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RADIAL BOUNDARY VALUES OF LACUNARY POWER SERIES

We strengthened MacLane’s theorem concerning radial boundary values of lacunary power se-
ries.
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INTRODUCTION

Denote by H the class of analytic functions on the unite diskID := {z € C : |z| < 1} and let
C := CU {oo}. Asusual, a value v € C is called the radial boundary value of a function f € H
at a point ¢’ € oD if
li 0y .
im f (re”) =v
By R we denote the class of functions f € H having radial boundary values on a dense
set of points e of dD. A value v € C is called an asymptotic value of a function f € H ata
point w € dD if there exists a path y : z = z(t), t € [0,1], such that z(t) € D forall t € [0,1),
z(1) = w and

ltiglf(Z(t» =.

By A we denote the MacLane class, i.e. the class of functions f € H having asymptotic
values on a dense set of points w of dD. Clearly, R C \A. It is well known that this inclusion
is strict. Recall that, by the classical Fatou theorem, for any bounded function f € ‘H we have
f € R and therefore f € A.

Let A be the class of increasing sequences that consists of nonnegative integers A = (A;,).
For any sequence A € A, let

g(A) = lim 211,

n—oo n

Denote by H(A) the class of functions f € H of the form
flz) =) a,z", z € D. (1)
n=0

G.R. MacLane has proved the following theorems (see [1, Theorem 19]).

YAK 517.53
2010 Mathematics Subject Classification: 30B10, 30B30.

@ Andrusyak L.V, Filevych P.V,, 2014



RADIAL BOUNDARY VALUES OF LACUNARY POWER SERIES 5

Theorem A. Let A € A. Ifg(A) > 3, then H(A) C R.
Theorem B. Let A € A. If q(A) > 3, then for any function f € H(A) of the form (1) such that

X_%)|‘1n| = 400 )

there exists a dense set © in [0, 27| such that for any 6 € © the following relation holds
limRe f(re'?) = +oo. 3)
11

Note, that if for a function f condition (2) is not satisfied, then this function is bounded
in ID. Therefore Theorem A is a consequence of the Fatou theorem and Theorem B. It is also
clear that in Theorem B the value Re f(re’?) can be replaced by one of the values — Re f(re'?),
Im f(re'®) or —Im f(re'®) (it is sufficient to apply this theorem to the functions — f, —if or if
respectively).

If we require only the inclusion H(A) C A, then the condition g(A) > 3 can be essentially
weakened. This fact follows from the following Murai theorem [2].

Theorem C. Let A € A. Ifg(A) > 1, then H(A) C A.

In connection with the stated results there is a question: does there exist q € [1,3) such that
the condition q(A) > q is sufficient for the inclusion H(A) C R?

From our results we can conclude that the condition g(A) > 3 in Theorem A is far from
being final. Despite this, an answer to the question posed above is not obtained.

Theorem 1. For any g > 1 there exists a sequence A € A such thatq(A) = qand H(A) C R.

For a sequence A € A let

q1(A) = min{li_m AZi1 i A2k } . g2()A) = max { lim 221 i )\2k+2}_
k—oo A2k k—oo A2kt k—oo A2k k—oo A2kt

Theorem 1 is a direct consequence of the Fatou theorem and Theorem 2 stated below, which
strengthens Theorem B.

Theorem 2. Let A € A. If
(11(A) —1)q2(A) > 6, (4)

then for any function f € H(A) of the form (1) which satisfies condition (2) there exists a dense
set © in [0,27t] such that for any 6 € © equality (3) holds.

PROOF OF THEOREM 2

Let for any sequence A € A inequality (4) holds. Put

plzli_m%, p2 = lim ——=

koo A2k k—oo A2k 41
Suppose that p; < p; (in the case p; > p» our considerations are similar). Then g1(A) = p,
72(A) = p2, and condition (4) can be written as (p; — 1)p, > 6. It is clear that p; > 1 and
p2 > 3, therefore there exist constants q; € (1,p1) and g2 € (3, p2) such that (g7 —1)q2 > 6,
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moreover q; < 3. From the definitions of variables p; and p, it follows that there exists an
integer ko € INg such that for all integers k > kg the following inequalities Ayx,1 > g1Ay; and
Adkt2 2 G2A2x41 hold.

In what follows for each segment I C R we denote by |I|, a(I), and b(I) its length, the left
end and right end respectively.

Consider any segment I C [0,27t] and a function f € H(A) of the form (1), which satisfies
condition (2). Let us prove that there exists a point 6 in the segment I such that relation (3)
holds. Let ® be the set of all # € [0, 27|, for which (3) holds. Then the set ® is dense in [0, 27].

Put
_ (1 =D)g—6)m 5)
(g1 +1)g2 -2
It is easy to check that
(n—m
. 6
E< T (6)

Take 6 = cos 5. Since € € (0, 7r), we have § > 0.
Letn € N, a, = argay,. Then we have cos(A,0 + a,) > ¢ on the union of segments

meZ, (7)

[_n—s 27Tm —wy, T — € 27‘(1’11—06,1}

of length “=£. Obviously, if np = min {n eN:|I| > 37;—;5 }, then for every integer n > ng the
segment I contains at least one of the segments (7).

Fix an integer m > max {ko, 3 } and let I, C I be a segment of length Z—* such that
cos(Agy,0 + a2m) > 6 for all € Ipy,. By 6, we denote the midpoint of the segment I,,,. Then

Ly = [92171 2)\2 92m + 5 2)\2 }
Let 65,,,+1 be a point in the set {6 € R : cos(Ayy1+160 + azm1) = —1} that is closest to 65y,.
Clearly, |02in+1 — O2m| < and cos(Agy416 + azpm41) > 0 for each segments

/\2m+1
3w —¢ 7T+e€ T+e€ 3t —¢
S, = [9 _ , _ ] S, [e 0 ]
1 2m+1 Vo1 2m+1 Vo1 1 T 5 Vgmia’ 2m+1 Vot
Put
o @D — (g1 +1)e

2Aom41
Then, according to (6), x > 0. Let us show that there exists a segment I, 1 C I, of length x
such that cos(}\2m+19 + 1) > Oforall 6 € Iy, iq.
If 65, — v < 011 < Oy, then let I, = [sz_ﬂ + 2)\2 T Oom+1 + 2)\2 ) + X] Ctis
clear that | I;,11| = x and a(Ir;,11) = a(S2). Since 1 < g1 < 3, we have

T+ ¢ 3T —¢
7+x:92m+1+M<62m+1+

b(Lm+1) = Oam+1 + = b(Sz).

2A0m+1 2A2m41 2Am41

Thus Iy, 11 C Sy, therefore cos(Ay, 1160 + oy 1) > 6 forall @ € Ipy,1 1. Inaddition, Iy, 11 C by,
because

T+ &€ 7T T+ & T —¢€

> 92 — —+ > 92 - =a 12 ,

A1 " A1 2w " 20, (T2

T+ € ql(n—e)< +7T_€:b(12m).

a(Iyyt1) = Ooms1 + 5

+x < 6y + <6
2A2m41 2m+1 " 2m

b(12m+1> = 92m+1 +
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mte

e X, Oopr1 — 2A2m+1] .Itis clear

2/\2m+1
that |Io;,11| = x and b(Ip;,11) = b(S1). Since 1 < g1 < 3, we obtain

If 630 < O2mi1 < O + 50—, then let Iy 1 = [92m+1 —

T+e q1(t —e) 3m—e¢

a(Ipm+1) = Oomt1 — — X = Oypy1 — > Oypy1 —

=a(51).
2A2m41 2A 41 2A2m41 (51)

Thus Ipy, 11 C S1, therefore cos(Apy 1160 + oy 1) > 6 forall @ € Ipy, 1. Inaddition, Ipy 11 C Iy,

because
T+ € 7T T+ & T—¢€

b(I =0 —— <46 — 0 — =(I
(Tonrt1) = Oz 2mi1 = 2" i Aomt1 2Aom1 < Oam 2Am (T2,
T+ e g1(t —e) T—¢
I =0 ——— x>0, ——— > — =a(ly,).
a(Imy1) = Oomsr R x > Oy ey v a(Iom)

From the aforementioned properties it follows the existence of segment I, 1.
Further, using the inequality Ay +1 < Aop2/g2 and equality (5) we obtain
(1 —1)gor — (g1 +1)qoe _ 3m—e
2Aom+2 Aoz’

“2m+1‘ =x 2>

whence we see that there exists a segment I, 12 C Ip;,41 of length A;sz

lity COS(A2m+29 + a2m+2) > 6 holds for all 6 € Ip;4».

The analysis of our considerations shows that by induction it is possible to construct a
system of embedded segments Ip;;, O Iyt1 O Iyt2 D Irmi3 D ... such that for every integer
n > 2m the inequality cos(A,6 + a;,) > 0 holds for all 6 € I,,. Let 6 be the common point of all
segments I, n > 2m. Then 6 € I and

such that the inequa-

Re f(re®) = Y |an|r" cos(Anb + ap) > — Y |an|r"+6 Y |an|r",

n=0 n<2m n>2m

whence, according to (2), we obtain (3). Theorem is proved.
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