
ISSN 2075-9827 http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2014, 6 (2), 230–236 Карпатськi матем. публ. 2014, Т.6, №2, С.230–236

doi:10.15330/cmp.6.2.230-236

ERSHOVA YU.YU.1 , KARPENKO I.I.2 , KISELEV A.V.3

ON INVERSE TOPOLOGY PROBLEM FOR LAPLACE OPERATORS ON GRAPHS

Laplacian operators on finite compact metric graphs are considered under the assumption that
matching conditions at graph vertices are of δ type. Under one additional assumption, the inverse
topology problem is treated. Using the apparatus of boundary triples, we generalize and extend
existing results on necessary conditions of isospectrality of two Laplacians defined on different
graphs. A result is also given covering the case of Schrödinger operators.
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INTRODUCTION

In the present paper we focus our attention on the so-called quantum graph, i.e., a metric
graph Γ with an associated second-order differential operator acting in Hilbert space L2(Γ)
of square summable functions with an additional assumption that functions belonging to the

domain of the operator are coupled by certain matching conditions at graph vertices. Recently
these operators have attracted a considerable interest of both physicists and mathematicians
due to a number of important physical applications. Extensive literature on the subject is
surveyed in, e.g., [4, 19].

The present paper is devoted to the study of the following inverse spectral problem for
Laplace and Schrödinger operators on finite compact metric graphs: given spectral data (i.e.,
the spectrum of the operator), edge potentials and matching conditions, to reconstruct the
underlying metric graph.

There exists an extensive literature devoted to the named problem. To name just a few, we

would like to mention pioneering works [13,16,24] and later contributions [14,20,21]. Different
approaches to the same problem were developed, e.g., in [2, 3, 23].

In our papers [6–9] we suggested an approach to inverse spectral problems on graphs based
on the theory of boundary triples, leading to the asymptotic analysis of Weyl-Titchmarsh M-

function of the graph. In the cited papers this argument was successfully applied to the study
of a different (although related) inverse spectral problem on graphs. This approach will be
also used throughout the present paper.

Here we consider the case of a general connected compact finite metric graph under the
only additional assumption that (cf. [1]) it does not contain: (i) loops; (ii) cycles with all edges hav-

ing pairwise rationally dependent edge lengths. This restriction is equivalent to the fact that the
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minimal operator naturally associated with the graph is simple, i.e., has no reducing self-adjoint

“parts”. We also assume that each graph vertex is allowed to have matching of δ type only (see
Section 1 for definitions). The named class proves to be physically viable [10, 11].

The general case of arbitrary graphs with vertices of both δ and δ′ types will be treated in a
separate publication.

1 PRELIMINARIES

1.1 Definition of the Laplace operator on a quantum graph

We call Γ = Γ(EΓ, σ) a finite compact metric graph, if it is a collection of a finite non-empty
set EΓ of compact intervals ej = [x2j−1, x2j], j = 1, 2, . . . , n, called edges, and of a partition σ

of the set of endpoints {xk}2n
k=1 into N classes, VΓ =

⋃N
m=1 Vm. The equivalence classes Vm,

m = 1, 2, . . . , N will be called vertices and the number of elements belonging to the set Vm will
be called the valence (or, alternatively, degree) of the vertex Vm (denoted deg Vm ≡ γm).

Whenever we need to consider a different graph Γ̃ of the same class alongside the graph Γ,

we will use the same notation for all objects pertaining to it, having decorated each symbol (n,
N, γm, etc.) with a tilde.

With a finite compact metric graph Γ we associate Hilbert spaces L2(Γ) = ⊕n
j=1 L2(ej) and

W2
2 (Γ) = ⊕n

j=1W2
2 (ej). These spaces obviously do not feel the graph connectivity, being the

same for each graph with the same number of edges of same lengths.
For a smooth enough function f ∈ L2(Γ), we will use throughout the following definition

of the normal derivative on a finite compact metric graph

∂n f (xj) =

{
f ′(xj), if xj is the left endpoint of the edge,

− f ′(xj), if xj is the right endpoint of the edge.

If f ∈ ⊕n
j=1 W2

2 (ej) and αm is a complex number (referred to below as a coupling constant),

the condition of continuity of the function f through the vertex Vm (i.e., f (xj) = f (xk) if
xj, xk ∈ Vm) together with the condition

∑
xj∈Vm

∂n f (xj) = αm f (Vm)

is called δ-type matching at the vertex Vm.
Note that the δ-type matching condition in a particular case when αm = 0 reduces to the

so-called standard, or Kirchhoff, matching condition at the vertex Vm.
The graph Laplacian A~α on a graph Γ with δ-type matching conditions is the operator of

negative second derivative in the Hilbert space L2(Γ) on the domain of functions belonging
to the Sobolev space ⊕n

j=1 W2
2 (ej) and satisfying δ-type matching conditions at every vertex

Vm, m = 1, 2, . . . , N. The corresponding Schrödinger operator on the same graph is defined
likewise on the same domain in the case of summable edge potentials.

Provided that all coupling constants αm, m = 1 . . . N, are real, it is easy to ascertain that the
operator A~α is a proper self-adjoint extension of a closed symmetric operator Amin in Hilbert
space L2(Γ) [10, 15].

Clearly, the self-adjoint operator thus defined on a finite compact metric graph has purely
discrete spectrum that accumulates to +∞.

Note that w.l.o.g. each edge ej of the graph Γ can be considered to be an interval [0, lj],
where lj = x2j − x2j−1, j = 1, . . . , n is the length of the corresponding edge. Throughout the

present paper we will therefore only consider this situation.
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1.2 Boundary triples and the Weyl-Titchmarsh matrix M-function

The analysis presented in the present paper is essentially based on the theory of bound-

ary triples [5, 12, 17, 18] applied to the class of operators introduced above. Two fundamental
concepts of this theory are those of a boundary triple and of the Titchmarsh-Weyl generalized
matrix-function. Assume that Amin is a symmetric densely defined operator in Hilbert space
H, and that its deficiency indices are equal. Put Amax := A∗

min.

The property of the Weyl-Titchmarsh M-function that makes it the tool of choice for the
analysis of isospectral Laplacians on graphs can be formulated in the following way: provided
that AB is an almost solvable extension of a simple1 symmetric operator Amin parameterized by
a (self-adjoint) matrix B, λ0 ∈ ρ(AB) if and only if (B − M(λ))−1 admits analytic continuation

into the point λ0.
In [8], we have obtained the following

Proposition 1 ( [8]). Let Γ be a finite compact metric graph having no loops and with coupling
of δ type at all vertices. There exists a closed densely defined symmetric operator Amin and a
boundary triple such that the operator A~α is an almost solvable extension of Amin, for which
the parameterizing matrix B is nothing but diag{α1, . . . , αN}, whereas the generalized Weyl-
Titchmarsh M-function is a N × N matrix with matrix elements given by the following formula

mjk(λ) =





−µ ∑et∈Ek
cot µlt, j = k,

µ ∑et∈Ckj

1
sin µlt

, j 6= k, Vj is adjacent to Vk,

0, j 6= k, Vj is a vertex not adjacent to Vk.

Here µ =
√

λ (the branch such that Im µ ≥ 0), lt is the length of et, Ek is the set of graph edges
incident to the vertex Vk, Ckj is the set of graph edges connecting vertices Vk and Vj.

The result of [1] further implies that under the additional assumption formulated in Intro-
duction the minimal operator Amin is simple. This means that each eigenvalue of A~α is a pole
of the meromorphic matrix-function (B− M(λ))−1 for B = diag{α1, . . . , αN} with multiplicity

equal to the multiplicity of the eigenvalue.
In essence, we will build our analysis upon the foundation provided by Proposition 1 and

the latter remark.

2 ISOSPECTRALITY OF GRAPH LAPLACIANS

In the present Section, we formulate the main results of the paper. We start with the fol-

lowing

Theorem 1. Let Γ and Γ̃ be two finite compact metric graphs subject to the assumption of
Introduction with all vertices of δ type. Let A~α, Ã~̃α

be two graph Laplacians on Γ and Γ̃,
parameterized by coupling constants {αk} and {α̃k}, respectively. If (point) spectra of the
operators A~α and Ã~̃α

coincide counting multiplicities, then (i) total lengths of Γ and Γ̃ are

equal, ∑i li = ∑i l̃i; (ii) Euler characteristics2 of Γ and Γ̃ are equal, χΓ = χΓ̃; (iii) the set equality
Σ = Σ̃ holds, where Σ := {σ1, . . . , σm} is the set of non-zero elements of the list {αi/γi}N

i=1 and
Σ̃ is defined analogously for the graph Γ̃.

1 I.e., there exists no reducing subspace H0 such that the restriction Amin|H0 is a selfadjoint operator in H0.

2 Recall that the Euler characteristic of a graph is the difference between the number of vertices and the number
of edges.
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Remark 1. The implication (i) also follows from the Weyl-type asymptotics of (discrete) spectra
which evidently holds for both Laplacians.

The implication (ii) is a generalization of [21,23] where this result was proved in the case of
Kirchhoff matching conditions at all vertices to the general case of arbitrary δ coupling.

Note finally that the set equality of (iii) is only meaningful if at least some coupling con-
stants of A~α are non-zero (and hence the same number of coupling constants pertaining to Ã~̃α
is non-zero). Therefore, the case of Kirchhoff matching turns out to be the most complicated
as (iii) then yields no information.

Proof. Let Π(λ) = ∏e∈EΓ

sin lj

√
λ√

λ
and let Π̃(λ) be defined analogously for the graph Γ̃. Then the

functions Π(λ)det(B− M(λ)) and Π̃(λ)det(B̃− M̃(λ)), where M and M̃ are Weyl-Titchmarsh

matrices of Proposition 1 pertaining to Γ and Γ̃, respectively, are entire functions of exponential
type of order not greater than 1/2 (see [22, Chapter I]). Moreover, zeroes of these two func-
tions are located precisely at the eigenvalues of the operators A~α, Ã~̃α

, respectively (counting
multiplicities). This follows from [5, 12] using: (i) the fact that an M-matrix of Proposition 1 is

a matrix-valued R-function with almost everywhere Hermitian boundary values on R; (ii) the
fact that the poles of an M-matrix of Proposition 1 are located at the eigenvalues of the Dirich-
let decoupling of the graph Γ, counting multiplicities; (iii) the fact that within conditions of the
Theorem, both Amin and Ãmin are simple.

Then the condition of isospectrality implies that the fraction Π(λ)det(B−M(λ))
(Π̃(λ)det(B̃−M̃(λ))

is [22] again

an entire function of exponential type of order not greater than 1/2. Applying the Hadamard
theorem, one easily obtains

Π(λ)det(B − M(λ))

Π̃(λ)det(B̃ − M̃(λ))
= exp(a) (1)

for some finite constant a.
Consider asymptotic expansions of the functions det(B − M(λ)) and det(B̃ − M̃(λ)) as

λ → −∞ along the real line. Using the asymptotic expansion for M(λ) following easily from
Proposition 1 one has

det(B − M(λ)) =
N

∏
i=1

(αi + γiτ) + o(τ−M); det(B̃ − M̃(λ)) =
Ñ

∏
i=1

(α̃i + γ̃iτ) + o(τ−M)

for any natural M > 0, where τ = −i
√

λ → +∞. Using asymptotic expansions for Π(λ) and
Π̃(λ) and (1), one immediately ascertains (i) and then (ii), which leads to

2ñ

2n

∏
N
i=1(

αi
τ + γi) + o(τ−M)

∏
Ñ
i=1(

α̃i
τ + γ̃i) + o(τ−M)

= exp a, (2)

wherefrom exp a = (2ñ ∏
N
i=1 γi)/(2

n ∏
Ñ
i=1 γ̃i). One then divides both sides of (2) by exp a.

Taking the logarithm of the result, one arrives at

N

∑
i=1

ln
(

1 +
αi

γi

1

τ

)
−

Ñ

∑
i=1

ln
(

1 +
α̃i

γ̃i

1

τ

)
+ o(τ−M) = 0.

The Taylor expansion of logarithms yields that for any natural M

−
M

∑
j=1

(−1)j

jτ j

N

∑
i=1

(αi

γi

)j
+

M

∑
j=1

(−1)j

jτ j

Ñ

∑
i=1

( α̃i

γ̃i

)j
+ o(τ−M) = 0.
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Comparing coefficients at equal powers of τ now yields

N

∑
i=1

(−αi)
m

γm
i

=
Ñ

∑
i=1

(−α̃i)
m

γ̃m
i

for any natural m. Using the argument of [8, Lemma 5.1] now completes the proof.

Remark 2. Theorem 1 admits an extension to the case of graph Schrödinger operators. Indeed,
assertions (i) and (ii) will be valid for a pair of Schrödinger operators on Γ and Γ̃, respectively,
if one requires that (a) all edge potentials have zero means,

∫
e qe(x)dx = 0 for any edge e, and

(b) both minimal operators Amin, Ãmin are simple. The proof follows the same argument as
above, see [7] for necessary details.

Our next result shows that even in the seemingly more complicated case of Kirchhoff
matching one can in fact go one step further. The corresponding argument pertaining to the
general situation of δ type matching as well as a detailed analysis of Schrödinger case to which

the argument is also applicable will be scrutinized elsewhere. We have

Theorem 2. Let Γ and Γ̃ be two finite compact metric graphs subject to the assumption of
Introduction with all vertices of δ type. Let A~0, Ã~0 be two graph Laplacians on Γ and Γ̃ both
with Kirchhoff matching conditions at all vertices. If (point) spectra of the operators A~0 and
Ã~0 coincide counting multiplicities, then

∏
n
i=1 li

∏
N
i=1

γi
2

∑
T∈T

w(T) =
∏

ñ
i=1 l̃i

∏
Ñ
i=1

γ̃i
2

∑
T∈T̃

w(T),

where T and T̃ are the sets of spanning trees for Γ and Γ̃, respectively; the weight of the tree
w(T) is the product of inverse lengths over all edges forming the subgraph T, w(T) = ∏e∈T

1
le

.

Proof. Proceeding exactly as in the proof of Theorem 1 one gets the following identity

Π(λ)det(−M(λ))

Π̃(λ)det(−M̃(λ))
=

2ñ

2n

∏
N
i=1 γi

∏
Ñ
i=1 γ̃i

. (3)

The asymptotic expansion of the latter as λ → 0 proves to suffice our needs. Indeed, both M(λ)
and M̃(λ) tend to negative weighted discrete Laplacians of Γ and Γ̃, respectively (see [6] and
Proposition 1), where the weight associated with any edge e is nothing but its inverse length.
Therefore, both M-matrices have exactly one eigenvalue, say, µ1(λ) (µ̃1(λ), resp.) zeroing out
at λ = 0 (due to connectedness of both graphs, see [25]). Moreover, both µ1 and µ̃1 are analytic

R-functions owing to the analytic properties of M and M̃ and thus have simple zeroes at the
named point. In fact, one can ascertain that µ′

1(0) = ∑i li/N and the same holds true for µ̃′
1(0).

Indeed, the kernel of M(0) is generated by the vector~1 ≡ (1, 1, . . . , 1)T. An analytic expan-
sion of the equality M(λ)(~1 + λ f1 + O(λ2)) = λ(µ′

1(0) + O(λ))(~1 + λ f1 + O(λ2)) then yields,

considering linear in λ terms only

M1
~1 + M0 f1 = µ′

1(0)~1,

where M(λ) = M0 + λM1 + O(λ2). The solvability condition of the latter is nothing but

〈µ′
1(0)~1 − M1

~1,~1〉 = 0,

from where the claim follows by the property 〈M1
~1,~1〉 = ∑i li, which in turn follows trivially

from Proposition 1 by Taylor series expansion.
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Using Theorem 1 yet again, one reduces (3) to

2n ∏
n
i=1 li

N ∏
N
i=1 γi

N

∏
k=2

µk(0) = 2ñ ∏
ñ
i=1 l̃i

Ñ ∏
Ñ
i=1 γ̃i

Ñ

∏
k=2

µ̃k(0),

where µ2(0), . . . , µN(0) and µ̃2(0), . . . , µ̃Ñ(0) are non-zero (positive) eigenvalues of weighted

discrete Laplacians, associated with Γ and Γ̃, respectively. Using the generalized Matrix-Tree
Theorem [25], one finally has

1

N

N

∏
k=2

µk(0) = ∑
T∈T

w(T);
1

Ñ

Ñ

∏
k=2

µ̃k(0) = ∑
T∈T̃

w(T).

Using the assertion (ii) of Theorem 1, one now easily completes the proof.

Example 1. Assume that Γ is a tree with Kirchhoff matching at all vertices. The assumption
of Introduction is surely met. Then Theorem 1 (ii) yields that Γ̃ has to be a tree as well pro-
vided that the condition of isospectrality is satisfied, in line with results of [21,23]. Theorem 2,
however, leads to the following new strong additional condition, necessary for iospectrality

N

∏
i=1

γi

2
=

Ñ

∏
i=1

γ̃i

2
.
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Розглядаються оператори Лапласа на скiнченних компактних метричних графах у при-
пущеннi, що умови зв’язку в вершинах графа мають δ-тип. При ще одному додатковому
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граничних трiйок узагальненi та доповненi результати, що вже iснують, про необхiднi умо-
ви iзоспектральностi двох операторiв Лапласа, котрi заданi на рiзноманiтних графах. Також
наведений один окремий результат для оператора Шредiнгера.
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ходимых условиях изоспектральности двух операторов Лапласа, заданных на различных гра-
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