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GORENSTEIN TILED ORDERS

The aim of this article is to describe exponent matrices of Gorenstein tiled orders. The necessary
and sufficient condition for possibility such to construct a Gorenstein tiled order which has given
orders over some discrete valuation ring (the unique for the whole main diagonal) on the main
diagonal and its permutation be a product of correspond cycles with given cyclic Gorenstein tiled
order is considered.
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INTRODUCTION

The notion of tiled orders was introduced at first in [1]. Gorenstein tiled orders appeared in
the first time in the article [2] and a convenient criterion for tiled order to be a Gorenstein order
is also given there. It is shown in [3] that injective dimension of a Gorenstein tiled order is equal
to 1. More then this tiled orders with injective dimension 1 are Gorenstein. The description of
cyclic Gorenstein tiled orders has been done at [4].

The aim of this article is to describe exponent matrices of Gorenstein tiled orders. The
necessary and sufficient condition for possibility such to construct a Gorenstein tiled order
which has given orders over some discrete valuation ring (the unique for the whole main
diagonal) on the main diagonal and its permutation be a product of correspond cycles with
given cyclic Gorenstein tiled order is considered.

The necessary information about tiled orders and exponent matrices can be found in [5, 6].

1 TILED ORDERS OVER DISCRETE VALUATION RINGS

Recall [7] that a semimaximal ring is a semiperfect semiprime right Noetherian ring A such
that for each primitive idempotent e € A the ring eAe is a discrete valuation ring (not neces-
sarily commutative).

Denote by M, (B) the ring of all n x n matrices over a ring B.
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Theorem 1 (see [7]). Each semimaximal ring is isomorphic to a finite direct product of prime
rings of the following form

O 120 ... MO

e X2p
A Y@ O o0 , (1)

@ 2O L. O

wheren > 1, O is a discrete valuation ring with a prime element 71, and a;; are integers such
that a;; + ajx > aj, a;; = 0 foralli, j, k.

The ring O is embedded into its classical division ring of fractions D, and (1) is the set of
all matrices (a;;) € My(D) such that

ajj € i = eiiAe]-]-,

where e11, ..., en, are the matrix units of M, (D). It is clear that Q = M, (D) is the classical
ring of fractions of A. Obviously, the ring A is right and left Noetherian.

Definition 1.1. A module M is distributive if its lattice of submodules is distributive, i.e.,
KN(L+N)=KNL+KNN
for all submodules K, L, and N.

Clearly, any submodule and any factormodule of a distributive module are distributive
modules. A semidistributive module is a direct sum of distributive modules. A ring A is right
(left) semidistributive if it is semidistributive as the right (left) module over itself. A ring A is
semidistributive if it is both left and right semidistributive (see [8]).

Theorem 2 (see [9]). The following conditions for a semiperfect semiprime right Noetherian
ring A are equivalent:

o A is semidistributive;
e A is a direct product of a semisimple artinian ring and a semimaximal ring.

By a tiled order over a discrete valuation ring, we mean a Noetherian prime semiperfect
semidistributive ring A with nonzero Jacobson radical. In this case, O = eAe is a discrete
valuation ring with a primitive idempotent e € A.

Definition 1.2. An integer matrix £ = (a;j) € My(Z) is called
e an exponent matrix ifocl-]- + e > wg and w;; = 0 for alli, j, k;
e a reduced exponent matrix if a;; + aj; > 0 for alli, j, i # j.

We use the following notation A = {O, £(A)}, where £(A) = (a;;) is the exponent matrix
of the ring A, i.e.

n
A= Z 61']'7'(“170,
i,j=1



262 KIRICHENKO V., KHIBINA M., MASHCHENKO L., PLAKHOTNYK M., ZHURAVLEV V.

in which e;; are the matrix units. If a tiled order is reduced, i.e., A/ R(A) is the direct product of
division rings, then a;; +a;; > 0ifi # j, ie, & (A) is reduced.

We denote by M (A) the poset (ordered by inclusion) of all projective right A-modules that
are contained in a fixed simple Q-module U. All simple Q-modules are isomorphic, so we can
choice one of them. Note that the partially ordered sets M;(A) and M, (A) corresponding to
the left and the right modules are anti-isomorphic.

The set M(A) is completely determined by the exponent matrix £(A) = (a;j). Namely, if
A is reduced, then

M(A) ={pi|li=1,...n,and z € Z},

where
z—z >wy if M(A)

z—7 >a; if M(A)

M (A),
My(A).

pi<p = {

Obviously, M(A) is an infinite periodic set.
Let P be an arbitrary poset. A subset of P is called a chain if any two of its elements are
related. A subset of P is called a antichain if no two distinct elements of the subset are related.

Definition 1.3. A right (resp. left) A-module M (resp. N) is called a right (resp. left) A-lattice
it M (resp. N) is a finitely generated free O-module.

Given a tiled order A we denote Lat,(A) (resp. Lat;(A)) the category of right (resp. left) A-
lattices. We denote by S,(A) (resp. S;(A)) the partially ordered by inclusion set, formed by all
A-lattices contained in a fixed simple M, (D)-module W (resp. in a left simple M, (D)-module
V). Such A-lattices are called irreducible.

Let A = {O,E(A)} be a tiled order, W (resp. V) is a simple right (resp. left) M, (D)-
module with D-basis ey, . .., e, such that ejejr = Jjjex (ejiex = Jjxe;).

Then any right (resp. left) irreducible A-lattice M (resp. N), lying in W (resp. in V) is a
A-module with O-basis (1t"ey, ..., m"ey,), while

{rxi + a;j > aj, for the right case; 2

aij + o > a, for the left case.

Thus, irreducible A-lattices M can be identified with integer-valued vector (a1, ..., a,) sat-
isfying (2). We shall write E(M) = (aq,..., &) or M = (aq, ..., &p).

The order relation on the set of such vectors and the operations on them corresponding to
sum and intersection of irreducible lattices are obvious.

Remark 1.1. Obviously, irreducible A-lattices M1 = (aq,...,a,) and My = (B1,...,Pn) are
isomorphicifand only ifa; = B;+zfori =1,...,nandz € Z.

For each right (left) A-lattice M (N) itis defined a left (right) A-lattice M* = Homp (M, Op)
(N* = Homp (N, 0O)) such that M** = M (N** = N) (see. [7], §3). For an arbitrary ¢ € M*
and a € A the multiplication a¢ is defined with the formula (a¢)(m) = ¢(ma) where m € M.
For every homomorphism ¢: M — N of right lattices it is defined a conjugated homomor-
phism ¢*: N* — M* of left lattices with the rule (p*f)(m) = f(ypm).

It is especially easy can be defined the duality for an irreducible A-lattice. Let M =
(a1,...,&,) be an irreducible A-lattice. Then M* = (—ayq,...,—a,)! is an irresucible left A-
lattice and for M C N we have that N* C M*.
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Let A be a reduced tiled order with the exponent matrix £(A) = (a;;). Denote P; =
(i1, ..., &) and Qg = (a1, ..., )T, where T is a transpose operation.

Definition 1.4. A A-lattice M is called relatively injective if M = P* where P is a projective
A-module. Projective A-lattice P is called bijective A-lattice if P is a projective left A-lattice.

Example 1. Let A be a reduced tiled order with exponent matrix £(A) = (a;;), where

W W NN PO
N WO N = OO
— NN O O O
_ -0 O O O
S O O O OO
O R Rk =) R~k O

Here Pl* ~ Q5, PZ* ~ Q6/ PZ ~ Qg, PS* ~ Qz, P6* ~ Ql bl,ltpék ;ﬁ Q4.

2 GORENSTEIN TILED ORDERS AND THEIR EXPONENT MATRICES

Definition 2.1. A tiled order A is called a Gorenstein tiled oreder if A is a bijective A-lattice i.e.
if A* is a projective left A-lattice.

Further we will call a Gorenstein tiled order just as Gorenstein order.

Theorem 3 (see. [2, lemma 3.2]). The following conditions are equivalent for a reduced tiled
order A = {O, E(A) = (apq) }:

(a) an order A is Gorenstein

(b) there exists a permutation : i — 0(i) such that ajx + ay,(jy = @jp(j) fori =1,...,n; k =
1,...,n.

Denote with M,,(Z) the ring of all square n x n-matrices over integers ring Z. Let £ €
M, (Z).

Definition 2.2. Call a matrix £ = (a;j) as exponent matrix if a;; + ajp > fori,jk =1,...,n
andwa;; = Ofori = 1,...,n. These inequalities are called ring inequalities. An exponent matrix
€ is called a reduced exponent matrix ifoci]- +a;; >0 foralli,j = 1,...,n.

Definition 2.3. Two exponent matrices £ = (a;j) and © = (6;;) are called equivalent if one can
be obtained from another with a composition of transformations of the following two types:

(1) subtracting some integer from all elements of i-th line with simultaneous adding this
number to all elements of the i-th column;

(2) simultaneous permuting of two lines and two columns with the same numbers.

Definition 2.4. The following exponent matrix £ = (w;;) € My(Z) is called a Gorenstein matrix
if there exists a permutation o of a set {1,2,...,n} such that

ik + Xpo (i) = Xig (i) for alli, k.
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The permutation ¢ is denoted with ¢(&). If a matrix £ is a reduced Gorenstein exponent
matrix then o (&) does not have fixed points.

Proposition 2.1 ([5]). Let £ = (a;;) and @ = (0;j) be exponent matrices and © is obtained
from &€ with composition of permutations of the type (1). If £ is a reduced exponent Gorenstein
matrix with correspond permutation o(€) then @ is also reduces exponent Gorenstein matrix
with a permutation c(®) = o(&).

Proposition 2.2 ([5]). If £ is a Gorenstein matrix then any second type transformation © it

leaves to be a Gorenstein matrix and for the new correspond permutation 7w we have m =

tlotie 0(®) = v o (€)T.

Remark 2.1. A reduced tiled order A is Gorenstein if and only if when its exponent matrix
E(A) is a Gorenstein matrix.

Definition 2.5. A reduced Gorenstein exponent matrix & is called cyclic if 7(€) is a cycle.

Lemma 2.1 ([10]). Let A be a reduced Gorenstein tiled order with an exponent matrix £(A) =
((Xi]') and Kirichenko permutation o. Then Ao (D)o () T Qo (j)o(k) — Ko(i)o(k) = Xij T &jk — Kik-

Proof. After adding ;) to both sides of the equality a;,(;y = ajj + &j,(;) we obtain
Yig(i) t Xo(i)o(j) = Xij T joli) T Ra(io() OF  Rio(i) T Xo(i)o(j) = %ij T Fjo(j):

Represent ;;(;) and a;;(j) as sum of two summands as follows ajx + ae(i) + Xy (i)o(j) =

wjj + Ak + g () Whence obtain ayy (i) + &4 ()0 (j) — ko (j) = @ij + @jk — @ik Further we get

(@ko (i) + Xko (k) + Ao (iyo(j) — (Rko(j) T Qko(k)) = Qij + Qjk — Xk

Again represent ay, ;) as two summands as follows

(@ko (i) + Xk (j) + X (e k) T o(iyo() — (@ko() + Xk (i) + Xa(i)o(k) = Xij + Xjk — ik

We have Ao (i)o(j) T Ro(j)o(k) — Ro(i)o(k) = &ij + Xjk — Kik- U

3 CycCLIC GORENSTEIN ORDERS

Lemma 3.1 ([4]). Let A be a reduced cyclic Gorenstein tiled order with an Exponent matrix
E(A) = (a;j) and Kirichenko permutation ¢ = (12...n). Ifaj; = 0 foralli = 1,...,n then
a1j = a1 pq2-j forl <j<m.

Proof. The lemma 2.1 gives that aj; + aji = apm(jy&gm (j) + dgm(jy&gm ;) for an arbitrary natural m.
For i =1 we have
X1j+&jp = Agrm (1) &grm () + Agrm () &grm (1) -

As 0 is a cyclic permutation then there exists an integer m such that 0™ (j) = 1. The equality
c™(j) = j+m (mod n) yields j+m = n+1. Som = n+1—j. This gives that 0™(1) =
1+m =n+2—jand ayj+aj1 = a2 1+ &142-j. Now the lemma conditions yields
aj) = ayq2-j1 = 0 whence ay; = aq 2. O
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Proposition 3.1 ([4]). Let a1, 13, ..., &1, be an arbitrary set of real numbers. There exists the
unique matrix («;j) such that these given numbers are elements of the first line of this matrix
and equalities oy, = ajy = 0 and aj + a1 = iy andk=1,...,mi=1,...,n—1 hold.

Proof. Let ag; = 0. Obtain other elements ay, of the matrix («;;) from the linear equations
system aj + g1 =41 k=1,...,mi=1,...,n—1

Really a1 = &g + &15+1 = Aqx41 for k < n. The equality aq; + app = agp gives that apy =
d1p — Mg AS Qg + (o1 = Mgy = A1k then either age g = aypg — agp = agppq + agp —a12
or ap; = wyy + a1 —agp forg > 1.

Further Nk + g3 = K23 = K13 whence Np3 = K13 — Nop — K13 + K12 — K1k — K1k—1 for k > 1.
From the equality ay3 + agx11 = k1 = @1x41 find the age i as age1 = X1p1 — A3 = Agp1 +
a1k + @1k—1 — @13 — 12 which is the same as a3; = ay; +a1-1 + a5 2 — 13 — agp forg > 2.

Assume that for | < n elements of the /-th column ay; for k > [ — 2 can be represented
through elements of the first line as follows

I -2
g =Y i — Y g, k>1-2,
= =0

and elements of the [-th line a;, for 4 > | — 1 are represented through elements of the first line
as follows
-1 l
ajg = Z‘qu—j_ erlj,q >1—1.
j=0 j=2
Find expressions for elements | + 1-th column and ! + 1-th line through elements of the
first line.
The equality aj; + agj1 = @141 = @114 yields

1-1 !
Rp+1 = X1,141 — Xk = &1,]41 — (Z Xk—j — Z 061]')

j=0 j=2
I+1 -1 I+1 (I+1)-2
= Z‘le — Z‘Xl,kfj = 2061]' - Z le,k,]',k >/—1 or k> (l+1> —2.
j=2 j=0 j=2 j=0

Further have & ;11 + &j41 k41 = Ak k41 = &1 k+1- Whence,

I+1 (1+1)—
Ml41k4+1 = X k+1 — K41 = K1 k+1 — Z“l]’ - Z X1 k—j
j=2

l+1) I+1

Z Lkt — 2 &1, k+1>(1+1)—1 or
j=0 j=2

(I+1)— I+1
Kl+1,4 = Z X1,9—j Zé“ljr q > (l + 1) -1
]:

Whence with the use of induction by the number of a line and column obtain find the
unknown elements of the matrix («;;). They are expressed with the elements of the first line
with the following formulas

m m—2
am:Z(xlj—Z(:)rxlk,]-fork>m—2; (3)
— i=
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k-1 k
Ky = Z Mim—j — Z aqj form >k —1. 4)
j=0 j=2

During this process we have considered all the equations a;; + agiy1 = i1, k = 1,n;i =
1,n — 1. It is obvious that the solution of the system of linear equations satisfies the equations
of it. More the equation (3) yields

k k=2
Kl = 20(1]'— Z(xllk,]- :O,k:2,...,n,
=2 =0

and from the equation (4) we get

k—1 k
Mg =Y g j— Y o =0,k=2,..,n
j=0

j=2
O
The formula (3) yields
m m—2 m—2 m—1
Cm—1,m = Z(le - Z X,m—1—-j = Z Xlm—t — Z a1 — K11
j=2 j=0 t=0 t=2
(m—1)-1 m—1
= Y am— ), ay, m=3n
t=0 t=2
The last equality is the expression for «,,_1 ,, with the use of the formula (4).
This means that the former linear equations system is consistent.
Whence we have got the matrix («;;) whose elements can be calculated with formulas
0, itm =1,
m m—2
Yooy — Y aj, ifk>m>1,
j=2 j=0
Rim = k—1 k 5)
Yoaynj— Yooy, fl<k<m,
j=0 j=2
K1m, if k =1.

Corollary 3.1 ([4]). Let (0(1‘]') be a matrix whose elements are calculated with (5) and ay; =
a1u42-j forj=2,...,n. Thenajj + ajo(;y = &jp(j) foralli,j=1,...,n wherec = (12...n).

Proof. Asaij = ay,12jthen

m m—2 m m
Xnm = Z‘le - Z Xn—j = Z‘le o Z[le””‘z_i =0
= =0 =2 i=2

and a4+ a1 = a1 = 0 for all m. Whence elements of the matrix (ocz-]-) satisfy the condition
wjj + ajo (i) = jp(j) foralli,j=1,...,n where o = (12...n). O

Proposition 3.2 ([4]). Let («;;) be a matrix whose elements satisfy the equality (5). Then for
every triple or pairwise different numbers i, j, k there exist p, q such that a;; + ajx — ajx = dpg.
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Proof. Rewrite the equalities (3)—(4) as follows

m m—2 m k

Qgm = Y 01j— Y M j= Y ap— ) ay fork>m>1,
j=2 =0 f=2 t=k—m+2
k-1 k m k

Qkm = L Mm—j— L &= 2 app— ) ap form>k>1
=0 j=2 t=m—k+1 f=2

Denote Sijk = Qjj + OC]'k — Wik
It is easy to check that if the numbers i, j, k are pairwise different then the equality

“i*k%*l,]'*k%»ll if mln(lr]/ k) = k/
Kpg = “k—j,i—j—}—l/ if min(i,j, k) = j,
& ki if min(i,j, k) =i

holds. In the case when at least two indices coincide one obtain

Sijj = aij +ojj — a;j =0,
Siik = ji + & — aj = 0,
Siji = wij + & — & = Qi+ aji = &g ) g > 0.

O

Corollary 3.2 ([4]). A matrix («;;) with non negative elememts which satisfy the equalities (5)
and a1j = a1,42-j for all2 < j < n is a Gorenstein reduced exponent matrix of a cyclic
Gorenstein order with the Kirichenko permutationc = (12 --- n).

Proposition 3.3 ([4]). The exponent matrix (a;;) of the cyclic reduced Gorenstein tiled order A
with the Kirichenko permutation c = (12 --- n) such thata;; = 0 fori = 1,1 is symmetrical
in the main diagonal.

Proof. Itis clear that the matrix («;;) is symmetrical in the second diagonal if a;; = & 11— jn41-i-
After the direct checking one may make sure that ay,, — &, 11—, y+1-k = 0 for all k, m. O

Corollaries 3.1, 3.2 and the proposition 3.3 yield the following theorem which gives the
whole description of the reduced cyclic Gorenstein tiled orders.

Theorem 4 ([4]). Any cyclic reduced Gorenstein tiled order is isomorphic to a reduced order
A with Kirichenko permutationc = (12 --- n) whose exponent matrix £(A) = (a;j) has the
following properties:

1) all elements of the matrix (w;;) can be expressed with the formulas (5) through (5] natu-
ral parameters a1, . . "“1[%]+1"

2) 0(1]' = 0‘1,n+27j for all j;

3) the matrix (a;;) is symmetrical in the second diagonal.

Conversely each non negative integer valued matrix (a;;) which satisfies the properties 1-3
from above such that a;; + aj; > 0 for (i # j) is an exponent matrix of some cyclic reduced
Gorenstein tiled order with the Kirichenko permutationoc = (12 --- n).
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The elements of the exponent matrix (a;;) of the a cyclic reduced Gorenstein tiled order A
with Kirichenko permutation o = (12 --- n) satisfy the equality

n

n n n
Yoo ) (“ij""xjo(i)) X Qig(i) 'g%(i)

=1~ ij=1 ij=1
n2 2n2 - 22 2n
[l
L Qig(i)
The value t = l:|1<a>| is much important in the studying of cyclic Gorenstein orders.

Theorem 5 ([11]). Let A be a reduced cyclic Gorenstein tiled order with exponent matrix £ (/)
and Kirichenko permutation 0. An order A is isomorphic to an order A’ whose exponent
matrix is a linear combination of powers or a matrix of the Kirichenko permutation ¢ if and
only if ﬁ . grxw(i) = t is a natural number.

Proof. We will assume thato = (12 --- n).
All cyclic Gorenstein tiled orders are described at the theorem 4. Elements of an exponent
matrix of such order satisfy the equalities

0, ifm=1,
m m—2
) Kj — ) K1k—j ifk>m>1,
— j=2 j=0 (6)
Rkm = k=1 k
i — Loagy i1 <k<m,
j=0 =2
X1m ifk=1.

Let |(+'>| - L &;y;) = t be a natural number. Show that with the transformation of the first
i

type the exponent matrix of the order A can be transformed to an exponent matrix with the
necessary property. Let us do the transformations of the first type. Let us add the number x;
to all the elements of the k-th line and lets subtract if from all the elements of the k-th column.
Then the equality a,, = ay,, + Xx — X,y will appear. To find x; we will need “l/«r(k) =t for all k.
Consider the linear equations system

X1 — X =t—uaq,
Xp — X3 =1t — a3,
Xp—1—Xn = t— Xn—1ns
Xp— X1 =1t — 0.

It has a solution

Xo = o — 4+ X1,
X3 = a1p + 0oz — 2t + X1,

............................................ )
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That is why the exponent matrix £(A) = («;j) can be reduced with the transformations of the

first type to the matrix(a Z]) E(A) such that a (k) = tforallk.
Now show that a{j = “U(z)agj) for/allz,]. Really.e.qualities “20(1‘) =t= agj + (x o) 1 a}a(]) =
t=a o) T ol (i)o(j) yield that a;; = o i) (j) forall i, j.

n
]El Cicr(j) and ejj are matrix units.
The converse statement is obvious. O

n .
Thatiswhy E(A') = 1 oc’le(],_l where P, =
j=1

4 GORENSTEIN ORDERS WITH PAIRWISE ISOMORPHIC SIMPLE CYCLES

The matrix transformations of two types change a sum of elements of a matrix. It is easy to
see the following proposition.

Proposition 4.1 ([11]). Let A and A’ be two isomorphic reduced tiled order with correspond
exponent matrices E(A) = (a;;) and E(A') = (w 1]) whose Kirichenko permutations are o and

o’ correspondingly. Then Ele] = er] and Z g (i) Z “20’(1‘)
i,j =1 i=1

Lemma 4.1 ([11]). Let A be a reduced Gorenstein tiled order with correspond exponent matrix
E(A) and Kirichenko permutation o and let ¢ = o3 - 02 be a decomposition of ¢ into the
product of two disjoint cycles. Then

X Qg (i) % Rk (k)
1 J—
<o >| |<o>|
Proof. We can assume thatoy = (12 --- n)and oy = (n+1n+2 --- n+m) (we can reach

this with the isomorphic second type transformations of lines and columns of the exponent
matrix £(A)). Then the exponent matrix £(A) will become of the form

& &
£ — ( 1 ¢12 )
&1 &
where &1 is an exponent matrix of a reduced cyclic tiled order with Kirichenko permutation
o1 and &, is an exponent matrix of a reduced cyclic tiled order with Kirichenko permutation

02- That is Why “ij + ocfa'l(i) - 1‘71( ) for a11] n-+ 1/"'/” +m, i= 1/- - n and Xkl + “10'2(1() -
Ngoy(k) foralll =1,...,n,k=n+1,...,n+ m. whence obtain

n n+m n n—+m

Z Rigy() = 3 Z Rigy(i) = 2 Z ij + Koy (i)
i=1 j=n+1li= j=n+1li=
no ntm n ntm n+m
Z Z (Xkl + Xlg (k) Z Z Rkop(k) = 1~ Z Xkoy (k)
ket I=1k=n+1 k=n+1
n n+m
" n+m 21 Kigr (i) ‘ %H"‘k'fz(k)
R = = =
Whence m - ‘Z Ko (7) = 1 Y ‘Xk(rz(k) n - m ) =
i=1 k=n-+1
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Corollary 4.1 (11]). If n and m are pairwise simple then

where t is a natural number.

Lemma 4.1 provides the sufficient condition for the possibility to construct the Gorenstein
tiled order with the correspond exponent matrix with a given Kirichenko permutation ¢ which
decomposes into independent cycles o7, ..., 05 and two sided Piers decomposition of A has
blocks Ay, ..., As on the main diagonal. The input data for this condition is a set of the cyclic
tiled orders Ay, ..., As with the cyclic permutations 7, ..., 0s correspondingly. Call this con-
dition ) and it is following

L Qg (i) L i (i)
Q) e
[(01)] [(25)]
Lemma 4.2 ([11]). Let A be a reduced Gorenstein tiled order with correspond exponent ma-
trix £ = (a;;) and Kirichenko permutation ¢ = ¢ - 0 where 01 = (12 - n), o=
(n+1 n+2 --- n+m ) such that numbers n and m are piecewise simple. Then the or-

der A is isomorphic to the order A" with an exponent matrix

g — < & xpln )
xUy &

where £, £} are exponent matrices or reduced cyclic Gorenstein orders with permutations
og=(12 - n)andop = (n+1 n+2 --- n+m ) which are linear combinations
of powers of permutation matrices Py, Py, correspondingly, U;,, Up; are such matrices that all
their elements are equal to ones x13, X1 are integers such that

n n+m
T Qg (i) L oy (k)
i=1 k=n+1
X1+ X1 =t = =
n m

Proof. An exponent matrix of a Gorenstein tiled order whose Kirichenko permutation is a
product of disjoint cycles has a following form

& & )
&=
< En &
where & = efe, e = ey +---+eu, f = E—e, & = fEf are exponent matrices of cyclic

Gorenstein orders with Kirichenko permutations ¢y, 0> correspondingly. As numbers n and m
are pairwise simple then the corollary 4.1 gives that

n n+m
)3 azal(z) Z ‘thrz(k)
b — =1 _ k=n+1
n m

is a natural number. Then according to the theorem 5 matrices &1, £, can be reduced to matrices
&{ and &) with transformations of the first type. The last matrices are linear combinations of
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permutational matrices Py, and Py, correspondingly and mire then this a;; ;) = dgg,) = ¢
foralli =1,...,nand k = n+1,...,n+ m. The conditions to be Gorenstein matrices yields
0(1']' + ajal(i) = aial(i) =t fOI' alli = 1,. . .,Vl,j =n-+ 1,. .on +m and Kl + “ZO'Z(k) = akaz(k) =t

foralll=1,...,nandk =n+1,...,n+m. Whence for j = kand I = o7 (i) obtain a;; + ;o (; =
Rig (i) T Qo (i) (j) 1€ ij = &g, (7)o (j)- A lengthes of permutations 07 and 0, are pairwise simple
thena;; = ay,qq foralli=1,...,n,j=n+1,...,n+m. Denote a1, 11 = x12 a rational number.
Then ay; = a, 111 = t — x12. Whence the exponent matrix £’ will be of the following form

& — < & xpUn >
x Uy &

where &] and &} are reduced exponent matrices of cyclic Gorenstein orders with permutations
op=(12 -+ n)andop=(n+1 n+2 --- n+m ) correspondingly which are lin-
ear combinations of powers of permutational matrices Py, Py, correspondingly U, and Uy
are matrices whose all elements are equal to one. So,

n n—+m
X iy i) L oy (k)
=1 k:i’l+1
X1p+x1 =t= =
n m

O

Theorem 6 ([11]). Let A be a reduced Gorenstein tiled oreder with an exponent matrix £(A\) =
(wj) whose Kirichenko permutation ¢ is a product of cycles which do not intersect ¢ =
o - - - o and whose lengthes are pairwise simple. Then the order A is isomorphic to an order
A with Kirichenko permutation 0’ = o7 - - - 07, and exponent matrix £(A") = (ocgj) of the form

& xppUip -+ x1 Ui
x12U>y & o Xom U
7
Xt U1 XU - - Em
where
[<ai>]
kZ X (k)
A S

foralli,j =1,...m,i # j and Xij + Xjs > x5 for all pairwise different i,j,s = 1,...m, &
are exponent matrices of cyclic Gorenstein orders with Kirichenko permutations which are
conjugate to those Kirichenko one o}, whici are linear combinations of permutational matrices

Pgli(k:].,...,m).

Proof. A Gorenstein tiled order A is isomorphic to an order A" with Kirichenko permutation
0’ =0y - - - 0,, where each permutation o], acts on a set of natural numbers. Then the exponent
matrix of the order A” will be of the form

1 " 1/

&l o
gl gl
(N = 21 2 2m
" " "
Em Cm2 o Em
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As orders of permutations o are pairwise simple then

|<o!>| ; |<o>|
Y. M Y Qkok
= kel (k) = oi(k)
| <ol > | | <o; > |
foralli = 1,...m and t is a natural number. Whence exponent matrices &’ with Kirichenko

permutations ¢}, can be reduced to the linear combination of powers of permutational matrices
Py with transformations of the first type.
For arbitrary i and j (i # j) consider a Gorenstein tiled order with a Kirichenko permutation

o/ - 0/ and an exponent matrix
" 1
( & & >
1 i :

]
According to the lemma 4.2 its exponent matrix can be reduced to the form

51-/ xl-jul--
x]‘iu]‘i 5]-/ !

were matrices £/ and 5]-’ are linear combinations of powers of their permutational matrices.
Whence the exponent matrix is of the form

&1 xpUip - x1 Uiy
E(N) = xpUor & o xomUom
YmUm  Xp2Upz - Em
Inequalities x;; + xjs > x;s come from ring inequalities jj + Qjg > W O

5 GORENSTEIN TILED ORDERS WITH MUTUALLY PRIME LENGTHES OF CYCLES

Let A = {O,&(A) = (w;;)} be a reduced Gorenstein tiled order with Kirichenko per-
mutation ¢ where ¢ = 07 - - - 05 is the decomposition of ¢ into the product of cycles, my is a

length of the 0. We can assume that o = (gx+1 gx+2 - g+ mg ) (we can reach
k-1

this with the transformations of the second type) where ¢, = ) m; fork > 1, ¢1 = 0. Let
j=1

fe = egrigr1 +egiog 42+ -+ egrmg+m and 1 = f1 + - - - + f; be the ring unit of A into
the sum of pair wise orthogonal idempotents. Two sided Piers decomposition of A has the
following form

A A o Ags
Ao | A Az Do ,
A1 A o Ags
where Ay is reduced cyclic tiled order with Kirichenko permutation ¢’ = ( 1 2 -+ my )
So the exponent matrix is of the form
&n &n &1s
e | &n & Eos
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where £ is an exponent matrix of cyclic Gorenstein tiled order Ay,. Write out the condition
to be Gorenstein order for A in the matrix form as follows € + P,ET = diag{a, () }U or

&n & 0 & Py O -+ O gL er ... £
Exn En o Ens N O Py -~ O | &L - &)
gsl 552 T gss (@) o --- Paé 51],; 52]; s 557;
diag{al’m(k)} 0] . 0 Un U - U
_ O diag{aq, 9} - O | U Uz -+ Uy
O O . dlag{a;(as(k)} usl USZ . USS

Whence we get the following system of matrix equations
Ejj+ Py = diag{ager s HUj,
Eij+ Py€j; = diag{ager iy YU,

i+ Pg;5$ = diag{“ko]((k)}uji-

Reduced cyclic Gorenstein orders are described at theorem 4. Elements of exponent matrix
& of the cyclic reduced Gorenstein tiled order A with correspond Kirichenko permutation
o = (12 - - n) whose the first line is zero are expressed with the following formulas

‘
o

if m=1,
m—2
0(1]' — .ZO Délk,]' if k >m > 1,
]:

NG

~.

Xm =

T
(X

k
Xym—j — 122 ayj if 1 <k<m,
]:

-
Il
o

if k=1,

=
=
3

and more then this ay; = a1, ; for all j. The exponent matrix for a reduced tiled order
does not contain two zero lines and does not contain two zero columns. Elements of the ex-
ponent matrix £ of a cyclic reduced Gorenstein tiled order A with Kirichenko permutation
0 = (12---n) and the arbitrary the first column can be expressed with the following formulas

/
Xpy = Kgm + X — X

More then this, elements of the block matrices £11, £, . ., Ess satisfy the condition (Q) i.e. the
following equality

my mp ms
kgl o (k) kgl Ko (k) kgl 0

mq my Mms
holds.
We have the following system of simultaneous equations for finding &;;

{%+%$=mﬁ%mWw

! 8
gji + PU]{EZ%-" = dlag{“kaj(k)}uji' Y
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Whence, either

Eij + Py <d1ag{1xka Ui — /5 ) diag{ockglg(k)}uz-]-

or

5 /&JPO,/ diag{ockglg(k)}ui]- - Péui]-diag{ockajg(k)}.

As permutational matrix just permutes either lines or columns when we multiply by it then
the following is true

Eij — Pa;&'ngT]e = diag{ay,: ) Uij — Uz‘jdiag{“ka]!(k)}- )

The general solution non homogeneous equation equals to sum of the general solution of
the homogeneous equation &j; — Py/&; P o = = 0 and some partial solution of non homogeneous

equation. Consider the solution of the homogeneous equation.

Lemma 5.1 ([12]). Letoy = (12 --- n),0p = (12 --- m), (n,m) =d, n = du, m = dv. The so-

F F
lution of an equation X — Pngsz = 0 has the following block form X = ( R R EEE ) €
F ... F
M, xo(F) where F € My(Z) and F is a linear combination of permutational matrix Py =

d
Y exr(k), T = (12 - - d) powers with arbitrary coefficients.
=1

Proof. The equation X = Py, XPUT2 can be represented in the form x;; = x,,(i)0,(j)- Whence
Xij = Xok(i)ok(j) for arbitrary integer k. Show that for arbitrary integers p and g such that
0<i+pd<n0<j+qd< mtheequality x;j = x;y pg 44 holds.
For arbitrary integer k the following equalities hold of(i) = i+ k(mod n), ck(j) = j +
k(mod m). As numbers u are v mutually prime then there exist natural numbers 2 and b such
that p —q = bo —au. Putk = pd +an +cnm = qd + bm + cnm. Then of(i) = i+k =
i + pd(mod n), 0§(j) = j+k = j + gd(mod m). This implies x;; = Xitpd,j+qd- The las means
that the matrix X is decomposed to uv equal blocks F or the dimension d (u blocks are in the
F ... F

block line of X and v blocks in its block column). So, X = ( . : ) € My x»(F). Now
F ... F

show that x;; = x(j)¢(;) fori,j < d where T = (12 - - d).

Asi,j < dthen for k = 1 we have x;; = Xok(iyok(d) = Xit1j+1 = Xr(iye(j)-

Leti < d, j = d. As numbers u and v are pairwise simple then 1 = v — yu for some
integers 6 and y. Take k = 1+ yn+cnm =1 —d + ém + cnm. Thena{‘(i) =i+k=i+1+
yn+cnm =i+ 1(mod n), 05(d) =d+k =d+1—d+ém+cnm = 1(mod m). Whence
Xr(iyr(d) = Xi+1,1 — ng(i)gg(d) = Xig-

In the same way fori = dand j < dtakek =1—-d —yn+cnm = 1 — dm 4 cnm. Then
of(d)=d+k=1—yn+cnm = 1(mod n),0k(j) = j+k=j+1—6m+cnm = j+1(mod m).
Whence X+ (d)t(j) = X1,]+1 = fo(d)O'z(]) = xd].

Fori=dj=dstatek=1—d+cnm. Thenof(d) =d+k=d+1—d+ cnm = 1(mod n),
Ué((d) = d+k = d+1 —d+cnm = 1(mod 711) Whencex (d) (d) = xll =X k(d) g(d) = X44-

Whence x;; = Xe(i)e(f )forz j < d. Thatiswhy F = x11E+x12PT+x13P2+ c+x de 1O
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Proposition 5.1 ([12]). Let A = {O,E(A) = (a;;)} be a reduced Gorenstein tiled order with
Kirichenko permutationo, o = 0y - - - 05 be a decomposition of o into a product of cycles which

do not intersect and their lengthes o}, are mutually primei.e. GCF(|{(cq)|, -+ ,|(0s)|) = 1. Then
Ricy (i) %joa (1)
— e e — 1 — 7
o] ; = o] ; t when t is a natural number.
Proof. Let my be a length of a cycle 0y, Yy = Y a5, (7). As (my,...,ms) = 1 then there exist
i

integers ay,...,as such thatay m; +...+as ms = 1. According to the lemma 4.1 % = :Z—Z

which is the same as m;Y, = m,Y,;. Multiply this equality with a; and obtain a;m;Y, =
agmpY,. Whence ). agmgY, = Z agmpYs whichis Yy, - ) agmg = my - Z aqY;. Taking into

q9#p 97p a4 7P
attention the equality (myq,...,ms) = 1getY, - (1 —apymy) = m, - 2 a5Yy. Numbers 1 —a,m,
qa7p
and m, are mutually prime and that is why Y}, is divisible by m,, for all p. O

Theorem 7 ([12]). Let A = {O, £(A) = (aj;j)} be a reduced Gorenstein tiled order with
Kirichenko permutation ¢ and let ¢ = o7 - - - 05 be a decomposition of ¢ to a product of cycles

which do not intersect. Let my be a length of the cycle o = (¢ +1gx +2 ... gx + my) where
k—1
Sk = Z m; fork > 1 and g1 = 0. Letd;; = GCF(m;, m;) be a maximal common factor of
=1
numbers m;, m; and GCF(my, ..., ms) = 1. Then the order A is isomorphic to an order A’ with
En & oo s

. . : En Ex - &
Kirichenko permutation ¢’ = o7 - - - 0} and the exponent matrix £ = 2l o2 %

gsl 552 gss

where - 2 rxka =t € Nforalli = 1,...s. The matrix & is a exponent matrix of
a cychc Gorenstem order with Kirichenko permutation 0, = (12 ... my) and it is a linear
combination of powers of an permutational matrix Py (k = 1,...,s). The matrix &; =
Fg -+ Fu
e , k#1isa :1”_15 X dﬂkll block matrix where Fy is a square dy x dy; matrix
Fg -+ Fa
and it is a linear combination of powers of permutational matrix P, with Ty = (12 ... dy).
. . ;i) | el '
Proof. According to the proposition 5.1 T Y, == T Y, = t where t is a natural
i KA

number. Then each diagonal matrix £ can be reduced with the isomorphic transformations
to a matrix £/, which is a linear combination of permutational matrix P";ﬁ such that a;,, ;) =t

for i and k. Then the matrix equation &; — Py/&; Pl o = = diag{ay, ) Uij — Uydiag{ay, )} for
]

&ij will get the form &;; — PU,/&-]-PUT{ = 0. With using the lemma 5.1 obtain the proposition of the

theorem. ] O

Remark 5.1. The theorem 7 describes the reduced Gorenstein tiled orders A = {O, E(A) =

(ajj)} with the Kirichenko permutation o where ¢ = 07 - - - 05 is the decomposition of ¢ into

a product of cycles which do not intersect whose lengthes is mutually prime. Really this the-

orem describes also a part of those reduced Gorenstein tiled orders for which there is no any
restrictions on cycles but the following “more strict” () condition holds:
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;Mm@ ;“@m

(o]~ o)

— t, wheret is a natural number.

6 THE NUMBER OF INDEPENDENT PARAMETERS TO EXPRESS ALL ELEMENTS OF THE
GORENSTEIN MATRIX

The general solution of non homogeneous equation (9) is a sum of a general solution of ho-
mogeneous equation &;; — PUgEZ-jP; = 0 and the partial solution of non homogeneous solution.

Consider the solution of the homogeneous equation.
Note that a partial solution of the non homogeneous equation depends on permutations

o/, (7]( and elements &,/ (k) o, (k) which belong to diagonal blocks &;; £j;. The general solution

of homogenous equation is independent on elements of diagonal blocks. That is why we can
represent the matrix £ as a sum & = A + B where A = (4;;), B = (B;;) are block (s X s)
matrices and A;; = 0 for all i, A;; is a general solution of the homogeneous equation B;; = &
for all i, B;; is a partial solution of non homogenous solution.

According to the theorem 4 matrix & depends on [7f]| parameters. As they satisfy the
(Q)-condition then there are only

o= 3]+ ]+ s [

independent between them. So, elements od B can be expressed on b independent parameters.

Blocks A;j and Aj; are solutions of the system A;; + PU;A]-TZ- =0, A;+ PU]{AZ = 0. That is

why Aj; = —PUgAZ and elements A;; and Aj; can be expressed with the same set of parameters.
)

According to the lemma 5.1 the solution of the equation is a block (1 x v) matrix

Fj - F
A= o oo o ],

]
Fj -+ Fj

where Fi]‘ S Mdi]. (Z), dl] = (Wli, m]), m; = di]-u, mj = di]"(J.
In this case the matrix F;; is a linear combination of powers of permutational matrix Py
where 7;; = (12 ... d;j), ie.

Whence matrices &;; and £j; depend on d;; parameters. Then matrix A depends on a =
S

Y. djj parameters. Whence we have got that £ depends on a +b = Y [5] — (s — 1) +
i<j k=1

Y. (mj;, m;) parameters.
1<i<j<s

Equivalent transformation of the second type do not change values of elements of a matrix
(they change only position of elements) and that is why the general quantity of parameters
a + b does not change.

Equivalent the first type transformations of the matrix £ can be used either over the matrix
A or over the matrix B. Diagonal blocks &;; of the matrix B already are of the special form
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(the first column is zero) with the help of which they depend on the minimal quantity of

parameters. Parameters agu ), s, aﬁ(ﬁ, ) are in each line of the matrix Ajjie. in each line of the

1

i-th block band of the matrix A. Use the following the first type transformation. Subtract the
integer ¢ from all numbers of the i-th horizontal block band and add this ¢ to all numbers of
the i-th vertical block line

Under such transformation the form of diagonal blocks of &;; will not be changed and so
as diagonal blocks of B. The i-th block line and i-th block column will be consisted of new
matrices Al] = Al']' - tul']', A]l = Aji + tLI]-l-.

As Aji = _PO']{AZ; then Al] = —PU]{AE;- + tU]-i = —PU](AZ?} + tPU](LI]-i = _Po]((Aij — tUZ-]-)T. In
_ dij
this case Fij = Fl‘]‘ — tui]‘ = Z (El]((l]) — t)(PTl.j)k.
k=1
Denote ﬁ]((l] ) = a]((l] ) _ t,k=1,2,.. .,dij. The new matrices Aij and Aji depends also on
d;j parameters ﬁgll), o, ﬁb(;; ) If consider ¢ = a,((” ) for some k then ﬁ](:] ) — 0 and the number of

parameters for express all the elements of the matrix A;; will decrease by one.

The matrix A contains s horizontal and vertical block lines and columns. Subtract t; = agﬂ)
from all elements of i-th horizontal band (i = 2,...,s) and add it to all elements of the i-th
vertical block band. Then the number of parameters of A will decrease by s — 1.

Whence the number of parameters to express all the elements of a reduced Gorenstein

exponent matrix with equals to

Y] 21+ L (mm)

k=1 1<i<j<s
parameters.

This result coincides with one which is got at [13]. Nevertheless we state the elements of
matrix which can be considered as independent.

This result is obtained at [13] in a following way. Consider an exponent matrix A = (a;;)
with correspond Kirichenko permutation ¢ which can be decomposed to independent cycles
of lengthes [, .. ., lq and g is the number of cycles.

Denote x; = a1 for every k, 2 < k < n. For arbitrary r, 0 < r < g and for every k, n, +2 <
k < n denote also z;, = a,, ;1. Consider the variables x; and z; , as parameters.

After this one can get formulas which are analogous for (5). Nevertheless parameters are
not independent and there are some linear equalities which contain parameters. Finding the
defect of the linear equations system which is consisted of these equations gives the quantity
of independent parameters.

This system of equations and correspond quantity is found in [13].

7 THE SUFFICIENCY OF THE CONDITION (Q) FOR CONSTRUCTING THE EXPONENT MATRIX
WITH GIVEN CYCLIC GORENSTEIN MATRICES ON THE MAIN BLOCK DIAGONAL

Consider an exponent matrix & with the permutation oy = (12 ... m) and an exponent
matrix & with the permutation oo = (12 ... n). Let the condition ()
L% () Qo)
1 — 1
[{01)] [(05)]
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holds. We will show that there exists a reduced Gorenstein exponent matrix

& &
£ = ( 1 €12 )
&1 &
with correspond permutation o = 0105, where 0 = (m +1m+2 ... m+n).
From the above the matrix &1, is f dimension m X n and the matrix &1 is of dimension

nx m.
We have an equations system using which may find the matrices £, and &,

512 + PU{52T1 = diag{(xkg{(k)}ulz,
521 + Paéngz = diag{(xkgé(k)}lln.

This system can be rewritten as
E Ala
- 1
( B E|b )' (10)
where E,A,B € Muu(Z), A = (Ajj) is a block m x n matrix, B = (B;;) is a block n x m
matrix A;; are matrices of the dimension n x m, B;; are matrices of the dimension m X n

M by
such that AZ] = 6]-(71(1-), Bl] = erz(i)' a = , b = _ , a4, = “iUl(i)a" and 4; € 7",
G b,
bi = “iO’z(i)am S zm,
Multiply the first block line of the system with (—B) and add it to the second line. After
this obtain
E A a
<0 E—BA‘B—B12>' (1)

m m
Here BA = C is a block n x n matrix where Cjj = }. BjxAxj = L ko, (i)€jor (k)- More exactly
k=1 k=1

m

Cij = 0for j # 03(i) and Cigy(i) = X Chon(i)Cor(ijor (k) = X Cher (k) = Por-

The linear equations (10) is consistent if and only if the linear equations system (11) is also

consistent.
C1
Consider the linear equation system ( E — BA ‘ b—Bi ), whereb—Bi=¢= o,
Cn
i =bi— k21 Bikx = &g, (iytim — k21 Chery (i) Xkery () -
B B T
As e piin =6 = (00...010... 0], then
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The system ( E— BA | b — Ba ) appears to be of the form

E _Pg'l 51
E _Pg'l 52
- (12)
E _Pg'l C_mfl
_Pg'l E C_m
Multiply the k-th block of the system by Pf,‘l, = 1,m — 1 and add it to the last one. After
this obtain
E —-P, C1
E P, C2
E _P(71 C_}’lfl
0 0 ... 0 E—P!|Pyei+Pior+...+P e +0
The linear equations system (12) is consistent if and only if so as
(E=P} | Pner+P2oo+...+ PP o140 ). (13)

Consider the square matrix E — P} € My (Z). Let m = du, n = dv where d = (n,m),
(u,v) = 1. We can consider that m > n.
Then

E—Pl = E —E

where E € My(Z).

Add all the block lines of the matrix E — Pg, to the last one and obtain the zero block line.
Whence rank(E — P}) < n —d. From another hand the lemma 5.1 yields that the solution X
of the equation X — P, XP,, = 0 belongs on d parameters. This lets to find the matrix defect of
Xasdef X =d.

Whence def (E — Pg,) = d and rank (E — P},) = m — d.

Divide the system (13) into # bands of the width d and add all the lines to the last one. Then
the last band will become zero.

The system (13) is consistent if and only if the last band of the expanded linear equations
system is equal to zero.
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m
So we get PU{( = kgl ik (i) Then

K107 (k41)
Rigy(i) — Xloy (1) :
Y Rigy(i) — %201(2) _ X1 (n)
P - = ke ey — 1
8= Lo ; T )
Rigy (i) = Koy (m) :
Rk oy (k)

Cn+ PoCL+ PACa+ ..+ P w1 = (@10y(1) F - - + Ry () )

Knoy(n)

X1y (1) X201 (2) X304 (3)
I L P O
Koy (m) X100 (1) X1y (1)
) 101(1) %201(2) '
X107 (n—1)

Add all the bands of the width d to the last one and obtain

n m
u Z Rkoy (k) id — 0 Z Xk (k) Hd = Og-
k=1 k=1

Whence the system (13) is consistent. Then the former equations system is also consistent.

This means that the condition (Q) is sufficient for constructing an exponent matrix with given
cyclic Gorenstein matrices on the main block diagonal.

(1]
(2]

(3]
(4]

[5]

(6]

(7]

(8]
[9]
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