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ASYMPTOTICS OF A FUNDAMENTAL SOLUTION SYSTEM FOR A
QUASIDIFFERENTIAL EQUATION WITH MEASURES ON THE SEMIAXIS

With the help of a conception of quasiderivatives asymptotic formulas for a fundamental solu-
tion system of a quasidifferential equation with measures on the semiaxis [0, o) are constructed.
The obtained asymptotic formulas allow to investigate asymptotics of eigenvalues and eigenfunc-
tions of the corresponding boundary value problem.
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INTRODUCTION

Linear differential operators generated by differential expressions with smooth coefficients
(including asymptotics of the eigenvalues and eigenfunctions) were studied quite comprehen-
sively in the literature (e.g., see [7]). There are numerous recent results that generalize these
operators to some extent. In particular, interesting results for functional-differential equations
of the form (") + Fy 4 p"y = 0, where F is a linear operator mapping the Holder space C7[0, 1],
v < n—1,into the space L]0, 1], were obtained in the papers of the Kiev mathematicians [3, 8].
The papers [5, 9, 15], as well as the present paper, aim at relaxing the conditions imposed on
the coefficients of differential expressions. A wide bibliography on the theory of differential
operators with singularities can be found in [1].

Real problems often lead to differential expressions that contain terms of the following

form <p(x)y(m)) " and cannot be reduced to conventional differential expressions by n-fold
differentiation if the coefficient p(x) is not sufficiently smooth. Such expressions are said to be
quasidifferential. The introduction of quasiderivatives [10, 11] is one of the oldest methods for
their analysis. (The quasiderivatives are the components of a vector reducing a quasidifferen-
tial equation to a system of first-order differential equations.)

In the paper [7], in particular, by using the investigation of the asymptotics of a fundamen-
tal solution system for a quasidifferential equation with integrable coefficients on the interval
[a,b], the asymptotic behavior of eigenvalues and eigenfunctions of the corresponding differ-
ential operator was obtained. In the papers [2, 7] the previous results were extended to the
semiaxis [0, o).

In the present paper, by using the method of quasiderivatives, we analyze the asymptotics
of a fundamental solution system for a quasidifferential equation with distributions in the
coefficients on the semiaxis [0, o0). Our results generalize some of those in [2, 5, 6, 7].
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1 FORMULATION OF THE PROBLEM

Consider the quasidifferential expression

n m _q
Lin(y) = )_ ) <az‘jy("*i)> "
i=0j=0

where m and n are positive integers, aq is a constant, ajp = ag1 = 0, ajo(x), agj(x) € L2[0,0),
a;j(x) = bj;(x), bij(x) € BVF[0,00),i =1,n, j =1,m. Here BV*[0,00) is the space of right
continuous functions of bounded variation on any interval [a,b] C [0,00). The prime stands
for generalized differentiation, and hence the a;j are measures, i.e., zero-order distributions [4,
p- 160]. The functions a;;(x) and b;;(x) are assumed to be complex-valued.

The quasiderivatives of y(x) corresponding to the expression Ly, (y) are defined as the
functions given by the formulas

n .
Y =y, k=BT g = & oy

!/ n .
Yyl = <y[n+k—1] _ ‘20 agy" ), k=1,m.
1=

Let us pose the initial problem
Lun(y) = Ay, 1)
y[v’l](a) =¢é,v=1n+m. (2)
It was proved in [12, 14] that there exists a unique solution of the initial problem (1), (2); more-
over, the solution, together with quasiderivatives of order less than n — 1, is absolutely contin-
uous, and other quasiderivatives of order less than n 4 m — 1 have bounded variation on any

interval [a,b] C [0, 00).

We assume that ap9 = 1; otherwise we can divide equation (1) by agg. For reduction we

enter denotation r = n + m. Set A = —p’; then equation (1) can be represented in the form
i\ i)
v apy=— Y (ap" )" ©
0<i<n
0<j<m
i+j>1

We split the entire complex p-plane into 2r sectors S, ¢ = 0,2r — 1, where
Sog=Ap:qn/r <argp < (q+1)7/r}.

We shall denote the domains S, by S.
By wy,wy, ..., w, we denote the distinct r-th roots of —1. For each sector S, there exists a
numbering [7, p. 55] of w1, wo, . . ., w, such that

Re(pwi) < Re(pwr) < ... <Re(pw;), p € Sy. 4)
In [2] the asymptotics of a linearly independent system of solutions of the equation
y 42y L pa(x)y + "y =0

with integrable coefficients on the semiaxis [0, o0) is obtained for large values of the parame-
ter p. In the present paper we obtain the analogous formulas for the solutions of equation (1)
with imposed conditions to the coefficients at the beginning of this section. These formulas
generalize some results of the paper [2].
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2 MAIN RESULTS

By using the vector y = (y,y1,...,y"=1T (where T stands for transposition), one can
reduce equation (1) to the system of first-order differential equations

y =C'(»)y, ()
where
0 1 0 0 0 0
0 0 1 0 0 0
— —a,_ — 1 0 0
C'(x) = ano an—1,0 a0 )
(x) Am A1 0 An —ap 1 0
Apm—1 Antm-1 -~ Aym—1 —dom— O 1
Apm + A An—l,m ce Alm —Aaom 0
Aij = LZO]'LZZ'O — LZZ']' (Z = 1, Vl,j = 1, m)
Obviously,
0 0 0 0
0 . 0 0 --- 0
AC(x) =C(x) —C(x—0) = CAby - —AB O - 0
n
—Abyy -+ —Aby, 0 - 0

Since [AC(x)]? = 0, it follows that system (5) is well posed [12].
The homogeneous equation

Y 40y =0 (6)
has the fundamental solution system e?“1¥, e?“2% .. eP“r* Vector equation (5) can be repre-
sented in the form y’ = Cjy + Cjy such that the system y’ = Cjy is equivalent to equation
(6). Consequently, the matrix Cj contains the unities above the main diagonal, —p" in the left
below corner and zeros. If the right-hand side of relation (3) is treated as an “inhomogeneity”,
then, by the Cauchy formula for the inhomogeneous equation (see [14, p. 61]),

y(x) = B(x,0)y(@) + [ B(x,)dC2() y(2), )

where a > 0, B(x, ¢) is the fundamental matrix of the “homogeneous” system y’ = C}y; it has
the structure [13]

KirU(x,g) - KU (x9) K(x,¢)
] B L A
KUr=1B0=D(x, & ... KBO-D(x,a) KO-D(x, )

where K(x,¢) is the Cauchy function of equation (6). The parentheses in (8) stand for the
ordinary derivatives with respect to the variable x, and the curly braces are used to denote
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quasiderivatives in the sense of the adjoint equation of (6); they are taken with respect to the

second variable and are defined by the formulas [14, p. 122]

def . ) -
A0 =4 A= Y, =1 ©)
One can readily see that the Cauchy function for equation (6) has the form
wlePwl(x*‘:) + wzePWZ(x*‘:) +...+ wrepwr(xfg) (10)

K(x,@) - - Tpr_l
18 =0,v=07-2K"Y(¢) =

Indeed it satisfies equatlon (6) with respect to x, K

1 since Z w}’“ =0,and 2 w] = —r (see [6, p. 55]).

j=1 j=1
By using relations (9) and (10), equality (8) can be represented in the form

r r r

1y w]repwj(x—é') e rp}*Z Y wjzepwj(x—é) 2 x=¢)

j=1 j=1 j=1

r r r
Bx.2) b ‘Zl w]r+1epwj(xf§) . rp}*3 121 w?epw;(x Z) Z W 2 ppwj(x—¢)

, = — ]: ]:
Ptl i w}zr—lepwj(x—é) g i w]r+1epw,~(x—€) % i w]repwj(x—é)
j=1 j=1 j=1

By denoting y(a) = (¢1,&,...,&)T, from equation (7) we can obtain

T ~ r

() -7 ‘Zl w]fep“’f(x - rp(’;il ‘21 w]-ep“’/(x %)
= =
_ =1 T = I
y[r 1](x> a0 1 5 wzrflep“’f(xfﬂ) _ay wrepw](xfa)
ro= =
j= j=1
LY wler i) T L wjel %)
j=1

= =1
0
>
- L a(@y" (@)
x Sé(dbsl(e') — apy (&)aso (€)dE)y ™= (¢) ,
Sé(dbsz(‘:) — a02(&)aso (E)dE)y ") (&) + apa (E)y!" (&)
(0o (£) — a0n (€)a0 (@) (@) + aom(Oy" (2

where the last column contains the null elements only in the first n — 1 rows. Constants ¢;, j =
1,7 can be choose such that the system of Volterra-Stieltjes integro-quasidifferential equations
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1n+1/n

yM() = Y eptwferrt — E—— b/}:aﬂ+w4ww (@) (©)de
j=1

m  J1-n—p+v m—ptv o s
+ Z 97 [ /Z pHvHl pw)(x é)y( )(C)dbsp((;")

-1 1
' e (11)
—z/z"””%W<%w@m@WM@%
s=1y j=
,
* /Z w?7p+v+1epwj(xig)a0ﬁ (C)y[n] (C)dgl ; V= 0,7’ - 1/
a J=1
holds. Indeed, from the equality
51 6’” — 51 57‘ —PWr r
<—7w§ - = rp7_1w1> e PwlePn® 4 4 <—7w£ — = rpr_lwr> e~ Pwrdppr

= 1P + L+ et
we obtain the system

— e P (Wl L Gwy) = e’ Y,
— e P (E w0 T L 4 Gwy) = T
such that its determinant is nonzero for |p| > 0, because it is a Vandermonde determinant.

In the following theorem, asymptotic formulas for the solutions of equation (3) are derived
on the basis of the analysis of the integro-quasidifferential equations (11).

Theorem 1. Under the above-mentioned conditions imposed on the coefficients, in the entire
domain S of the complex p-plane, the quasidifferential equation (3) has r linearly independent
solutions yi(x, p), k = 1,r, which satisfy the relations

' (x,0) = p'eP ¥z, (x, p) (12)

fork =1,r,v =0,r —1,x > a > 0, where the functions z;, (x,p) are bounded in the domain
a<x<oo,peS, |p|>h>0.

The functions y][(v] (x,p) are continuous with respect to the set of variables (x,p) for x €
(0,00), p € S, |p| > h > 0. These functions are regular (i.e., single-valued and analytic) with
respecttop € S, |p| > h > 0.

Withp € S we have

y,[(v] (x,p) = pVePr* [w,’j +0 <%>] asp — oo (13)
uniformly with respect to x € [0, o).

Proof. Suppose

yM(x,0) = p'eP¥z,(x,p), v=0,7r—1, (14)
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for some fixed k, k =1, 7.
Then we rewrite equations (11) in the form

1 n+v

ez, (3, ) = il — £ 3 / Zw’”““ep“’ Vg (@)p" e Kz, (2)d
j=1

s=1y j=1

m 1-n—p+v | n r
u

2/2 m=p+v+l pw;(x 5)pn_se"“’kgznfs(é‘)dbszﬂ(‘f)
p=1 ta =

n r

-y / Y- ] P erte g, (©)asg (§)p" e Mz o(E)dg

s=1y j=1
r
* / Y WP e ) g, (2)p" Pz, ()dE |, v =0,7— 1,
a J=1

whence

(x,p) chw P (wj—wp)x __Z/Zwm+v+l 1—s pwi(Z— )eij(x—C)aso(é’)Zn_s(é’)dé’

s=1y j=1

Z Z/Z m=pHvl pwi (G- )epwf(xig)PisZ”—s(@dbsP(g)

(15)
- L / Y- P E e g ()aso ()0 zu-s(8)dE
s=173 j=1
X r
4 /Zw;”_p—H/-l-lePwk(‘:*X)epwj(x—g)aop(g)zn(C’)dé’ oy =07-1.
) £
Set
c; =cj forj=1,k, (16)
18 7 e ol
== ) [t e s, (§)as(§)de
s=1 p
m  1—p n % mptl s p(wr )
I DO )z, ()dbsp(C)
=1 s=1
' ’ 17)

): / g e )z, (@agy (E)aso ()

—i—/w;”*PHeP(wkfwj)ﬁzn(g)aOp(é)dg , i=F¥Lr,

for some fixed k, k =1, 7.

Each Riman-Stieltjes integral in formulas (17) exists and converges via continuity and boun-
dedness of the functions p!~5eP(@Wk—w)z (&), plP=sePlwr—wi)ey (&), pl=PeP(@i—wi)ly (),
since Re(pwy) < Re(pwj), j =k + 1,7 (it follows from inequalities (4)).
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Then system (15) can be written in the form

ch”ep ey / Zw’”““ Pl E e gy ()25 (£)dE

sla]

f—p Z / Z [P & (8 0752, ()dbsy (8)

-y / 2 PR g 00 (vE) g ()0 (€D 25 ()

s= 111 j=
k
" /Zw?fp+v+1epwk(§—x)epwf(xig)llop(g)zn (@)dé
a J=1
L (18)
1 e
+; Z/Z wm+v+1plfsepwk(§*x)gp“h( C)QSO(C)Zn—s(g)dC

SR LY [ W et e s, (@ @
]
S Y [ X e e e g, (@)aso (€)p 20+ (04

+ / ) w;nfpwﬂep“’k(5_x)ep“’f(x’§)a0p(g’,‘)zn(é)d@ ,v=0,7r—1
v j=k+1

Suppose that equation (3) has a solution y; such that ¢, = 0 for v # k, c; = 1. Let

]/M — pvepwkxzk

Leper(Ex)2ospr § P, <y,
Kk (%g,P) = = (19)
pvs _%epwk(::fx)p%sfp*v i wm p+1/+1epw §>x
j=k+1

k=1r v=0,r—1, s=0,n, p=0,m.

Then for the functions zy, (x, p) we obtain the system of integral equations

zk (%, 0) = wi — % Z%/Kkm/s(xf &, 0)aso()zn—s(G, 0)dG

TJI*—‘

Z ;/Kkpvs(xlgrp)zk,ns(glp)dbsp(g)

- Z/Kkpvs(xl CIP)QOP(C>HSO(g)zk,nfs(glp)dg+ /Kkva(xl C/p)aoﬁ(€>zkﬂ(€fp>d€
s=17y a
(20)

We construct the functions Qkpvs(x, ¢,p) and gsp(x) (k = Lr,p = 0,2m, v = 0,r -1,
s = 0,n) as follows: Qkpvs(xrgrp) = Kkpvs(xrgrp) fors = 0,n,p =1m; Qkpvs(xrgrp) =
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—Kip—mus(x,G,p) fors = 1,n, p = m~+1,2m; Qrous(x,8,0) = —Kyous(x,¢,p) for s = 1,1;
Qkp,/o(x g,p) =0forp = 0,m+1,m+2,...,2m gp(x) = bsp( ) fors =1np=1m
gop(x f agp (t)dt for p = 0,m; gso(x ):fax as(t)dt fors = 1,1; gop(x f ao,p—m(t)aso(t)dt
fors = 0,n, p = m+1,2m. Obviously, all gs,(x) have bounded varlatlon on any interval
[a,b] C [0,00). Then system (20) can be represented in the compact form

Zkv(x P) - wk + = Z Z/Qkpvs X, é P)an s(g p)dgsp(g) (21)

=0s=07

Each function Qyys(x, 8, 0), k = 1,r,v=0,r—1,p=0,2m,s = 0,n, is left continuous for
all x,¢ € [0,00) and it is regular for all |o| > h > 0. There exists a constant C; > 0 such that

k
Z w;n_p+v+1e(pwj_pwk) (x_é)

1 —s—p—v
|Qpus(x,8,0)| = — o>
j=1

S Cl/ (22)

k=1rv=0,r—1,5s=0,np=0,2m,for& < x, because Re(pw;) < Re(pwy), j = 1,k, since
(4). Similarly, there exists a constant C, > 0 such that

Y WP gl (0

j < (G, (23)
j=k+1

1 —s—p—v
|Qepus (1,8, 0)| = — o> =77

k=1rv=07r—1,5=0,np=0,2m,for > x, because Re(pw;) > Re(pwy),j = k+1,r,
since (4).

Let C = max{Cy,Cp}. Since bounded variation of the functions gs,(x), we can find a
number a > 0 such that

1 e
cﬁ/ldgsp(g)\—ﬁ\ﬂf -, s=0,n, p=0,2m.
a

Then all conditions of theorems 1 and 2 from [5] are satistied and by these theorems system
(21) has the bounded continuous solution zy,(x,p), x € [a,0), p € S, |p| > h > 0; moreover,
there are asymptotic formulas (13) for p — oo.

Let us show that there exists solution (12) of equation (3) that satisfies system (21). To
this end, it suffices to show that for all constants c|, there exists solution (14) of equation (3)
satisfying system (18) for these values cJ,.

Equalities (16), (17) are a linear transformation from ¢; to c;. Obviously, it suffices to show
that the determinant of the mapping (16), (17) is nonzero for sufficiently large |p|, p € S. In
this case for any c;- equations (16), (17) can be solved for ;.

If the determinant of the mapping (16), (17) is zero for arbitrarily large |p|, p € S, then, for

these p, equations (16), (17) have nontrivial solutions with respect to ¢ forc} =c, = ... = ¢, =
0. Then the corresponding function
zu(x,0) = p Ve Py (x, p) (24)

is a nontrivial solution of the system

i’l

Zy - 1 /Qkpvs X, g p)Zn S(C p>dg5i7(€>

ppOsO
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which can be obtained from (18) for ¢j = ¢} = ... = ¢, = 0 and designations (19). Let us show
that this is impossible. Let m(p) = max |z,(x,p)|, x > a, v = 0,r — 1. Using the inequalities
(22), (23), we obtain

2(x,0)] < |%| / ldgsp () m(p) < m<p>%|,

where C; is some constant. The last inequality should hold for all p. But for large |p|, this
inequality is possible only if m(p) = 0; consequently, z,(x,p) = 0. This, together with (24),
implies that y = 0 for v = 0.

It remains to prove a linear independence of the solutions yi(x, o). To do this, calculate the
Wronskian of these functions for p — oo

1 ... 1 1 - 1
_ w w r(r—1) w w

Wlx,p) =1-p...p teplortetanx) 0 T =pra )
w;fl Wil w;q Wil

Since the Vandermonde determinant of distinct numbers w1, wy, ..., w, is nonzero, we see that
the Wronskian is nonzero for all x € [a,0), p € S. O

Remark 1. Each of obtained solutions yi(x,p), k = 1,7, can be extend to the interval [0,
constructing on it the solutions of equation (3) that satisfy the initial conditions y!!(a)

y][(v](a),v =0,r—1Lk=1,r.

al,

-, 8 =0,n,p = 0,2m, in the designations of

Remark 2. If h is so large that | }o\dgsp(g)] <1
theorem 1 from this section, then ?n this theorem can be puta = 0.
For a example we consider the quasidifferential equation
"V + (any') + (az0y)” + aoy” + (a21y)’ + ar2y’ + axy = Ay, (25)

where ay(x),a02(x) € L2[0,00), a11(x) = bj1(x), a12(x) = b, (x), ax1(x) = b5y (x), an(x) =
by (x), b1(x), b12(x), ba1 (x), bpo(x) € BVT[0,00). The quasiderivatives for this equation are
defined by the formulas y!!! = v/, y?I = v + axy, y1¥ = (v + axoy)’ — ao1y” — any’ — any.
The conclusions of theorem 1 hold for equation (25).

The constructed asymptotic formulas for the linear independent system of the solutions of
the quasidifferential equation with measures on the semiaxis allow to investigate an asymp-
totic behavior of eigenvalues and eigenfunctions of the corresponding boundary value prob-
lem. The presence of distributions in the coefficients of a quasidifferential equation does not
affect these formulas.
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