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GORENSTEIN TILED ORDERS

The aim of this article is to describe exponent matrices of Gorenstein tiled orders. The necessary

and sufficient condition for possibility such to construct a Gorenstein tiled order which has given

orders over some discrete valuation ring (the unique for the whole main diagonal) on the main

diagonal and its permutation be a product of correspond cycles with given cyclic Gorenstein tiled

order is considered.
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INTRODUCTION

The notion of tiled orders was introduced at first in [1]. Gorenstein tiled orders appeared in

the first time in the article [2] and a convenient criterion for tiled order to be a Gorenstein order

is also given there. It is shown in [3] that injective dimension of a Gorenstein tiled order is equal

to 1. More then this tiled orders with injective dimension 1 are Gorenstein. The description of

cyclic Gorenstein tiled orders has been done at [4].

The aim of this article is to describe exponent matrices of Gorenstein tiled orders. The

necessary and sufficient condition for possibility such to construct a Gorenstein tiled order

which has given orders over some discrete valuation ring (the unique for the whole main

diagonal) on the main diagonal and its permutation be a product of correspond cycles with

given cyclic Gorenstein tiled order is considered.

The necessary information about tiled orders and exponent matrices can be found in [5, 6].

1 TILED ORDERS OVER DISCRETE VALUATION RINGS

Recall [7] that a semimaximal ring is a semiperfect semiprime right Noetherian ring A such

that for each primitive idempotent e ∈ A the ring eAe is a discrete valuation ring (not neces-

sarily commutative).

Denote by Mn(B) the ring of all n × n matrices over a ring B.
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Theorem 1 (see [7]). Each semimaximal ring is isomorphic to a finite direct product of prime

rings of the following form

Λ =








O πα12O . . . πα1nO

πα21O O . . . πα2nO

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

παn1O παn2O . . . O








, (1)

where n ≥ 1, O is a discrete valuation ring with a prime element π, and αij are integers such

that αij + αjk ≥ αik, αii = 0 for all i, j, k.

The ring O is embedded into its classical division ring of fractions D, and (1) is the set of

all matrices (aij) ∈ Mn(D) such that

aij ∈ παijO = eiiΛejj,

where e11, . . . , enn are the matrix units of Mn(D). It is clear that Q = Mn(D) is the classical

ring of fractions of Λ. Obviously, the ring A is right and left Noetherian.

Definition 1.1. A module M is distributive if its lattice of submodules is distributive, i.e.,

K ∩ (L + N) = K ∩ L + K ∩ N

for all submodules K, L, and N.

Clearly, any submodule and any factormodule of a distributive module are distributive

modules. A semidistributive module is a direct sum of distributive modules. A ring A is right

(left) semidistributive if it is semidistributive as the right (left) module over itself. A ring A is

semidistributive if it is both left and right semidistributive (see [8]).

Theorem 2 (see [9]). The following conditions for a semiperfect semiprime right Noetherian

ring A are equivalent:

• A is semidistributive;

• A is a direct product of a semisimple artinian ring and a semimaximal ring.

By a tiled order over a discrete valuation ring, we mean a Noetherian prime semiperfect

semidistributive ring Λ with nonzero Jacobson radical. In this case, O = eΛe is a discrete

valuation ring with a primitive idempotent e ∈ Λ.

Definition 1.2. An integer matrix E = (αij) ∈ Mn(Z) is called

• an exponent matrix if αij + αjk ≥ αik and αii = 0 for all i, j, k;

• a reduced exponent matrix if αij + αji > 0 for all i, j, i 6= j.

We use the following notation Λ = {O, E(Λ)}, where E(Λ) = (αij) is the exponent matrix

of the ring Λ, i.e.

Λ =
n

∑
i,j=1

eijπ
αijO,
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in which eij are the matrix units. If a tiled order is reduced, i.e., Λ/R(Λ) is the direct product of

division rings, then αij + αji > 0 if i 6= j, i.e., E(Λ) is reduced.

We denote by M(Λ) the poset (ordered by inclusion) of all projective right Λ-modules that

are contained in a fixed simple Q-module U. All simple Q-modules are isomorphic, so we can

choice one of them. Note that the partially ordered sets Ml(Λ) and Mr(Λ) corresponding to

the left and the right modules are anti-isomorphic.

The set M(Λ) is completely determined by the exponent matrix E(Λ) = (αij). Namely, if

Λ is reduced, then

M(Λ) = {pz
i | i = 1, . . . n, and z ∈ Z},

where

pz
i ≤ pz′

j ⇐⇒

{

z − z′ ≥ αij if M(Λ) = Ml(Λ),

z − z′ ≥ αji if M(Λ) = Mr(Λ).

Obviously, M(Λ) is an infinite periodic set.

Let P be an arbitrary poset. A subset of P is called a chain if any two of its elements are

related. A subset of P is called a antichain if no two distinct elements of the subset are related.

Definition 1.3. A right (resp. left) Λ-module M (resp. N) is called a right (resp. left) Λ-lattice

if M (resp. N) is a finitely generated free O-module.

Given a tiled order Λ we denote Latr(Λ) (resp. Latl(Λ)) the category of right (resp. left) Λ-

lattices. We denote by Sr(Λ) (resp. Sl(Λ)) the partially ordered by inclusion set, formed by all

Λ-lattices contained in a fixed simple Mn(D)-module W (resp. in a left simple Mn(D)-module

V). Such Λ-lattices are called irreducible.

Let Λ = {O, E(Λ)} be a tiled order, W (resp. V) is a simple right (resp. left) Mn(D)-

module with D-basis e1, . . . , en such that eiejk = δijek (eijek = δjkei).

Then any right (resp. left) irreducible Λ-lattice M (resp. N), lying in W (resp. in V) is a

Λ-module with O-basis (πα1 e1, . . . , παnen), while

{
αi + αij ≥ αj, for the right case;

αij + αj ≥ αi, for the left case.
(2)

Thus, irreducible Λ-lattices M can be identified with integer-valued vector (α1, . . . , αn) sat-

isfying (2). We shall write E(M) = (α1, . . . , αn) or M = (α1, . . . , αn).

The order relation on the set of such vectors and the operations on them corresponding to

sum and intersection of irreducible lattices are obvious.

Remark 1.1. Obviously, irreducible Λ-lattices M1 = (α1, . . . , αn) and M2 = (β1, . . . , βn) are

isomorphic if and only if αi = βi + z for i = 1, . . . , n and z ∈ Z.

For each right (left) Λ-lattice M (N) it is defined a left (right) Λ-lattice M∗ = HomO(M,OO)

(N∗ = HomO(N, OO)) such that M∗∗ = M (N∗∗ = N) (see. [7], §3). For an arbitrary ϕ ∈ M∗

and a ∈ Λ the multiplication aϕ is defined with the formula (aϕ)(m) = ϕ(ma) where m ∈ M.

For every homomorphism ψ : M → N of right lattices it is defined a conjugated homomor-

phism ψ∗ : N∗ → M∗ of left lattices with the rule (ψ∗ f )(m) = f (ψm).

It is especially easy can be defined the duality for an irreducible Λ-lattice. Let M =

(α1, . . . , αn) be an irreducible Λ-lattice. Then M∗ = (−α1, . . . ,−αn)T is an irresucible left Λ-

lattice and for M ⊂ N we have that N∗ ⊂ M∗.
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Let Λ be a reduced tiled order with the exponent matrix E(Λ) = (αij). Denote Pi =

(αi1, . . . , αin) and Qk = (α1k , . . . , αik)
T , where T is a transpose operation.

Definition 1.4. A Λ-lattice M is called relatively injective if M = P∗ where P is a projective

Λ-module. Projective Λ-lattice P is called bijective Λ-lattice if P is a projective left Λ-lattice.

Example 1. Let Λ be a reduced tiled order with exponent matrix E(Λ) = (αij), where

E(Λ) =












0 0 0 0 0 0

1 0 0 0 0 1

2 1 0 0 0 1

2 2 2 0 0 1

3 3 2 1 0 1

3 2 1 1 0 0












.

Here P∗
1 ≃ Q5, P∗

2 ≃ Q6, P∗
4 ≃ Q3, P∗

5 ≃ Q2, P∗
6 ≃ Q1 but P∗

3 6≃ Q4.

2 GORENSTEIN TILED ORDERS AND THEIR EXPONENT MATRICES

Definition 2.1. A tiled order Λ is called a Gorenstein tiled oreder if Λ is a bijective Λ-lattice i.e.

if Λ∗ is a projective left Λ-lattice.

Further we will call a Gorenstein tiled order just as Gorenstein order.

Theorem 3 (see. [2, lemma 3.2]). The following conditions are equivalent for a reduced tiled

order Λ = {O, E(Λ) = (αpq)}:

(a) an order Λ is Gorenstein

(b) there exists a permutation σ : i → σ(i) such that αik + αkσ(i) = αiσ(i) for i = 1, . . . , n; k =

1, . . . , n.

Denote with Mn(Z) the ring of all square n × n-matrices over integers ring Z. Let E ∈

Mn(Z).

Definition 2.2. Call a matrix E = (αij) as exponent matrix if αij + αjk ≥ αik for i, j, k = 1, . . . , n

and αii = 0 for i = 1, . . . , n. These inequalities are called ring inequalities. An exponent matrix

E is called a reduced exponent matrix if αij + αji > 0 for all i, j = 1, . . . , n.

Definition 2.3. Two exponent matrices E = (αij) and Θ = (θij) are called equivalent if one can

be obtained from another with a composition of transformations of the following two types:

(1) subtracting some integer from all elements of i-th line with simultaneous adding this

number to all elements of the i-th column;

(2) simultaneous permuting of two lines and two columns with the same numbers.

Definition 2.4. The following exponent matrix E = (αij) ∈ Mn(Z) is called a Gorenstein matrix

if there exists a permutation σ of a set {1, 2, . . . , n} such that

αik + αkσ(i) = αiσ(i) for all i, k.
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The permutation σ is denoted with σ(E). If a matrix E is a reduced Gorenstein exponent

matrix then σ(E) does not have fixed points.

Proposition 2.1 ([5]). Let E = (αij) and Θ = (θij) be exponent matrices and Θ is obtained

from E with composition of permutations of the type (1). If E is a reduced exponent Gorenstein

matrix with correspond permutation σ(E) then Θ is also reduces exponent Gorenstein matrix

with a permutation σ(Θ) = σ(E).

Proposition 2.2 ([5]). If E is a Gorenstein matrix then any second type transformation Θ it

leaves to be a Gorenstein matrix and for the new correspond permutation π we have π =

τ−1στ i.e. σ(Θ) = τ−1σ(E)τ.

Remark 2.1. A reduced tiled order Λ is Gorenstein if and only if when its exponent matrix

E(Λ) is a Gorenstein matrix.

Definition 2.5. A reduced Gorenstein exponent matrix E is called cyclic if σ(E) is a cycle.

Lemma 2.1 ([10]). Let Λ be a reduced Gorenstein tiled order with an exponent matrix E(Λ) =

(αij) and Kirichenko permutation σ. Then ασ(i)σ(j)+ ασ(j)σ(k)− ασ(i)σ(k) = αij + αjk − αik.

Proof. After adding ασ(i)σ(j) to both sides of the equality αiσ(i) = αij + αjσ(i) we obtain

αiσ(i) + ασ(i)σ(j) = αij + αjσ(i) + ασ(i)σ(j) or αiσ(i) + ασ(i)σ(j) = αij + αjσ(j).

Represent αiσ(i) and αjσ(j) as sum of two summands as follows αik + αkσ(i) + ασ(i)σ(j) =

αij + αjk + αkσ(j). Whence obtain αkσ(i) + ασ(i)σ(j)− αkσ(j) = αij + αjk − αik. Further we get

(αkσ(i) + αkσ(k)) + ασ(i)σ(j)− (αkσ(j) + αkσ(k)) = αij + αjk − αik.

Again represent αkσ(k) as two summands as follows

(αkσ(i) + αkσ(j) + ασ(j)σ(k)) + ασ(i)σ(j)− (αkσ(j) + αkσ(i)+ ασ(i)σ(k)) = αij + αjk − αik.

We have ασ(i)σ(j)+ ασ(j)σ(k)− ασ(i)σ(k) = αij + αjk − αik.

3 CYCLIC GORENSTEIN ORDERS

Lemma 3.1 ([4]). Let Λ be a reduced cyclic Gorenstein tiled order with an Exponent matrix

E(Λ) = (αij) and Kirichenko permutation σ = (12 . . . n). If αi1 = 0 for all i = 1, . . . , n then

α1j = α1,n+2−j for 1 < j ≤ n.

Proof. The lemma 2.1 gives that αij + αji = ασm(i)ασm(j) + ασm(j)ασm(i) for an arbitrary natural m.

For i = 1 we have

α1j + αj1 = ασm(1)ασm(j) + ασm(j)ασm(1).

As σ is a cyclic permutation then there exists an integer m such that σm(j) = 1. The equality

σm(j) ≡ j + m (mod n) yields j + m = n + 1. So m = n + 1 − j. This gives that σm(1) =

1 + m = n + 2 − j and α1j + αj1 = αn+2−j,1 + α1,n+2−j. Now the lemma conditions yields

αj1 = αn+2−j,1 = 0 whence α1j = α1,n+2−j.
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Proposition 3.1 ([4]). Let α12, α13, . . . , α1n be an arbitrary set of real numbers. There exists the

unique matrix (αij) such that these given numbers are elements of the first line of this matrix

and equalities αkk = αk1 = 0 and αik + αki+1 = αii+1 and k = 1, . . . , n; i = 1, . . . , n − 1 hold.

Proof. Let αk1 = 0. Obtain other elements αkm of the matrix (αij) from the linear equations

system αik + αki+1 = αii+1 k = 1, . . . , n; i = 1, . . . , n − 1.

Really αkk+1 = αk1 + α1k+1 = α1k+1 for k < n. The equality α1k + αk2 = α12 gives that αk2 =

α12 − α1k. As αk2 + α2k+1 = αkk+1 = α1k+1 then either α2k+1 = α1k+1 − αk2 = α1k+1 + α1k − α12

or α2q = α1q + α1q−1 − α12 for q > 1.

Further α2k + αk3 = α23 = α13 whence αk3 = α13 − α2k = α13 + α12 − α1k − α1k−1 for k > 1.

From the equality αk3 + α3k+1 = αkk+1 = α1k+1 find the α3k+1 as α3k+1 = α1k+1 − αk3 = α1k+1 +

α1k + α1k−1 − α13 − α12 which is the same as α3q = α1q + α1q−1 + α1q−2 − α13 − α12 for q > 2.

Assume that for l < n elements of the l-th column αkl for k > l − 2 can be represented

through elements of the first line as follows

αkl =
l

∑
j=2

α1j −
l−2

∑
j=0

α1k−j , k > l − 2,

and elements of the l-th line αlq for q > l − 1 are represented through elements of the first line

as follows

αlq =
l−1

∑
j=0

α1q−j −
l

∑
j=2

α1j , q > l − 1.

Find expressions for elements l + 1-th column and l + 1-th line through elements of the

first line.

The equality αlk + αk,l+1 = αl,l+1 = α1,l+1 yields

αk,l+1 = α1,l+1 − αlk = α1,l+1 −

(
l−1

∑
j=0

α1k−j −
l

∑
j=2

α1j

)

=
l+1

∑
j=2

α1j −
l−1

∑
j=0

α1,k−j =
l+1

∑
j=2

α1j −
(l+1)−2

∑
j=0

α1,k−j, k > l − 1 or k > (l + 1)− 2.

Further have αk,l+1 + αl+1,k+1 = αk,k+1 = α1,k+1. Whence,

αl+1,k+1 = α1,k+1 − αk,l+1 = α1,k+1 −

(
l+1

∑
j=2

α1j −
(l+1)−2

∑
j=0

α1,k−j

)

=
(l+1)−1

∑
j=0

α1,(k+1)−j −
l+1

∑
j=2

α1j, k + 1 > (l + 1)− 1 or

αl+1,q =
(l+1)−1

∑
j=0

α1,q−j −
l+1

∑
j=2

α1j, q > (l + 1)− 1.

Whence with the use of induction by the number of a line and column obtain find the

unknown elements of the matrix (αij). They are expressed with the elements of the first line

with the following formulas

αkm =
m

∑
j=2

α1j −
m−2

∑
j=0

α1k−j for k > m − 2; (3)
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αkm =
k−1

∑
j=0

α1m−j −
k

∑
j=2

α1j for m > k − 1. (4)

During this process we have considered all the equations αik + αki+1 = αii+1, k = 1, n; i =

1, n − 1. It is obvious that the solution of the system of linear equations satisfies the equations

of it. More the equation (3) yields

αkk =
k

∑
j=2

α1j −
k−2

∑
j=0

α1,k−j = 0 , k = 2, . . . , n,

and from the equation (4) we get

αkk =
k−1

∑
j=0

α1,k−j −
k

∑
j=2

α1j = 0 , k = 2, . . . , n.

The formula (3) yields

αm−1,m =
m

∑
j=2

α1j −
m−2

∑
j=0

α1,m−1−j =
m−2

∑
t=0

α1,m−t −
m−1

∑
t=2

α1t − α11

=
(m−1)−1

∑
t=0

α1,m−t −
m−1

∑
t=2

α1t, m = 3, n.

The last equality is the expression for αm−1,m with the use of the formula (4).

This means that the former linear equations system is consistent.

Whence we have got the matrix (αij) whose elements can be calculated with formulas

αkm =







0, if m = 1,
m

∑
j=2

α1j −
m−2

∑
j=0

α1k−j, if k ≥ m > 1,

k−1

∑
j=0

α1m−j −
k

∑
j=2

α1j, if 1 < k < m,

α1m, if k = 1.

(5)

Corollary 3.1 ([4]). Let (αij) be a matrix whose elements are calculated with (5) and α1j =

α1,n+2−j for j = 2, . . . , n. Then αij + αjσ(i) = αiσ(i) for all i, j = 1, . . . , n where σ = (12 . . . n).

Proof. As α1j = α1,n+2−j then

αnm =
m

∑
j=2

α1j −
m−2

∑
j=0

α1n−j =
m

∑
j=2

α1j −
m

∑
i=2

α1,n+2−i = 0

and αnm + αm1 = αn1 = 0 for all m. Whence elements of the matrix (αij) satisfy the condition

αij + αjσ(i) = αiσ(i) for all i, j = 1, . . . , n where σ = (12 . . . n).

Proposition 3.2 ([4]). Let (αij) be a matrix whose elements satisfy the equality (5). Then for

every triple or pairwise different numbers i, j, k there exist p, q such that αij + αjk − αik = αpq.
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Proof. Rewrite the equalities (3)–(4) as follows

αkm =
m

∑
j=2

α1j −
m−2

∑
j=0

α1k−j =
m

∑
t=2

α1t −
k

∑
t=k−m+2

α1t for k ≥ m > 1,

αkm =
k−1

∑
j=0

α1m−j −
k

∑
j=2

α1j =
m

∑
t=m−k+1

α1t −
k

∑
t=2

α1t for m ≥ k > 1.

Denote Sijk = αij + αjk − αik.

It is easy to check that if the numbers i, j, k are pairwise different then the equality

αpq =







αi−k+1,j−k+1, if min(i, j, k) = k,

αk−j,i−j+1, if min(i, j, k) = j,

αj−i,k−i, if min(i, j, k) = i

holds. In the case when at least two indices coincide one obtain

Sijj = αij + αjj − αij = 0,

Siik = αii + αik − αik = 0,

Siji = αij + αji − αii = αij + αji = α1,|i−j|+1 > 0.

Corollary 3.2 ([4]). A matrix (αij) with non negative elememts which satisfy the equalities (5)

and α1j = α1,n+2−j for all 2 ≤ j ≤ n is a Gorenstein reduced exponent matrix of a cyclic

Gorenstein order with the Kirichenko permutation σ = (1 2 · · · n).

Proposition 3.3 ([4]). The exponent matrix (αij) of the cyclic reduced Gorenstein tiled order Λ

with the Kirichenko permutation σ = (1 2 · · · n) such that αi1 = 0 for i = 1, n is symmetrical

in the main diagonal.

Proof. It is clear that the matrix (αij) is symmetrical in the second diagonal if αij = αn+1−j,n+1−i.

After the direct checking one may make sure that αkm − αn+1−m,n+1−k = 0 for all k, m.

Corollaries 3.1, 3.2 and the proposition 3.3 yield the following theorem which gives the

whole description of the reduced cyclic Gorenstein tiled orders.

Theorem 4 ([4]). Any cyclic reduced Gorenstein tiled order is isomorphic to a reduced order

Λ with Kirichenko permutation σ = (1 2 · · · n) whose exponent matrix E(Λ) = (αij) has the

following properties:

1) all elements of the matrix (αij) can be expressed with the formulas (5) through
[

n
2

]
natu-

ral parameters α12, . . . , α1[ n
2 ]+1;

2) α1j = α1,n+2−j for all j;

3) the matrix (αij) is symmetrical in the second diagonal.

Conversely each non negative integer valued matrix (αij) which satisfies the properties 1-3

from above such that αij + αji > 0 for (i 6= j) is an exponent matrix of some cyclic reduced

Gorenstein tiled order with the Kirichenko permutation σ = (1 2 · · · n).
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The elements of the exponent matrix (αij) of the a cyclic reduced Gorenstein tiled order Λ

with Kirichenko permutation σ = (1 2 · · · n) satisfy the equality

n

∑
i,j=1

αij

n2
=

n

∑
i,j=1

(

αij + αjσ(i)

)

2n2
=

n

∑
i,j=1

αiσ(i)

2n2
=

n

∑
i=1

αiσ(i)

2n
.

The value t =

|〈σ〉|

∑
i=1

αiσ(i)

|〈σ〉|
is much important in the studying of cyclic Gorenstein orders.

Theorem 5 ([11]). Let Λ be a reduced cyclic Gorenstein tiled order with exponent matrix E(Λ)

and Kirichenko permutation σ. An order Λ is isomorphic to an order Λ′ whose exponent

matrix is a linear combination of powers or a matrix of the Kirichenko permutation σ if and

only if 1
|〈σ〉|

· ∑
i

αiσ(i) = t is a natural number.

Proof. We will assume that σ = (1 2 · · · n).

All cyclic Gorenstein tiled orders are described at the theorem 4. Elements of an exponent

matrix of such order satisfy the equalities

αkm =







0, if m = 1,
m

∑
j=2

α1j −
m−2

∑
j=0

α1k−j if k ≥ m > 1,

k−1

∑
j=0

α1m−j −
k

∑
j=2

α1j if 1 < k < m,

α1m if k = 1.

(6)

Let 1
|〈σ〉|

· ∑
i

αiσ(i) = t be a natural number. Show that with the transformation of the first

type the exponent matrix of the order Λ can be transformed to an exponent matrix with the

necessary property. Let us do the transformations of the first type. Let us add the number xk

to all the elements of the k-th line and lets subtract if from all the elements of the k-th column.

Then the equality α′km = αkm + xk − xm will appear. To find xk we will need α′kσ(k) = t for all k.

Consider the linear equations system

x1 − x2 = t − α12,

x2 − x3 = t − α23,

. . . . . . . . . . . . . . . . . . . . . .

xn−1 − xn = t − αn−1n,

xn − x1 = t − αn1.

It has a solution

x2 = α12 − t + x1,

x3 = α12 + α23 − 2t + x1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk = α12 + α23 + · · ·+ αk−1k − (k − 1)t + x1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn = α12 + α23 + · · ·+ αn−1n − (n − 1)t + x1.

(7)
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That is why the exponent matrix E(Λ) = (αij) can be reduced with the transformations of the

first type to the matrix(α′ij) = E(Λ′) such that α′kσ(k) = t for all k.

Now show that α′ij = α′
σ(i)σ(j) for alli, j. Really equalities α′iσ(i) = t = α′ij + α′jσ(i) i α′jσ(j) =

t = α′jσ(i) + α′
σ(i)σ(j) yield that α′ij = α′

σ(i)σ(j) for all i, j.

That is why E(Λ′) =
n

∑
j=1

α′1jP
j−1
σ where Pσ =

n

∑
j=1

ejσ(j) and eij are matrix units.

The converse statement is obvious.

4 GORENSTEIN ORDERS WITH PAIRWISE ISOMORPHIC SIMPLE CYCLES

The matrix transformations of two types change a sum of elements of a matrix. It is easy to

see the following proposition.

Proposition 4.1 ([11]). Let Λ and Λ′ be two isomorphic reduced tiled order with correspond

exponent matrices E(Λ) = (αij) and E(Λ′) = (α′ij) whose Kirichenko permutations are σ and

σ′ correspondingly. Then
n

∑
i,j

αij =
n

∑
i,j

α′ij and
n

∑
i=1

αiσ(i) =
n

∑
i=1

α′iσ′(i).

Lemma 4.1 ([11]). Let Λ be a reduced Gorenstein tiled order with correspond exponent matrix

E(Λ) and Kirichenko permutation σ and let σ = σ1 · σ2 be a decomposition of σ into the

product of two disjoint cycles. Then

∑
i

αiσ1(i)

| < σ1 > |
=

∑
k

αkσ2(k)

| < σ2 > |
.

Proof. We can assume that σ1 = (1 2 · · · n) and σ2 = (n + 1 n + 2 · · · n + m) (we can reach

this with the isomorphic second type transformations of lines and columns of the exponent

matrix E(Λ)). Then the exponent matrix E(Λ) will become of the form

E =

(
E1 E12

E21 E2

)

where E1 is an exponent matrix of a reduced cyclic tiled order with Kirichenko permutation

σ1 and E2 is an exponent matrix of a reduced cyclic tiled order with Kirichenko permutation

σ2. That is why αij + αjσ1(i)
= αiσ1(i)

for all j = n + 1, . . . , n + m, i = 1, . . . , n and αkl + αlσ2(k) =

αkσ2(k) for all l = 1, . . . , n, k = n + 1, . . . , n + m. whence obtain

m ·
n

∑
i=1

αiσ1(i)
=

n+m

∑
j=n+1

n

∑
i=1

αiσ1(i)
=

n+m

∑
j=n+1

n

∑
i=1

(αij + αjσ1(i)
)

=
n

∑
l=1

n+m

∑
k=n+1

(αkl + αlσ2(k)) =
n

∑
l=1

n+m

∑
k=n+1

αkσ2(k) = n ·
n+m

∑
k=n+1

αkσ2(k).

Whence m ·
n

∑
i=1

αiσ1(i)
= n ·

n+m

∑
k=n+1

αkσ2(k) i.e.

n
∑

i=1
αiσ1(i)

n =

n+m
∑

k=n+1
αkσ2(k)

m .



270 KIRICHENKO V., KHIBINA M., MASHCHENKO L., PLAKHOTNYK M., ZHURAVLEV V.

Corollary 4.1 ([11]). If n and m are pairwise simple then

n

∑
i=1

αiσ1(i)

n
=

n+m

∑
k=n+1

αkσ2(k)

m
= t

where t is a natural number.

Lemma 4.1 provides the sufficient condition for the possibility to construct the Gorenstein

tiled order with the correspond exponent matrix with a given Kirichenko permutation σ which

decomposes into independent cycles σ1, . . . , σs and two sided Piers decomposition of Λ has

blocks Λ1, . . . , Λs on the main diagonal. The input data for this condition is a set of the cyclic

tiled orders Λ1, . . . , Λs with the cyclic permutations σ1, . . . , σs correspondingly. Call this con-

dition Ω and it is following

(Ω)

∑
i

αiσ1(i)

|〈σ1〉|
= · · · =

∑
i

αiσs(i)

|〈σs〉|
.

Lemma 4.2 ([11]). Let Λ be a reduced Gorenstein tiled order with correspond exponent ma-

trix E = (αij) and Kirichenko permutation σ = σ1 · σ2 where σ1 =
(

1 2 · · · n
)
, σ2 =

(
n + 1 n + 2 · · · n + m

)
such that numbers n and m are piecewise simple. Then the or-

der Λ is isomorphic to the order Λ′ with an exponent matrix

E ′ =

(
E ′

1 x12U12

x21U21 E ′
2

)

where E ′
1, E ′

2 are exponent matrices or reduced cyclic Gorenstein orders with permutations

σ1 =
(

1 2 · · · n
)

and σ2 =
(

n + 1 n + 2 · · · n + m
)

which are linear combinations

of powers of permutation matrices Pσ1 , Pσ2 correspondingly, U12, U21 are such matrices that all

their elements are equal to ones x12, x21 are integers such that

x12 + x21 = t =

n

∑
i=1

αiσ1(i)

n
=

n+m

∑
k=n+1

αkσ2(k)

m
.

Proof. An exponent matrix of a Gorenstein tiled order whose Kirichenko permutation is a

product of disjoint cycles has a following form

E =

(
E1 E12

E21 E2

)

where E1 = eEe, e = e11 + · · · + enn, f = E − e, E2 = fE f are exponent matrices of cyclic

Gorenstein orders with Kirichenko permutations σ1, σ2 correspondingly. As numbers n and m

are pairwise simple then the corollary 4.1 gives that

t =

n

∑
i=1

αiσ1(i)

n
=

n+m

∑
k=n+1

αkσ2(k)

m

is a natural number. Then according to the theorem 5 matrices E1, E2 can be reduced to matrices

E ′
1 and E ′

2 with transformations of the first type. The last matrices are linear combinations of
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permutational matrices Pσ1 and Pσ2 correspondingly and mire then this αiσ1(i)
= αkσ2(k) = t

for all i = 1, . . . , n and k = n + 1, . . . , n + m. The conditions to be Gorenstein matrices yields

αij + αjσ1(i)
= αiσ1(i)

= t for all i = 1, . . . , n, j = n + 1, . . . , n + m and αkl + αlσ2(k) = αkσ2(k) = t

for all l = 1, . . . , n and k = n+ 1, . . . , n+m. Whence for j = k and l = σ1(i) obtain αij + αjσ1(i)
=

αjσ1(i)+ ασ1(i)σ2(j) i.e. αij = ασ1(i)σ2(j). As lengthes of permutations σ1 and σ2 are pairwise simple

then αij = α1n+1 for all i = 1, . . . , n, j = n+ 1, . . . , n+m. Denote α1n+1 = x12 a rational number.

Then αkl = αn+11 = t − x12. Whence the exponent matrix E ′ will be of the following form

E ′ =

(
E ′

1 x12U12

x21U21 E ′
2

)

where E ′
1 and E ′

2 are reduced exponent matrices of cyclic Gorenstein orders with permutations

σ1 =
(

1 2 · · · n
)

and σ2 =
(

n + 1 n + 2 · · · n + m
)

correspondingly which are lin-

ear combinations of powers of permutational matrices Pσ1 , Pσ2 correspondingly U12 and U21

are matrices whose all elements are equal to one. So,

x12 + x21 = t =

n

∑
i=1

αiσ1(i)

n
=

n+m

∑
k=n+1

αkσ2(k)

m
.

Theorem 6 ([11]). Let Λ be a reduced Gorenstein tiled oreder with an exponent matrix E(Λ) =

(αij) whose Kirichenko permutation σ is a product of cycles which do not intersect σ =

σ1 · · · σm and whose lengthes are pairwise simple. Then the order Λ is isomorphic to an order

Λ′ with Kirichenko permutation σ′ = σ′
1 · · · σ′

m and exponent matrix E(Λ′) = (α′ij) of the form








E1 x12U12 · · · x1mU1m

x12U21 E2 · · · x2mU2m

· · · · · · · · · · · ·

xm1Um1 xm2Um2 · · · Em








,

where

xij + xji = t =

|<σi>|

∑
k=1

αkσi(k)

| < σi > |

for all i, j = 1, . . . m, i 6= j and xij + xjs ≥ xis for all pairwise different i, j, s = 1, . . . m, Ek

are exponent matrices of cyclic Gorenstein orders with Kirichenko permutations which are

conjugate to those Kirichenko one σ′
k whici are linear combinations of permutational matrices

Pσ′
k

(k = 1, . . . , m).

Proof. A Gorenstein tiled order Λ is isomorphic to an order Λ′′ with Kirichenko permutation

σ′ = σ′
1 · · · σ′

m where each permutation σ′
k acts on a set of natural numbers. Then the exponent

matrix of the order Λ′′ will be of the form

E(Λ′′) =








E ′′
1 E ′′

12 · · · E ′′
1m

E ′′
21 E ′′

2 · · · E ′′
2m

· · · · · · · · · · · ·

E ′′
m1 E ′′

m2 · · · E ′′
m








.
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As orders of permutations σ′
k are pairwise simple then

t =

|<σ′
i>|

∑
k=1

α′′
kσ′

i (k)

| < σ′
i > |

=

|<σi>|

∑
k=1

αkσi(k)

| < σi > |

for all i = 1, . . . m and t is a natural number. Whence exponent matrices E ′′
k with Kirichenko

permutations σ′
k can be reduced to the linear combination of powers of permutational matrices

Pσ′
k

with transformations of the first type.

For arbitrary i and j (i 6= j) consider a Gorenstein tiled order with a Kirichenko permutation

σ′
i · σ′

j and an exponent matrix
(

E ′′
i E ′′

ij

E ′′
ji E ′′

j

)

.

According to the lemma 4.2 its exponent matrix can be reduced to the form
(

E ′
i xijUij

xjiUji E ′
j

)

,

were matrices E ′
i and E ′

j are linear combinations of powers of their permutational matrices.

Whence the exponent matrix is of the form

E(Λ′) =








E1 x12U12 · · · x1mU1m

x12U21 E2 · · · x2mU2m

· · · · · · · · · · · ·

xm1Um1 xm2Um2 · · · Em








.

Inequalities xij + xjs ≥ xis come from ring inequalities αij + αjk ≥ αik.

5 GORENSTEIN TILED ORDERS WITH MUTUALLY PRIME LENGTHES OF CYCLES

Let Λ = {O, E(Λ) = (αij)} be a reduced Gorenstein tiled order with Kirichenko per-

mutation σ where σ = σ1 · · · σs is the decomposition of σ into the product of cycles, mk is a

length of the σk. We can assume that σk =
(

gk + 1 gk + 2 · · · gk + mk

)
(we can reach

this with the transformations of the second type) where gk =
k−1

∑
j=1

mj for k > 1, g1 = 0. Let

fk = egk+1gk+1 + egk+2gk+2 + · · ·+ egk+mkgk+mk
and 1 = f1 + · · ·+ fs be the ring unit of Λ into

the sum of pair wise orthogonal idempotents. Two sided Piers decomposition of Λ has the

following form

Λ =








Λ11 Λ12 · · · Λ1s

Λ21 Λ22 · · · Λ2s

· · · · · · · · · · · ·

Λs1 Λs2 · · · Λss








,

where Λkk is reduced cyclic tiled order with Kirichenko permutation σ′ =
(

1 2 · · · mk

)
.

So the exponent matrix is of the form

E =








E11 E12 · · · E1s

E21 E22 · · · E2s

· · · · · · · · · · · ·

E Es2 · · · Ess








,
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where Ekk is an exponent matrix of cyclic Gorenstein tiled order Λkk. Write out the condition

to be Gorenstein order for Λ in the matrix form as follows E + PσET = diag{αkσ(k)}U or








E11 E12 · · · E1s

E21 E22 · · · E2s

· · · · · · · · · · · ·

Es1 Es2 · · · Ess








+








Pσ′
1

O · · · O

O Pσ′
2

· · · O

· · · · · · · · · · · ·

O O · · · Pσ′
s








·








ET
11 ET

21 · · · ET
s1

ET
12 ET

22 · · · ET
s2

· · · · · · · · · · · ·

ET
1s ET

2s · · · ET
ss








=









diag{α′kσ1(k)
} O · · · O

O diag{α′kσ2(k)
} · · · O

· · · · · · · · · · · ·

O O · · · diag{α′
kσs(k)

}









·








U11 U12 · · · U1s

U21 U22 · · · U2s

· · · · · · · · · · · ·

Us1 Us2 · · · Uss








.

Whence we get the following system of matrix equations







Ejj + Pσ′
j
ET

jj = diag{αkσ′
j (k)

}Ujj,

Eij + Pσ′
i
ET

ji = diag{αkσ′
i (k)

}Uij,

Eji + Pσ′
j
ET

ij = diag{αkσ′
j (k)

}Uji.

Reduced cyclic Gorenstein orders are described at theorem 4. Elements of exponent matrix

E of the cyclic reduced Gorenstein tiled order Λ with correspond Kirichenko permutation

σ = (12 · · · n) whose the first line is zero are expressed with the following formulas

αkm =







0 if m = 1,
m

∑
j=2

α1j −
m−2

∑
j=0

α1k−j if k ≥ m > 1,

k−1

∑
j=0

α1m−j −
k

∑
j=2

α1j if 1 < k < m,

α1m if k = 1,

and more then this α1j = α1n+2−j for all j. The exponent matrix for a reduced tiled order

does not contain two zero lines and does not contain two zero columns. Elements of the ex-

ponent matrix E of a cyclic reduced Gorenstein tiled order Λ with Kirichenko permutation

σ = (12 · · · n) and the arbitrary the first column can be expressed with the following formulas

α′km = αkm + xk − xm.

More then this, elements of the block matrices E11, E22, . . . , Ess satisfy the condition (Ω) i.e. the

following equality
m1

∑
k=1

αkσ′
1(k)

m1
=

m2

∑
k=1

αkσ′
2(k)

m2
= · · · =

ms

∑
k=1

αkσ′
s(k)

ms

holds.

We have the following system of simultaneous equations for finding Eij

{

Eij + Pσ′
i
ET

ji = diag{αkσ′
i (k)

}Uij,

Eji + Pσ′
j
ET

ij = diag{αkσ′
j (k)

}Uji.
(8)



274 KIRICHENKO V., KHIBINA M., MASHCHENKO L., PLAKHOTNYK M., ZHURAVLEV V.

Whence, either

Eij + Pσ′
i

(

diag{αkσ′
j (k)

}Uji − Pσ′
j
ET

ij

)T
= diag{αkσ′

i (k)
}Uij

or

Eij − Pσ′
i
EijP

T
σ′

j
= diag{αkσ′

i (k)
}Uij − PT

σ′
i
Uijdiag{αkσ′

j (k)
}.

As permutational matrix just permutes either lines or columns when we multiply by it then

the following is true

Eij − Pσ′
i
EijP

T
σ′

j
= diag{αkσ′

i (k)
}Uij − Uijdiag{αkσ′

j (k)
}. (9)

The general solution non homogeneous equation equals to sum of the general solution of

the homogeneous equation Eij − Pσ′
i
EijP

T
σ′

j
= 0 and some partial solution of non homogeneous

equation. Consider the solution of the homogeneous equation.

Lemma 5.1 ([12]). Let σ1 = (1 2 · · · n), σ2 = (1 2 · · · m), (n, m) = d, n = du, m = dv. The so-

lution of an equation X − Pσ1 XPT
σ2

= 0 has the following block form X =





F · · · F

· · · · · · · · ·

F · · · F



 ∈

Mu×v(F) where F ∈ Md(Z) and F is a linear combination of permutational matrix Pτ =
d

∑
k=1

ekτ(k), τ = (12 · · · d) powers with arbitrary coefficients.

Proof. The equation X = Pσ1 XPT
σ2

can be represented in the form xij = xσ1(i)σ2(j). Whence

xij = xσk
1(i)σ

k
2(j) for arbitrary integer k. Show that for arbitrary integers p and q such that

0 < i + pd 6 n, 0 < j + qd 6 m the equality xij = xi+pd,j+qd holds.

For arbitrary integer k the following equalities hold σk
1 (i) ≡ i + k(mod n), σk

2 (j) ≡ j +

k(mod m). As numbers u are v mutually prime then there exist natural numbers a and b such

that p − q = bv − au. Put k = pd + an + cnm = qd + bm + cnm. Then σk
1 (i) ≡ i + k ≡

i + pd(mod n), σk
2 (j) ≡ j + k ≡ j + qd(mod m). This implies xij = xi+pd,j+qd. The las means

that the matrix X is decomposed to uv equal blocks F or the dimension d (u blocks are in the

block line of X and v blocks in its block column). So, X =





F · · · F

· · · · · · · · ·

F · · · F



 ∈ Mu×v(F). Now

show that xij = xτ(i)τ(j) for i, j 6 d where τ = (12 · · · d).

As i, j < d then for k = 1 we have xij = xσk
1(i)σ

k
2(d)

= xi+1,j+1 = xτ(i)τ(j).

Let i < d, j = d. As numbers u and v are pairwise simple then 1 = δv − γu for some

integers δ and γ. Take k = 1 + γn + cnm = 1 − d + δm + cnm. Then σk
1(i) ≡ i + k ≡ i + 1 +

γn + cnm ≡ i + 1(mod n), σk
2(d) ≡ d + k ≡ d + 1 − d + δm + cnm ≡ 1(mod m). Whence

xτ(i)τ(d) = xi+1,1 = xσk
1 (i)σ

k
2(d)

= xid.

In the same way for i = d and j < d take k = 1 − d − γn + cnm = 1 − δm + cnm. Then

σk
1 (d) ≡ d+ k ≡ 1− γn+ cnm ≡ 1(mod n), σk

2 (j) ≡ j+ k ≡ j+ 1− δm+ cnm ≡ j + 1(mod m).

Whence xτ(d)τ(j) = x1,j+1 = xσk
1 (d)σ

k
2(j) = xdj.

For i = d j = d state k = 1 − d + cnm. Then σk
1(d) ≡ d + k ≡ d + 1 − d + cnm ≡ 1(mod n),

σk
2 (d) ≡ d + k ≡ d + 1 − d + cnm ≡ 1(mod m). Whence xτ(d)τ(d) = x1,1 = xσk

1 (d)σ
k
2(d)

= xdd.

Whence xij = xτ(i)τ(j) for i, j 6 d. That is why F = x11E+ x12Pτ + x13P2
τ + · · ·+ x1dPd−1

τ .
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Proposition 5.1 ([12]). Let Λ = {O, E(Λ) = (αij)} be a reduced Gorenstein tiled order with

Kirichenko permutation σ, σ = σ1 · · · σs be a decomposition of σ into a product of cycles which

do not intersect and their lengthes σk are mutually prime i.e. GCF(|〈σ1〉|, · · · , |〈σs〉|) = 1. Then

1
|〈σ1〉|

αiσ1(i)

∑
i

= · · · = 1
|〈σs〉|

αjσ2(j)

∑
j

= t when t is a natural number.

Proof. Let mk be a length of a cycle σk, Yk = ∑
i

αiσk(i)
. As (m1, . . . , ms) = 1 then there exist

integers a1, . . . , as such that a1 m1 + . . . + as ms = 1. According to the lemma 4.1
Yp

mp
=

Yq

mq

which is the same as mqYp = mpYq. Multiply this equality with aq and obtain aqmqYp =

aqmpYq. Whence ∑
q 6=p

aqmqYp = ∑
q 6=p

aqmpYq which is Yp · ∑
q 6=p

aqmq = mp · ∑
q 6=p

aqYq. Taking into

attention the equality (m1, . . . , ms) = 1 get Yp · (1 − apmp) = mp · ∑
q 6=p

aqYq. Numbers 1 − apmp

and mp are mutually prime and that is why Yp is divisible by mp for all p.

Theorem 7 ([12]). Let Λ = {O, E(Λ) = (αij)} be a reduced Gorenstein tiled order with

Kirichenko permutation σ and let σ = σ1 · · · σs be a decomposition of σ to a product of cycles

which do not intersect. Let mk be a length of the cycle σk = (gk + 1 gk + 2 . . . gk + mk) where

gk =
k−1

∑
j=1

mj for k > 1 and g1 = 0. Let dij = GCF(mi, mj) be a maximal common factor of

numbers mi, mj and GCF(m1, . . . , ms) = 1. Then the order Λ is isomorphic to an order Λ′ with

Kirichenko permutation σ′ = σ′
1 · · · σ′

s and the exponent matrix E =








E11 E12 · · · E1s

E21 E22 · · · E2s

· · · · · · · · · · · ·

Es1 Es2 · · · Ess








where 1
mi

mi

∑
k=1

α′kσ′(k) = t ∈ N for all i = 1, . . . s. The matrix Ekk is a exponent matrix of

a cyclic Gorenstein order with Kirichenko permutation σ′
k = (1 2 . . . mk) and it is a linear

combination of powers of an permutational matrix Pσ′
k
(k = 1, . . . , s). The matrix Ekl =





Fkl · · · Fkl

· · · · · · · · ·

Fkl · · · Fkl



 , k 6= l, is a mk
dkl

× ml
dkl

block matrix where Fkl is a square dkl × dkl matrix

and it is a linear combination of powers of permutational matrix Pτkl
with τkl = (1 2 . . . dkl).

Proof. According to the proposition 5.1 1
|〈σ1〉|

αiσ1(i)

∑
i

= · · · = 1
|〈σs〉|

αjσ2(j)

∑
j

= t where t is a natural

number. Then each diagonal matrix Ekk can be reduced with the isomorphic transformations

to a matrix E ′
kk which is a linear combination of permutational matrix Pσ′

k
such that αiσk(i)

= t

for i and k. Then the matrix equation Eij − Pσ′
i
EijP

T
σ′

j
= diag{αkσ′

i (k)
}Uij − Uijdiag{αkσ′

j (k)
} for

Eij will get the form Eij − Pσ′
i
EijP

T
σ′

j
= 0. With using the lemma 5.1 obtain the proposition of the

theorem.

Remark 5.1. The theorem 7 describes the reduced Gorenstein tiled orders Λ = {O, E(Λ) =

(αij)} with the Kirichenko permutation σ where σ = σ1 · · · σs is the decomposition of σ into

a product of cycles which do not intersect whose lengthes is mutually prime. Really this the-

orem describes also a part of those reduced Gorenstein tiled orders for which there is no any

restrictions on cycles but the following “more strict” (Ω) condition holds:
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∑
i

αiσ1(i)

|〈σ1〉|
= · · · =

∑
i

αiσs(i)

|〈σs〉|
= t, where t is a natural number.

6 THE NUMBER OF INDEPENDENT PARAMETERS TO EXPRESS ALL ELEMENTS OF THE

GORENSTEIN MATRIX

The general solution of non homogeneous equation (9) is a sum of a general solution of ho-

mogeneous equation Eij − Pσ′
i
EijP

T
σ′

j
= 0 and the partial solution of non homogeneous solution.

Consider the solution of the homogeneous equation.

Note that a partial solution of the non homogeneous equation depends on permutations

σ′
i , σ′

j and elements αkσ′
i
(k) αkσ′

j
(k) which belong to diagonal blocks Eii Ejj. The general solution

of homogenous equation is independent on elements of diagonal blocks. That is why we can

represent the matrix E as a sum E = A + B where A = (Aij), B = (Bij) are block (s × s)

matrices and Aii = 0 for all i, Aij is a general solution of the homogeneous equation Bii = Eii

for all i, Bij is a partial solution of non homogenous solution.

According to the theorem 4 matrix Ekk depends on
[mk

2

]
parameters. As they satisfy the

(Ω)-condition then there are only

b =
[m1

2

]

+
[m2

2

]

+ · · ·+
[ms

2

]

− (s − 1)

independent between them. So, elements od B can be expressed on b independent parameters.

Blocks Aij and Aji are solutions of the system Aij + Pσ′
i
AT

ji = 0, Aji + Pσ′
j
AT

ij = 0. That is

why Aji = −Pσ′
j
AT

ij and elements Aij and Aji can be expressed with the same set of parameters.

According to the lemma 5.1 the solution of the equation is a block (u × v) matrix

Aij =





Fij · · · Fij

· · · · · · · · ·

Fij · · · Fij



 ,

where Fij ∈ Mdij
(Z), dij = (mi, mj), mi = diju, mj = dijv.

In this case the matrix Fij is a linear combination of powers of permutational matrix Pτij

where τij = (1 2 . . . dij), i.e.

Fij =

dij

∑
k=1

a
(ij)
k (Pτij

)k.

Whence matrices Eij and Eji depend on dij parameters. Then matrix A depends on a =

∑
i<j

dij parameters. Whence we have got that E depends on a + b =
s

∑
k=1

[mk
2

]
− (s − 1) +

∑
1≤i<j≤s

(mi, mj) parameters.

Equivalent transformation of the second type do not change values of elements of a matrix

(they change only position of elements) and that is why the general quantity of parameters

a + b does not change.

Equivalent the first type transformations of the matrix E can be used either over the matrix

A or over the matrix B. Diagonal blocks Eii of the matrix B already are of the special form
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(the first column is zero) with the help of which they depend on the minimal quantity of

parameters. Parameters a
(ij)
1 , . . . , a

(ij)
dij

are in each line of the matrix Aij i.e. in each line of the

i-th block band of the matrix A. Use the following the first type transformation. Subtract the

integer t from all numbers of the i-th horizontal block band and add this t to all numbers of

the i-th vertical block line

Under such transformation the form of diagonal blocks of Eii will not be changed and so

as diagonal blocks of B. The i-th block line and i-th block column will be consisted of new

matrices Āij = Aij − tUij, Āji = Aji + tUji.

As Aji = −Pσ′
j
AT

ij then Āij = −Pσ′
j
AT

ij + tUji = −Pσ′
j
AT

ij + tPσ′
j
Uji = −Pσ′

j
(Aij − tUij)

T. In

this case F̄ij = Fij − tUij =
dij

∑
k=1

(a
(ij)
k − t)(Pτij

)k.

Denote ā
(ij)
k = a

(ij)
k − t, k = 1, 2, . . . , dij. The new matrices Āij and Āji depends also on

dij parameters ā
(ij)
1 , . . . , ā

(ij)
dij

. If consider t = a
(ij)
k for some k then ā

(ij)
k = 0 and the number of

parameters for express all the elements of the matrix Āij will decrease by one.

The matrix A contains s horizontal and vertical block lines and columns. Subtract ti = a
(i1)
1

from all elements of i-th horizontal band (i = 2, . . . , s) and add it to all elements of the i-th

vertical block band. Then the number of parameters of A will decrease by s − 1.

Whence the number of parameters to express all the elements of a reduced Gorenstein

exponent matrix with equals to

s

∑
k=1

[mk

2

]

− 2(s − 1) + ∑
1≤i<j≤s

(mi, mj)

parameters.

This result coincides with one which is got at [13]. Nevertheless we state the elements of

matrix which can be considered as independent.

This result is obtained at [13] in a following way. Consider an exponent matrix A = (aij)

with correspond Kirichenko permutation σ which can be decomposed to independent cycles

of lengthes l1, . . . , lq and q is the number of cycles.

Denote xk = ak,1 for every k, 2 ≤ k ≤ n. For arbitrary r, 0 < r < q and for every k, nr + 2 ≤

k ≤ n denote also zk,r = anr+1,k. Consider the variables xk and zk,r as parameters.

After this one can get formulas which are analogous for (5). Nevertheless parameters are

not independent and there are some linear equalities which contain parameters. Finding the

defect of the linear equations system which is consisted of these equations gives the quantity

of independent parameters.

This system of equations and correspond quantity is found in [13].

7 THE SUFFICIENCY OF THE CONDITION (Ω) FOR CONSTRUCTING THE EXPONENT MATRIX

WITH GIVEN CYCLIC GORENSTEIN MATRICES ON THE MAIN BLOCK DIAGONAL

Consider an exponent matrix E1 with the permutation σ1 = (1 2 . . . m) and an exponent

matrix E2 with the permutation σ2 = (1 2 . . . n). Let the condition (Ω)

∑
i

αiσ1(i)

|〈σ1〉|
=

∑
i

αiσs(i)

|〈σs〉|
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holds. We will show that there exists a reduced Gorenstein exponent matrix

E =

(
E1 E1 2

E2 1 E2

)

with correspond permutation σ = σ1σ′
2, where σ′

2 = (m + 1 m + 2 . . . m + n).

From the above the matrix E1 2 is f dimension m × n and the matrix E2 1 is of dimension

n × m.

We have an equations system using which may find the matrices E1 2 and E2 1

{

E12 + Pσ′
1
ET

21 = diag{αkσ′
1(k)

}U12,

E21 + Pσ′
2
ET

12 = diag{αkσ′
2(k)

}U21.

This system can be rewritten as

(
E A ā

B E b̄

)

, (10)

where E, A, B ∈ Mmn(Z), A = (Aij) is a block m × n matrix, B = (Bij) is a block n × m

matrix Aij are matrices of the dimension n × m, Bij are matrices of the dimension m × n

such that Aij = ejσ1(i)
, Bij = ejσ2(i), ā =






ā1
...

ām




, b̄ =






b̄1
...

b̄n




, āi = αiσ1(i)

ūn and āi ∈ Z
n,

b̄i = αiσ2(i)ūm ∈ Z
m.

Multiply the first block line of the system with (−B) and add it to the second line. After

this obtain
(

E A ā

0 E − BA b̄ − Bā

)

. (11)

Here BA = C is a block n × n matrix where Cij =
m

∑
k=1

Bik Akj =
m

∑
k=1

ekσ2(i)ejσ1(k)
. More exactly

Cij = 0 for j 6= σ2(i) and Ciσ2(i) =
m

∑
k=1

ekσ2(i)eσ2(i)σ1(k)
=

m

∑
k=1

ekσ1(k)
= Pσ1 .

The linear equations (10) is consistent if and only if the linear equations system (11) is also

consistent.

Consider the linear equation system
(

E − BA b̄ − Bā
)

, where b̄ − Bā = c̄ =






c̄1
...

c̄n




,

c̄i = b̄i −
m

∑
k=1

Bik āk = αiσ2(i)ūm −
m

∑
k=1

ekσ2(i)αkσ1(k)
ūn.

As ekσ2(i)ūn = ēk =



0 0 . . . 0
︸ ︷︷ ︸

k−1

1 0 . . . 0





T

, then

c̄i = αiσ2(i)ūm −
m

∑
k=1

αkσ1(k)
ēk =








αiσ2(i) − α1σ1(1)

αiσ2(i) − α2σ1(2)
...

αiσ2(i) − αmσ1(m)








.
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.

The system
(

E − BA b̄ − Bā
)

appears to be of the form










E −Pσ1 c̄1

E −Pσ1 c̄2
. . . . . .

...

E −Pσ1 c̄m−1

−Pσ1 E c̄m










. (12)

Multiply the k-th block of the system by Pk
σ1

, k = 1, m − 1 and add it to the last one. After

this obtain









E −Pσ1 c̄1

E −Pσ1 c̄2
. . . . . .

...

E −Pσ1 c̄n−1

0 0 . . . 0 E − Pn
σ1

Pσ1 c̄1 + P 2
σ1

c̄2 + . . . + P n−1
σ1

c̄n−1 + c̄n










.

The linear equations system (12) is consistent if and only if so as

(
E − Pn

σ1
Pσ1 c̄1 + P 2

σ1
c̄2 + . . . + P m−1

σ1
c̄m−1 + c̄m

)
. (13)

Consider the square matrix E − Pn
σ1

∈ Mm(Z). Let m = du, n = dv where d = (n, m),

(u, v) = 1. We can consider that m > n.

Then

E − Pn
σ1
=

v
︷ ︸︸ ︷

















E −E

E −E
. . . . . .

E −E

−E E

−E E
. . . . . .

−E E
























u − v

where E ∈ Md(Z).

Add all the block lines of the matrix E − Pn
σ1

to the last one and obtain the zero block line.

Whence rank(E − Pn
σ1
) ≤ n − d. From another hand the lemma 5.1 yields that the solution X

of the equation X − Pσ1XPσ2 = 0 belongs on d parameters. This lets to find the matrix defect of

X as de f X = d.

Whence de f (E − Pn
σ1
) = d and rank (E − Pn

σ1
) = m − d.

Divide the system (13) into u bands of the width d and add all the lines to the last one. Then

the last band will become zero.

The system (13) is consistent if and only if the last band of the expanded linear equations

system is equal to zero.
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So we get Pσk
1
=

m

∑
k=1

eiσk
1(i)

. Then

Pσk
1
· c̄k =

m

∑
k=1

eiσk
1(i)

·








αiσ2(i) − α1σ1(1)

αiσ2(i) − α2σ1(2)
...

αiσ2(i) − αmσ1(m)








= αiσ2(i)ūm −














αk+1 σ1(k+1)
...

αn σ1(n)

α1 σ1(1)
...

αk σ1(k)














.

c̄n + Pσ1 c̄1 + P 2
σ1

c̄2 + . . . + P n−1
σ1

c̄n−1 = (α1σ2(1) + . . . + αnσ2(n))ūn

−





















α1σ1(1)

α2σ1(2)
...

αmσ1(m)








+








α2σ1(2)
...

αmσ1(m)

α1σ1(1)








+








α3σ1(3)
...

α1σ1(1)

α2σ1(2)








+ . . . +














αnσ1(n)
...

αmσ1(m)

α1σ1(1)
...

αn−1σ1(n−1)



























.

Add all the bands of the width d to the last one and obtain

u
n

∑
k=1

αkσ2(k)ūd − v
m

∑
k=1

αkσ2(k)ūd = 0̄d.

Whence the system (13) is consistent. Then the former equations system is also consistent.

This means that the condition (Ω) is sufficient for constructing an exponent matrix with given

cyclic Gorenstein matrices on the main block diagonal.
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Кириченко В., Хибiна М., Мащенко Л., Плахотник М., Журавльов В. Горенштейновi черепичнi

порядки // Карпатськi матем. публ. — 2014. — Т.6, №2. — C. 260–281.

Розглядаються горенштейновi черепичнi порядки. Доводиться, що необхiдна умова для

побудови горенштейнового черепичного порядку, у якого на головнiй блочнiй дiагоналi сто-

ять заданi циклiчнi горенштейновi черепичнi порядки, є i достатньою.

Ключовi слова i фрази: горенштейновий черепичний порядок, матриця показникiв, пiдста-

новка Кириченка.

Кириченко В., Хибина М., Мащенко Л., Плахотник М., Журавлёв В. Горенштейновы черепичные

порядки // Карпатские матем. публ. — 2014. — Т.6, №2. — C. 260–281.

Рассматриваются горенштейновы черепичные порядки. Доказывается, что необходимое

условие для построения горенштейнова черепичного порядка, у которого на главной блочной

диагонали стоят заданные циклические горенштейновы порядки, является и достаточным.

Ключевые слова и фразы: горенштейнов черепичный порядок, матрица показателей, под-

становка Кириченка.


