> =LA,

/\n—O—A n

with absolutely convergent series ) > 4 and uniformly bounded sequence < X ) the

series ) = is convergent. Therefore,
n

o= 2 110 5)

nezZx
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with a suitable constant A’.
Let us now fix # € (0,77) U (71,27r) and take z of the form z = pe’?, p > 0. By (19),

—0, p— 0. (21)

Recall (see e.g. [23, Ch.2]) that the function sin(z — &) can be factorized as follows

sin(z — h) = (z — V. [] T2
neZ* mn

so that .

P(z)  _ azyB Ho—Z mo A —z
sin(z — h) — (z—h)]/tov'p' I1 An n+h—z

nezZx '
By Lemma 3 of [15], the product V.p.[],cz- % is convergent and, by Lemma 4 of [15], the
product V.p. ], cz+ % converges to 1 as p — oo and 6 # 0, 7. In view of (21), this means
that e4A#*5 converges to 0 as p — co. But this is impossible; the contradiction derived shows

that our assumption that ¢ # 0 is false. Therefore ) = 0 and v, = yy, for all n € Z. The proof
is complete. O

3 PROOF OF MAIN RESULTS

In this section we turn to assumption (A) and proof Theorem 2 in the case of arbitrary u. €
R. Then we formulate a reconstruction algorithm.

3.1 Proof of Theorem 2

Given (A, pu) € SDj, we firstly put ps := (po + p1)/2 and shift the sequences A and u
by —. to obtain new sequences A := (A,)uez+ and ft := (fin)nez from SD; with fiy < 0 <
fi1. To prove the theorem it is enough to show that for the sequences A and /i there exist
unique real-valued p and 7 from L,(0,1) such that A is the spectrum of .Zp (p, ?) and fi is that
of Zyi(p, 7). Then by formulae (7) with u. = (o + p1)/2 we can uniquely determine poten-
tials p and r from p and 7 such that A and u are the spectra of problems .4p(p,r) and Ly (p, )
respectively.

By means of sequences A and fi construct the functions s; and ¢ by formulae (12) and (13)
and then the sequence («,) by (17). Due to Theorem 1, the set of pairs sd = {(A,, a,) }nez*
with the given A, and the constructed &, belongs to SD,. Then, using Theorem B, we construct
potentials p and 4 such that A is the spectrum of Zp(p,#) with the constructed p and any
primitive 7 of 4. Next we fix the primitive 7 of § as explained in Subsection 2.3; then i is the
spectrum of Z;(p, 7) by Lemma 2. This establishes the existence part.

To prove uniqueness we assume that there are two pairs of potentials pq, 71 and po, 72
such that the sequence A is the spectrum of both problems #p (p1,71) and Zp(pz, 72) and the
sequence fi is the spectrum of both Z((p1,71) and Zp1(p2, 72). This means that the norming
constants of the problems .#p (p1, 1) and £p (P2, 72) coincide as they are uniquely determined
by two spectra A and fi (see (11)). Then Theorem A implies that p; = p, and 7| = 75; in
particular, 7; — 72 = H with some constant H. To complete the proof it is enough to show
that H = 0.
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Observe that equations (1) for the problems .%)(p1, 71) and Ly (P2, 72) are the same. As a
result, eigenfunctions for the both problems corresponding to the common eigenvalue fi coin-
cide as well; denote it by y. Then (y' — 71y)(1) = (' — P2y)(1) = 0 or equivalently Hy(1) = 0.
However /iy is not in the spectra of £p(p1, 71) and £p (P2, 2), hence y(1) # 0. Therefore H = 0
thus finishing the proof.

3.2 Reconstruction algorithm

To sum up we formulate the reconstruction algorithm.
Suppose we have a pair of sequences (A, i) from SD;. Then we

1) put u« := (yo + p1)/2 and consider a new pair of sequences (A, 1) such that A :=
2) augment A with Ay := 0 and denote the new sequence by A*;

3) by means of sequences A*and fi construct the functions s; and c by formulae (12) and (13)
with A,, and fly instead of A, and yu;, respectively;

4) construct the sequence (&) by (17) with A, instead of \,,;

5) having the set of pairs sd = {()Atn, &y) }nez+, which, due to Theorem 1, belongs to SD,
construct potentials p and 4 using the procedure of [5];

6) choose the primitive 7 of § as to make fip an eigenvalue of %y (P, 7);

7) determine potentials p and r from p and 7 using formulae (7).
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KapmaTcexi MaTeMaTusi my6aikartii. — 2013. — T.5, Ne2. — C. 315-325.

BrBuaeThcs 3apa9a BiAHOBAEHHS CUHTYASIPHMX eHeprosaaexHnx piBHsHb [ITypma-AiyBians 3a
ABOMa CIleKTpaMi. My mponoHyeMo HOBIMIA METOA PO3B’sI3aHHSI LIi€l 3aAa9i, AOCAIAXYIOUN 1i 3B"I30K
i3 3aAa9er0 BiAHOBAEHHSI 32 OAHMM CTIEKTPOM i MHOXXIHOIO HOPMiBHMX MHOXKHMKIB.

Kntouosi cnosa i ppasu: obepHeHi 3apaui, piBHsHHE LITypMa-AiyBiAasi, eHeprozaseXHi MOTeHIIi-
aAM, CUHTYASIpHI IIOTeHIIiaAN.

ITponcbka H.M. Boccmanoenenue ypasHeruii IImypma-Auysunng 3a6ucsujux om sHepeut no 08ym chex-
mpam. II. // KapnaTtckme maremaTtndeckue mybankamm. — 2013. — T.5, Ne2. — C. 315-325.

HM3yuaercst 3aaa4a BOCCTAHOBACHME CUMHTYASIPHOTO ypaBHeHus: IllTypma-AmyBuAAsl 3aBUCSIIIe-
IO OT SHEpPIuM II0 ABYM CIleKTpaM. IIpearoskeH HOBBIN METOA peIleHNs 5TOM 06paTHOM 3aAat,
KOTOPBIV MICIIOAB3Y€eT €€ CBSI3b C 3aAadeli BOCCTAHOBACHMSI 110 OAHOMY CIIEKTPY M MHOXXeCTBOM HOP-
MUPYIOLIX MHOXUTEAEIN.

Kntouesvie ciosa u ¢ppasvr: obpaTHble 3apauy, ypasHeHNs LIITypMa-AnyBIAAsl, SHEpPro3aBUCMbIe
MOTEeHLMAABI, CUHTYASPHBIE IIOTEHLIMAABIL.



