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THE NORMAL LIMIT DISTRIBUTION OF THE NORMALIZED NUMBER OF FALSE
SOLUTIONS OF ONE SYSTEM OF NONLINEAR RANDOM EQUATIONS OVER THE
FIELD GF(2)

The theorem on a normal limit distribution of the normalized number of false solutions of a
beforehand consistent system of nonlinear random equations over the field GF(2) is proved. The
results with the additional condition on the number of nonzero components both false solutions
and true solution of the solutions are obtained.
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INTRODUCTION

Let us consider a system of equations over the field GF(2) consisting of two elements

il («
Z Z a]-lmjkle cee X = bi]/ q= 1,2,...,N, (1)
k=1 1<j;<...<j<n

that satisfies condition (A).
Condition (A):
(9)

1) coefficients a it

pendent random variables, P{a](f.)“ A= 1} =1- P{a](-lql)“ A= 0} = pgis

A<h<...<jx<n k=1,...,8(n), q = 1,2,...,N) are inde-

2) elements b, (g =1,2,...,N) are the result of the substitution of a fixed n-dimensional
(0,1)-vector x°, that has p(n) components equal to one, p(1) = |°|, in the left-hand side of the
system (1);

3) the function g,(n) is nonrandom, g,(n) € {2,3,...,n},4=1,2,...,N.

Denote by M(x°, f(n)) the set of all n-dimensional vectors ¥, which do not coincide with
%. These vectors have the number |%| of nonzero components satisfying inequality |%| > f(n),
f(n) €{0,1,2,...,n}.

Denote by v, the number of all solutions %, € M(x°, f(n)) of the system (1) and we shall
name their false. Most attention was paid to finding conditions for the convergence of the
distribution of the random variable v, to a Poisson distribution as n — oo in the previously
published papers (see review article [2]). We are interested in the conditions under which in
appropriate way normalized random variable v, has a normal limit (n — oo0) distribution and
n—p(n) = oo (n— o0), f(n) > 2. The case p(n) — oo (n — c0) and f(n) = 0 is considered
in [5]. Put A is a positive real number such that [A] = 2", m = n — N, [-] is the sign of the
integer part.
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1 FORMULATION OF THE THEOREM

Theorem. Let the condition (A) holds, parameters n and N are changed so that

1 n—p(n)
v(1+a+w) log f(n)Inn’ )
v=uv(n)>2, a=ualn), w=whn), a>exp{l+al},
A — oo, (3)
wVA = o0 (4)

asn — oo; for an arbitrary q,q = 1,2,..., N, exist a nonempty set T, such that for all sufficiently
large values of n

T, C€{2,...,8;(m)}N{2,...,ef(n)}, T, # @, 0<e<1, e=const, (5)
1 1
E_(sqtg Pgt < §+5qt’ 5qt:5t(n>/ tETqr g=1,...,N, (6)
(2+(1+a¢+w)1n2);\—m—)‘+1 (ZHchqt>—>oo (n — o0). (7)
g=1teT,

Then the distribution function of the random variable V’i/%)‘ tends (n — o0) to the standard

normal distribution function.

2 AUXILIARY STATEMENTS

Let M(vy,), denotes r-factorial moment of a random variable v,,.
Proposition. If the condition (A) holds, then for integerr > 1
M (vy), = 27"NS(n,1;Q), (8)

where

s=0 iel

p(n) -1
S(n,1;Q) = Z Y (n—p(n ((n—p(n)—s)!Hi!)
p(n) -1 )
<L T e ((p<n> -9 !Hj!) Q

j€]

s/ 4s>1

gq(n) U ooty
Q- H(HZ Y T2 }),

v=11<u1 < ---<uy, <r t=1

the sum Y (Y))
v=1,...,r} ( {]{ul,...,uv} 1<y <o <uy <r, v= 1,...,1’}) such that

Zi:s (ijs');
icl jel

in accordance to (9), the numbersi (i € I),] (j € ]) satisfy the relations

Y (+)=1, u=1,...,r, (10)
iEI{u}'jel{u}

1stakenovera111€l(]€]) where I = {i,, 121 <u <.~ <uy <,
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Z i+p(n)— Z j>fn), u=1,...,r, (11)
ZIEI{u} ]ej{u}
Z (i4+7)>1, 1<u; <up <r; (12)

iel{”l/“z}’je]{“r”z}
for1<u; <---<uy<r, ve{l,...,r}andt € {1,...,n} the inequality

rib;l,...,uy} > ¥ <Cf i C]t> ) (13)
(i,j)eT

holds true, where T = Iy, .y X Jjuy,...u,) - here

I{ur,...,uy} = {i{O'l,...,O'LP,]Jl,...,yl} : A (lI]’ l’ 7’)} 4 ]{ur,...,uv} = {j{o-ll"'lo-l/)ll’lll'“l]/ll} : A (II]I ll 7’)} 7

A (¥, 1, r) is a notation for the following set of restrictions: 1 < 07 < -+ < op < 1,0; €
{ug,...,wt,z=1..,¢,p=1...,v,p=1(mod2), 1 <y < --- <y <r,yy,..., u &
{ug,...,uy},1=0,...,r—v.

Remark. The explicit expression Ft{f;l’""u”} forl1 <up < - <uy <r,ve{l..r}t=
1,2...,8(n),q=1,...,N,is given in [3].

The proof of the proposition is realized similarly to the proof of the theorem 1 from the
work [3], which holds true for f(n) = 0.

Lemma 1. Let conditions (10) and (11) hold. Then the inequality

rid >l u=1,r, (14)

holds true.
Proof. Using the equalities (2)—(4) from the work [3], we obtain
I = Chya, + Chy —2Ch, u=1,...,7, (15)
where F, = Y. i, &, = p(n) — @}, ®; = Y j. By virtue of (10) F, + ®; > 1. In order
iEI{”} ]E]{”}
to prove of Lemma 1 it is, therefore, sufficiently to find the estimation for Ft{;l}

>0 (F,>1)and @) > 1 (F, > 0).
Let ®;; > 0. Then F, > 1 and taking into account (15)

in two cases:

{u} t t t t t—1 _
Fik” 2 Crorptn) = Cotn) Z Crvotn) = Gt Z Cpimrr 4= Lot 16)

Here, with the help of (11) and accepted designations, the fact F, + p(n) — ®;; > f(n) has been
used.
Let now @}, > 1. Then F, > 0 and similarly to (16), we find

{u} t t t t t—1 t—1 _
Fi 2 Cotm = Cotm—ai = Cotn) = Gptm-1 2 Coiy1 = Cpyar # = Lo (17)

Considering estimations (16) and (17), we can obtain (14). Lemma 1 is proved. O
Lemma 2. Let conditions (11) and (12) hold. Then the inequality
{uy,uz} t—1
I > Croy-r 1w <up<r,
holds.
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Proof. Using equalities (2)—(4) from the work [3], we find

Uy, u t t t
I‘t{,rl 2} fd CF111+¢“1 + CF“2+CI>“2 - 2CP111u2+q)u1u2’ 1 S ul < u2 S r, (18)

r—2
where F,;,, = ), Y. i{u
UMY iy}
I=0 py¢{us,uz}

1Spg <---<py<r

2

Dy i, = p(ﬂ) - Z Z <j{u1y1...y1} +j{u2y1...yl})
1=0 114165{”1/”2}
SHp<--<psr

r—2
- Z Z j{”luzﬂl---ﬂl}’ I<up <up<r.
I=0 py#{uy,uz}
1Sp <--<py<r

We can write relation (18) in the following way:

{urup} _ ~t ot t At
L™ = Chvon, ~ Chuut@uu, T Chptdn, ~ Chpyt@g, 1St <msr. (19)

Using definitions of F,, ®,, (1 = uy, uy) and Fy,u,, Pu,u,, we can present (19) in the follow-
ing way:

{urun} _ ~t t t t

Ui = Ch 4oy, = Ryt @y, 9 T Crpran, = Chyady,—pr 1S <z <7, (20)

where
r—2

r—2
120 g () <{ 1} T H{uzp m}> 120 g (mun) <{ i1} T m})

1S <---<py<r ISpg <---<py<r
According to condition (12), the inequality ¥« + ¢* > 1 holds true. Let us find the estimation
Ft{;l’uﬁ when ¢, > 0and ¢, > 1.
If relation 1, > 0 holds, then from the equality (20), using lemma 7 from [3] and (11), we

can obtain T2} > ¢t —Ct > Ct-l . . >Ccol 1< u, < r.
t,r - F142+q>112 F112+q)u2_1 - FuZ+p(Vl)*¢‘u271 - f(i’l)*l Sup<up s

If inequality 1, > 1 satisfies, it is similarly easy to receive an estimation Ft{;’l’uZ} >Ch Lo —
7 uq uq

Ct > Ct-1 L o>CEl i <u<up < O
Fuy+®u—1 = CF, tpn)—ap, -1 = Cpm-r TS <2 S

3 PROOF OF THE THEOREM

Let us show that under the conditions of the theorem we can use Lemma 2 from the work
[5]. Let the random variable Y in the mentioned lemma have a Poisson distribution with pa-
rameter 2™, while the distribution of the random variable X coincides with the distribution of
the random variable v;,; and put vy =1 + w.

Let us check up condition (35) of the mentioned Lemma 2 of the work [5], that is let us
show existence of the constant C such, that the estimation M(Y), < C(A*)" satisfies for r <
(o + y)A*, where A* = Mu,,.

Using the equality (8) as r = 1, let us evaluate of the expectation of the random variable v;,.
Further we note that conditions (3), (5)—(7) and Lemma 1 (as » = 1) provide the relation

N
Q=140 Y, []20 |, n— oo (21)
g=1teT,
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By virtue of relation (21), the expectation of the random variable v,, can be presented in the
following way:

N"-P(n) , .
MVn - 27 . Cll’l—p( I’Z) ZC]

N N n—p(n) l_ p (n) ;
:2 1+O ZHZ(Sqt . C?l—p(?l) Zcp(n)—(fo , n—>OO,
g=1teT, i=0 j=0

n—pn) p(n) .
whereoy = ) C;fp(n) )3 C;?(n) on the assumptionofi+j > 1,i+p(n) —j < f(n);
i=0 =0

the sign ) denotes the summation over parameter j, j = 0,...,p(n), and additional conditions
i+j>1,i4+p(n)—j> f(n). Itis easy to show that inequality for o

(22)

oo < exp{o(n)}, n— oo, (23)
satisfies. With the help of (22) and (23) we find

My, =27V (2" — 1 — exp{o(n) (1 +0 (Z I 25qt) ) — o9, (24)

g=1teT;
or according to the notations introduced above, we can write
A=Al (14+0(1)), n— co. (25)

By virtue of (2), (7) and relations M(Y), = 2"™", m = n — N, (27), we find that condition (35) of
Lemma 2 from the work [5] holds true for C > 1.

Let us proceed to verification of condition (38) (Lemma 2, [5]), according to which, the
relation

max | M(X)r(M(Y)y)" —1) S 50, n oo,
1<r<(aty)A*
satisfies for all r < (a + y)A™.
To achieve this, we write equality (8) in the following way:
1 21
M (vn), =N Z s (n,1;Q), (26)

where S (n,7; Q) differs from S (n,7;Q) so thatall i Taj, i € I, j € J, participating in the
notation S (1, r; Q) given by (9) take only such values that there exist precisely A of various sets

wa:{ug’x),...,ué’z)}, 1§u§'x)<---<ué§f)§r, &ge{l,2,...,r}, a=1,2,...,A,

for each of which a number t® € {2,...,k}, k = [ef(n)] can be found such that
res

oc)r

=0, (27)

and for the sets {#y,...,9;}, 1 < & < --- <8 <r, g =1,...,r, satisfying the relation
{01,...,0;} #wa, a=1,2,..., A, the estimate

rif-mt s (28)
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isvalid forall t € {2,...,k}.
Let us show that

(n, r; Q) e’
sup ——1——>O,n—>oo. (29)
1<r<(arnas | 2VMY), VA*

Firstly, we state that the equality A = 0 can really be achieved.
Indeed, if for all i, i € I, and (or) j, j € ], at least one of two inequalities i > k or j > k,
holds, then, by virtue of (13), estimation (28) holds true for all sets {07,...,9;}, 1 < & <
<Y <r, q=1,...,r1at € {2,...,k}. In turn, equality i = k and (or) j = k can satisfies
foralli € I, and (or) j € J, since, taking into account condition (2) and equality (25), the
relation
2'k < max (n — p(n), p(n)) (30)
holds for r < (a + y)A*. Thus, the equality A = 0 can really be reached.

N
Letu = (2" —1) ¥ T] 204. Then for A = 0, using inequalities (6), (28) and relation
q=1teT;

u—0, n— oo, (31)

which follows from (7), product Q can be written as Q = 1+ ¢(n)u + O (uz) ,lg(n)] < 1as
n — co. Hence by the polynomial theorem and equality (9)

s© (” Q) =2" -0 — ) <1 +¢(n)u+0 <u2)> , (32)
where
0 = Z Z S(é) ; > (n, 7; 1), (33)
p=11<u3 <---<uy <r Lo g
addendums S(&) 0 (n,71),1<uy; <---<uy, <r,u=1,...,r, in the right-hand side of
1,..., ‘u
(33) are
(0) n—p(n) ' -1
Sty (13 1) = Y. Y (n—pm)t| (n—p(n)—s) ]
o s=0 icl

p(n) -1 (34)
<) Z’(p(n))!<(p(n)—s’)!1"[j!> ;

j€l
the signs & (¥') are defined in the relation (9) with additional condition

Y, itp(n)— ) j<f(n u€ {uy, ... upf,

i€l J€T{uy
Y itpn)— ). j>f(n), ue{L2,...,r}\{u,uy, ..., uu},
1€l €] uy
and
rifl"“'ﬂ*‘} >1, 1< < <0,<r, pu=1,...,1 (35)
=1 —{—2215 (n,1; 1), (36)

q=
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S,(,O) (n, r; 1) differs from S (n, r; 1) so that the numbers i € [ and j € ] in the right-hand side

of (9) are changing so that there exist precisely g of the expressions of the type Ft{ﬁl"”’m} for
each of which
) (37)
whereq=1,2,3,...,2" - 1.
Let us estimate ¢. Firstly, for that we evaluate Siou)l ) (n, r; 1). We notice that

(0) ) (0) )

Sty 0 731 < Sy (m151), (38)

since there is no restriction Y i+p(n) ~ ¥ j < f(n), u € {uz,..., 1}, in the right-hand
iEI{“} ]el{u}

side of the inequality. In turn the sum st (n, r; 1) can be written in the following way:
(1)

0 n—p(n) !
S<u1> (m,r;1)="Y, Y (n—pn))! ((n —p(n) —s) !Hi!>

i€l

o(n) -1 (39)
Y (ot (<p<n> ) !Hﬂ>

i€l

with additional conditions Y. i+p(n)— Y j< f(n)and (35).

i) Iy}
Denote by A (u1) the set of the elements iy, .., 1 <y < - < py <r,1=0,1,2,...,r—1,
17 & {u1}. The number of elements in the set A (u1) equals 2" 1

|A (ug)] = 2L, (40)
By virtue of (39) and (40), the sum SE% (n, r; 1) can be given as

o(n)

0
Sg)>nr1 ZC

s=0
41
51 52! o) s’ r D
DI O My i! Zzﬁ /Zcp(n)(z -
e zeA(u1) ienAG) ) 50

where ) 1 — is the sum over all i € A (uy) such that }_i =51, Y}, — is the sum over all i €

I\A (u7) such that }_i = s,.

Relations (34)—(41) and the polynomial formula let us obtain the estimate for S (&) ) (n,1;1):
1o Uy

(0) . r— 1 n—p(n r—1 ro(n)
5<u1,___,u#> (n,r;1) < (2 (ZC <2 ) > 2re(n) (42)

where the summation over parameter s; occurs on the interval 0 < s; < 2"~ 'k. Upper restric-
tion for s in the last inequality follows from (13), (27) and the assumptioni € A (uy).
Since 0 < s; < 2"~k and (30), the relation (42) can be rewritten in the following way:

(0) , (r=1)(n+2""Yef (n))+p(n) (or—1 2 tef (n)
S oy (T 1) <2 (2 tef(m) +1) i,
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from whence, with the help of the Stirling’s formula, we can obtain

S(O) (n’ r 1) < 2(r71)(n+2r*1£f(n))+p(n) <2r71€f(n> + 1)

<u1,...,uy>
X((ﬂ_p(ﬂ))ey A 43)
2 ef(n)] 2nilef ()]
Substitution (43) in (33) gives
e 3) -t p(r) 1 <n—p<n>>e>2”€f<”> ef (n)
<20 (BE T 9

In analogy to how it was estimated of oy in ([6], inequality (46)), we receive the estimation
for o»:

92" =2+ (r—1)n+ref (n) (n — p(n))p(n)e? 2'ef(n)
0 < 50 . (45)
T 2 ()
Taking into account (32), the fraction % can be given as 1 — 2, L % + O (u), in view of

which the relation (29) can be rewritten in the following way:
20"

e
sup —+—+O() — — 0, n— oo (46)
1<r < (aty)A " <2rn orn ) /\*
Using conditions (2), (3), (7) and relations (24), (44), (45), it is easy to show that
20 20 20%
N ¢ ¢ (47)

Vit ! o T — 0, > T — 0
as n — co. Using (47), we obtain (46). From the relation (46) and equality M (Y), = 2", (29)
follows.
By virtue of (26) and (29), in order to complete the checking of the condition (38) (Lemma 2,
[5]) it is necessary to establish that for 1 <7 < (a + y)A*

2'-1 2\
2rN+rm<ZS nrQ)\/—A_%O n— co. (48)

Denote by M; /M;/ thesetofalli, i € I /j, j € ]/, that do not belong to I.,, /Jw,/,
a=1,...,A and put My = [\M;, M, = J\M;.

Let z be the least integer number such that A < 2* —1,1 < z < r. Then by Proposition 1
from the work [4], the number of elements of the set M; /M;/ does not exceed

M| <277%—1 /M| <2777 -1/ (49)

Let
A< 271 (50)
With the help of (50), we denote the S(A)(n, r; Q) from the relation (48) by S Ei)fz)(n, r; Q).

Then
21 2" -1

ZS (n, 1, Q) = ZSZZ (n,7; Q) (51)

exists under the relation (50) Takmg into account (5) and (6) the estimation (28) gives the next
inequality for Q in the right-hand side of (51)

Q| < 22NQ, (52)
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N r oA
where Q; = <1—%> exp{mu}.
By virtue of (52), each addendum in the right-hand side of (51) admits the estimation

@)

5,1 Q) <22NS) ) (n, 7 1) Q1. (53)

(222
Further, foralli € M, (j € My)
0<i<k (0<j<k) (54)
follows from (13) and (27). Using (49)—(54), we find

P2V ks 21
e 1 S (1rQ)

=1 . {_2_1\21 (1 o <2z+1(2V;[1)f (n) In <[€fn(f,l>]>> +O(u>> } ’

the right-hand side of which tends to zero for 1 < r < (a + y)A* as n — oo in view of (2), (3),
(24) and (31). Therefore, the relation (48) holds under restrictions (49) and (50).
Let

A=2"-1,1<z<v, (55)
M| <277%—1, |[My| <277 -1 (56)
Accordingly to (51), we put
2-1 2=1 ()
Z S( ) (7’1/ ¥, Q) = Z S(zz_l) (n/ v, Q)/ (57)
A=1 A=1

where S Ei)—l)(n' r; Q) coincides with $(&) (1, r; Q) under restrictions (55) and (56).
Taking into account conditions (5), (6) and relation (28), we obtain the next inequality for Q in

the right-hand side of (57)
Q| <22NQy, (58)
where Q, = exp {% u}. With the help of (55)-(58), we find the inequality

P2V ks 21
S o S (n1Q)
A=1

< exp {—2:1_2 <1 +0 <2r_z+1(2rn_ Df () In ([efn(ffz)]>> + o(u)> } , (59)

the right-hand side of which tends to zero for 1 < r < (a + y)A* as n — oo by virtue of (2), (3),
(24) and (31). Therefore, the relation (48) holds true under restrictions (55) and (56).

Next, let us check thatif A =27 —1,1 <z <r,iz € {r,r — 1} orr € {1,2}, then there exists
some«, & € {1,2,...,A} such that {, < 2. Indeed, when z = ror r € {1,2}, then, obviously,
there exists mentioned parameter a. For z = r — 1 the existence of the parameter a such that
¢x < 2 follows from the Remark 2 from the work [4]. Since, the inequality Ffr”‘ > 1 holds true
for values of the parameter o, « € {1,2,...,A} such that ¢, < 2 (by virtue of Lemmas 1, 2 and
condition (5), then below the notation A = 2* — 1 extends forall z, 1 <z <r—-2,3 <r < oo,

and value « € {1,2,...,A} such that &, > 3.
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Let restrictions

G>3 a=1,.., A A=2"—1, 1<z<r-2, 3<r<ow, (60)
|My| = |My|=2""7—1 (61)
hold true. Put
21 2r—1 )
Y sW Q=Y Sy (1, 1; Q), (62)
A=1 A=1
where S EZAZ)—l)(n’ r; Q) coincides with $(®) (1, r; Q) under restrictions (60) and (61).

If (60) and (61) holds true, then according to Proposition 2 in [4] the set M; (M) contains
no less than three elements i,,, € M; (jm, € My), v = 1,3, such that for some a € {1,...,A}

(@e{1,...,A})
lwy Nm(n,v)| =2, v=1,3, |w,N(a; Uby)| =3, n € {a,a}, (63)

for any a,, b, € {m(n,v) : v =1,3},a, # by, where m(yj,v) = {m,, asn = a; i, asy = &},
v = 1,3. With the help of (20) of the work [4] and (63), for above mentioned 7

I > o, e 2, k), (64

1—.(;)04 > ’)/t{ﬁl,xﬂba}
= :
According to (23), established in [4], the right-hand side of (64) can be estimated as

{aaUba} 5 1 =1; (% _ p=1(; 22
,),t“ >t (=27 (s — 1))ij*/2)+(3j*/4)+5/4 (65)

under condition j, > t, where j, = min{ja,, jp, }, j* = max{ja;, jp, }-
Analogy to (23) from the work [4], we can find

,)/t{”ocmbtx} Z t*li* (l* o 271(1'4< o 1))Ct7

2
(i*/2)+(3i. /4)+5/4 (66)

under condition i, > t, where i, = min{i,,, iy}, i* = max{i,,, ip }.

Ifi, > \/ef (n), j« > ef (n) satisfy, then inequalitiesi, > t,j. > t,t € {2,...,k}, obviously,
hold true for0 < ¢ < 1and

T > 6207 (p(n)2Cl2 o sy 7 00 1 € (0,8

follows from (65) and (66), which contradicts the equality (27) under the sufficiently small
e>0andt € {2,...,k}.

Therefore, under restrictions (60) and (61) at least one element i, € M (j. € M) satisfy
inequalities

i < VEf(n) (o < Vef(n)). (©7)

Let us observe that the inequality (58) in the right-hand side of (62) holds true for parameter
Q, we find the estimation according to (60)-(62) and (67)

ZA*A*—% 21 22r+1 1
ezﬂ\fﬁ Z S(A) (Vl,ﬁQ) Sexp{—% <1+O<r fn(n) nn) +0(1/l)>}, (68)
A

=1

the right-hand side of which tends to zero for 1 <r < (a + y)A* as n — oo by virtue of (2), (3),
(7), (24) and (31).

If (60) and |[My| =2""*—1, |My| <2 *—1or |M;| <27*—1, |My| =2"%—1hold, then
in the same way, taking into account which, (59) and (68) was found, we obtain (48).
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Relations (26), (29) and (48) prove the condition (38) from the work [5], where the random
variable Y have a Poisson distribution with parameter 2™.

Therefore, conditions of the Lemma 2 in [5] checked up and with the help of this Lemma,
(2) and (25)

max  |[P{v, >t} —P{Y>t}| -0 as n — . (69)
0<t<(14w)A*
We can write relation (69) in the following way:
max P{uzl}—P{uzl}‘%O,n%w, (70)
—VA*<I<wVA* VA VA
where | = t’i‘:.
By the virtue of (24), (25) and Theorem ([1], p.157), we find that the distribution of the ran-

. Vp—A* Y\ . . C L . . va—A [ Y—=[A]
dom variable | / coincides with distribution of the random variable N / N

asn — oo.
Therefore, we can write the relation (70) in the following way:

Vp— A Y — [A]
P { i > l} —P >
VA { VIA }
Finally we notice that the random variable };;[%] has the standard normal distribution as

max — 0, n— oo. (71)

—VALISwVA

A — oo. Therefore, by virtue of C and (71), the random variable % has the normal distribu-
tion with parameters (0,1) as A — co. The theorem is proved.

Example 1. Leta =5 w =1,v=2,e =const,o <e <1,p(n) =5 T,={2},q=1,...,N,
f(n) =1Inn, Ogt = ﬁ, t € Ty, q =1,...,N, satisty. Parameters n, N, p;; are changed so that
"N — 11—4 log, m] and the condition (6) holds.

Vn

\/%)‘, where A =

Then the conditions of the theorem hold true and the random variable

L log, m, has a normal limit (n — oo) distribution.

Example2. Leta =5 w=1v=2¢=1%p(n)=%4T,={2},g=1,...,N,f(n) =4,6,4 =0,
t € Ty, 9 =1,...,N, satisfy. Parameters n, N, p;; are changed so that 2n—N — {ﬁ log, 81%}
and condition (6) holds.

Then the conditions of the theorem hold true and the random variable V'\l/%’\, where A =

L log, a7 has a normal limit (n — oo) distribution.
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Caoboasa C.51. Hopmanvruil epanuuHuil pos3nodisz HOpMosaHo20 uUcia CHOPOHHIX po3e’a3Kkie o0Hiel cu-
cmemu HeniniiiHux sunaokosux pisHano Hao nosem GF(2) // Kapnarchbki maTem. my6a. — 2014. — T.6,
Nel. — C. 149-160.

AoBeaeHa TeopeMa IIPO HOPMAaAbHUIA I'PaHWYHMI PO3MOALA HOPMOBAHOTO UMCAA CTOPOHHIX PO3-
B’SI3KiB HallepeA CYMiCHOI cHCTeMM HeAiHIVHMX BUIIaAKOBMX piBHSHD Haa noaeM GF(2). PesyabraTi
OTPMMAHO 3 AOAATKOBOK YMOBOIO Ha KiABKiCTh HEHYABOBMX KOMIIOHEHT SIK IMX PO3B’SI3KiB, Tax i
IIPaBAMBOTO PO3B’SI3KY.

Kntouosi cioea i ppasu: HeAiHiVHI BUMaAKoBi piBHsIHHS Haa noaeM GF(2), rpamyuamit HOpMaab-
HIVA pO3IIOALA, YMCAO PO3B SI3KiB.

Caoboasia C.51. HopmanvHoe npedenvHoe pacnpedenieHile HOpMUPOBAHHOZ0 UUCA NOCHIOPOHHUX peuleHUl]
00HOIl cucmemvl HesuHeliHbIX cayualinelx ypasrenuti Hao nonem GF(2) // KapmaTckue mMaTeM. my6a.
— 2014. — T.6, Ne1. — C. 149-160.

AokazaHa TeopeMa O HOpMaAbHOM IIPEAEABHOM pacIipeAeAeHN HOpMYPOBaHHOIO UlCAa IIOCTO-
POHHUX pelleHuT 3apaHee COBMECTHOM CUCTEeMbI HeAMHEHBIX CAYUYaHbIX YPaBHEHUII HaA IIOAEM
GF(2). PesyabTaThbl IOAYUYEHBI C AOLIOAHMTEABHBIM yCAOBMEM Ha KOAMYECTBO HEHYAEBbIX KOMIIO-
HEHT KakK 5TMX PelLleHII, TaK ¥ MCTUMHHOIO PelleHusL.

Kntouesvie ciosa u ¢ppasvi: HeAVHeVHbBIe CAydJaliHble ypaBHeHus Haa noaem GF(2), HopmaabHOe
IIpeAeAbHOE pacIpeAeAeHye, YWICAO PelIeHMIA.



