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LATERAL CONTINUITY AND ORTHOGONALLY ADDITIVE OPERATORS

We generalize the notion of a laterally convergent net from increasing nets to general ones and
study the corresponding lateral continuity of maps. The main result asserts that, the lateral continu-
ity of an orthogonally additive operator is equivalent to its continuity at zero. This theorem holds
for operators that send laterally convergent nets to any type convergent nets (laterally, order or norm
convergent).
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1 INTRODUCTION

Some versions of laterally (i.e., horizontally) continuous maps acting between vector lattices
were considered in [4] and [6]. A net (x,) in a vector lattice E in the mentioned above papers
is called laterally convergent to x € E if x, T xp E xasa < B and x, 25 x. Here and in the
sequel the relation u T v means that u is a fragment (component, in another terminology) of
v, thatis, u L (v — u), and the notation x, —25 x means that the net (x4 ) order converges to x,
i.e. there is a net (u,) in E with the same index set such that |x, — x| < u, forall &, and u, |} 0,
that is, (u,) is a decreasing (in the non-strict sense) net with zero infimum. In our opinion,
the assumption x, T xg C x on the net in the above definition of the lateral convergence is
too restrictive and unjustified. One of the tasks of the present note is to generalize the lateral
convergence to not necessarily laterally increasing nets.

In [4] the authors considered maps that laterally convergent nets send to order convergent
nets (such maps were called disjointly continuous). In [6] the maps that laterally convergent
nets send to norm convergent nets in a normed space were called laterally-to-norm continuous.
In both papers [4] and [6] laterally convergent nets were considered to be laterally increasing.
Another task of the present paper is to analyze the relationships between different versions of
lateral continuity. We provide an example of a disjointly continuous map which is not laterally
continuous in the sense of new (generalized) definition of the lateral continuity. However, we
do not know if there exists an orthogonally additive operator of the kind.

Due to the generalized definition of the lateral continuity, there are nontrivial nets laterally
converging to zero. So, it is naturally to ask, whether the lateral continuity of a linear (or, more
general, orthogonally additive) operator can be reduced to the same continuity at zero. Our
mail result answer this in the affirmative.
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1.1 Terminology and notation

Terminology, notation and facts on vector lattices, that are familiarly used in the paper
were taken from [1]. The equality z = x Uy for elements x,y,z of a vector lattice E means
thatz = x + y and x L y, thatis, |x| A |[y| = 0. All vector lattices considered in the paper are
assumed to be Archimedean.

For the first time orthogonally additive operators on vector lattices were considered and
investigated in [4] and [5]. Let E be a vector lattice and X be a vector space. A function
T : E — X is called an orthogonally additive operator if T(x Uy) = T(x) + T(y). In other
words, orthogonally additive operators the sum of two disjoint elements send to the sum of
their images.

An important example of a nonlinear orthogonally additive operator is the positive part
xT of an element x in a vector lattice E. Show that, if x L y then (x +y)" = x* +y™.
Using the well known properties (1 +v) V (u +w) = u+ (vV w) [1, Theorem 2.1] and
sup(—A) = —infA [1, p. 3] for u,v,w € E and A C E, taking into account that x™ L y~,
y™ L x7, and that the disjoint (orthogonal) complement is a linear space [1, Theorem 3.3], we
obtain (x* +yT) A (x~ +y~) =0, and hence

(x+y)" =y Vo=(x"+y" —x -y )V +y" —x"—y")
=x 4yt (T Hy ) V=T Y )
=xt+yt — (T +y)AG +y ) =x"+yT.

We use several times the example of a vector lattice R of all functions x : Q) — R with
respect to the pointwise linear operations of taking the sum and the multiplication by a scalar,
and with the pointwise order: x < y if and only if x(t) < y(t) for all t € Q. Given a subset
A C ), the symbol 14 denotes the characteristic function of A, thatis, the function1, : QO — R
given by

1, ifte A,
Lalt) = { 0, ifte Q\A.

Definitions and necessary properties of Boolean algebras see in [2, Definition 7.9].
1.2 The lateral order

For the first time the lateral order and its properties were considered in [3]. But, as far as
we know, the cited paper is not yet published. So, for convenience of the reader, propositions
that we took from [3], we provide with complete proofs and citation.

Proposition 1 ([3]). Let E be a vector lattice and x,y € E.
(1) If x C y then
(@ x"Cytandx™ Cy,
(b) xt <yTandx™ <y,
(c) x~ LyTandx™ Ly,
(d) |x| E |yl
(2) xCyifandonlyifx™ CyT andx~ Cy~.
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Proof. Assume x C y, thatis, y = xU (y —x). Then y* = x™ U (y — x)*, which implies
xT <yTand (y—x)" =y" —x". Hencey™ = xt U (y" —xT), ie, x* C y*. Analogously,
x~ <y~ and x~ C y~. Thus, (a), (b) and the “only if” part of item (2) is proved.

(c) By (b),0 < x~ Ay" <y~ AyT = 0. The second part of (c) is proved analogously.

(d) By (a), x* Lyt —xT,and by (c), x™ L y~. Moreover, x™ 1 x~. Hence x* L |y| — |x|.
Analogously, x~ L |y| — |x|. The latter two relations yield |x| L |y| — |x], thatis, [x| C |y|.

The “if” part of (2). Suppose x™ C y™ and x~ T y~. Then the first relation implies

xT < yt. Then0 < x" Ay~ < y" Ay~ = 0, and hence x™ L y~. Taking into account
xt L (yt—x")and x* L x7, one gets x* L (yT —xT —y +x7), ie, xt L (y—x).
Analogously, x~ L (y — x), and thus, x L (y — x). O

Proposition 2 ([3]). Let E be a vector lattice. Then the binary relation C is a partial order on E.

Proof. For every x € E the relation x C x means that x L 0, which is obviously valid.

Assume x,y € Eand x C y C x. Sincex L (y—x)andy L (y— x), one has
(y—x) L (y—x), thatis, y—x = 0. Letx,y,z € Eandx T y C z. Thenx L (y—x).
Moreover, by (1) (b) of Proposition 1 one has |x| < |y|. The latter inequality together with
y L (z—y) gives x L (z—y). Since the orthogonal complement is a linear space [1, Theo-
rem 3.3], we obtainx L (y —x) + (z—y) =z — x, thatis x C z. O

Given any e € E, by §. we denote the set of all fragments of ¢, §, = {x € E: x C e}. Item
(1) of the following proposition is very known for e > 0 [1, Theorem 3.15].

Proposition 3 ([3]). Let E be a vector lattice and e € E. Then

(1) the set §. of all fragments of e is a Boolean algebra with zero 0, unit e with respect to the
operations xUy = (x* VyT) — (x~ Vy )andxNy = (xT AyT) — (x= Ay~ );

(2) if e > 0 then the lateral order C on §, coincides with the lattice order <, and hence the
lateral supremum (infimum) of an arbitrary set A C §. equals its lattice supremum;

(3) xUy equals the supremum, and x Ny equals the infimum of a two-point set {x,y} C F.
with respect to the lateral order C both in §. and E.

Proof. (1) By [1, Theorem 3.15], §,+ and §,- are Boolean algebras with zero 0, units et and e~
respectively and operations V and A, that coincide with the lattice operations on E. Consider
the direct sum §,+ ® §,-, that is, the Cartesian product §,+ X §,- with zero (0,0), unit (e*,e™)
and operations (x1,y1) V (x2,¥2) = (x1 V x2,y1 Vy2) and (x1,y1) A (x2,¥2) = (x1 Ax2, Y1 AY2).
Obviously, §.+ @ §.- is a Boolean algebra. Then the bijection T : §.+ @ F,- — Fe given by
T(x,y) = x —y for any (x,y) € F,+ ® F,- (the facts that 7(x,y) € F., and that 7 is one-to-one
follow from Proposition 1) induces the Boolean algebra structure on §,. It remains to observe
that T sends (0,0) to 0, (e*,e7) to et — e~ = ¢, and the induces operations are given by the
formulas given in the statement of (1).

(2) Assume e > 0 and x,y € §.. By Proposition 1, x,y > 0.

Let x C y. By (1) (b) of Proposition 1, we get x < y.

Letx <y.Then0 < xA(e—y) <xA(e—x)=0,and hence x L (¢ —y). Since x L (e — x)
and the disjoint complement is a linear subspace [1, Theorem 3.3], we obtain x L (y — x), and
hence x C y.

(3) follows from (2) and Proposition 1. O
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By Proposition 3, using the well known equality x +y = x Vy + x Ay [1, Theorem 1.2], we
obtain the following consequence.

Corollary 1 ([3]). Let E be a vector lattice,e € E and x,y Ce. Thenx+y =xUy+xNy.

Proof. The proof follows from equalities:

x+y=x"4+y"—(x"+y")
=x"VvyT +x Ayt —(x"Vy +x Ay )=xUy+xNy.

O

In the sequel, on the Boolean algebra §, we will consider the set-theoretical operations

x\y=xN(e—y)=x—xNyandxAy = (x\y)U (y\x) = (x\y) U (y\x).

Definition 1. A subset A of a vector lattice E is said to be laterally bounded if A C §, for some
ecE.

2 LATERAL CONVERGENCE

In this section, we generalize the lateral convergence from laterally increasing nets to arbi-
trary ones. All statements that are used to prove the main result are given as lemmas, however
they could be of their own interest. By a laterally converging net in a vector lattice we mean any
laterally bounded order converging net. But not only such nets. The point is that, by attach-
ing of several new elements to a laterally bounded net, one can spoil the lateral boundedness,
however, by the idea of convergence, this should not affect the lateral convergence. Taking this
into account, we give the next definition.

Definition 2. An order converging net (x,) to an element x of a vector lattice E, so that there is
an index «g such that the net (x4 )a>a, s laterally bounded, is said to be laterally converging to

x, and the element x is called the lateral limit of (x, ). The notation x, ﬁ) X means that the net
(xa) laterally converges to x. In the particular case, where x, C x4 for any a < B, the laterally
convergent net (x,) is called up-laterally convergent to its lateral limit'.

It is interesting to observe that the lateral limit is laterally bounded by the same element as
the net itself. This follows from the next statement.

Lemma 1. Let E be a vector lattice and e € E. Then the set §, is order closed.

Proof. Let x4 25 x, where x, € 5, and x € E. Show that x C e. By the order continuity of the
lattice operations, 0 = |x4| A |e — x4| — |x| A |e — x|, and hence, |x| A |e — x| = 0. O

As an immediate consequence of Lemma 1 we obtain the following fact.

Lemma 2. Let E be a vector lattice, e € E and x, ﬁ) x, where x € E and x, C e forall &« > «.
Then x C e.

1Recall that exactly these nets in [4] and [6] were said to be laterally convergent.
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We say that a subset A of a vector lattice E is laterally closed if the lateral limit of any net
from A belongs to A. Using this terminology, Lemma 2 asserts that, for any e € E the set g, is
laterally closed.

Next we show that, in the definition of the lateral convergence, one can choose a majorizing
net to be laterally bounded.

Proposition 4. Let E be a Dedekind complete vector lattice, e € E, x, Lat, x, where x € E and
Xy C e forall x > wg. Then there is a net (v, ) with the same index set such that v, C |e| and
|xy — x| E v, foralla > g and v, | 0.

For the proof, we need the following lemma.
Lemma 3. Let E be a vector lattice, e € E and x,y C e. Then |x — y| = [xAy| C |e|.

Proof of Lemma 3. Subtracting from the equality x = (x\ y) L (xNy) the equality y = (v \ x) U
(xNy), weobtainx —y = (x\y) — (y\ x). Since (x\ y) L (y\ x), by the orthogonal additivity
of the positive part of an element and Corollary 1, we obtain

=yl = Ix\yl+ v\ x| = [(c\y) + G\ D) = [(x\y) U\ x)| = [xAy].
Since xAy C e, by item (1)(d) of Proposition 1 we get [xAy| C |e|. O

Proof of Proposition 4. Let (u,) be a net in E such that |x, — x| < u, | 0. For every a we set
U« = Vp=a |xp — x|. The supremum exists because |xg — x| < 2e for all  and E is Dedeking
complete. By Lemma 3, |xg — x| C [e| for all B. By (2) of Proposition 3, v, equals the lateral
supremum of the net (|xg — x[)g>,. Hence v, C |e[. The inequality |x, — x| < v, for all &
follows from the construction of v,. Finally, the condition v, | 0 follows from

0<y, < \/uﬁ:u,x¢0.
p=u

O

Lemma 4. Let E be a vector lattice, (x,) anetin E and x € E. Then the following assertions are
equivalent:

(i) 2 =5 x;

.. lat _ lat, .
(i) x7 == x¥, x; —= x~ and (x,)u>4, is laterally bounded for some a;

(iii) The set {x} U {xy : « > ap} is laterally bounded and x,Ax 2t .

Moreover, each of (i)-(iii) implies | x| Jat, |x].

Proof. (i) < (ii) The equivalence of x, —= x and the conditions x;7 —>+ x¥, x; —= x~ is
easily seen. It remains to observe that, the lateral boundedness of (x,) implies that of the nets
(x¢) and (x,) by Proposition 1.

(i) = (iii) Assume x, i x. By Lemma 2, there is e € E such that x, x, C e for all &« > «.
Then the net (x,AxX)y>4, is laterally bounded by e. Moreover, by Lemma 3, [x,Ax| = |x, — x|,
and hence x,Ax — 0.

(iii) = (i) directly follows from Lemma 3.

It remains to observe that the condition |x, | tat, |x| follows from (1) (d) of Proposition 1.

O
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Remark that the assumption of lateral boundedness of the set {x} U {x, : & > ao} in (iii)
serves for the elements x,Ax to be well defined, and the implication (ii)) = (i) may fail to
be valid if one removes the assumption of lateral boundedness of the net (x,) in (ii), as the
following example shows.

Example 1. There exist a vector lattice E, a sequence (x,,) in E and an element x € E such that

X7 Bt o, X, LY x=, but for every ng € IN the sequence (xy,)n>n, is not laterally bounded,
and hence, (x,) laterally diverges.

Proof. Indeed, consider the vector lattice E = RR with the pointwise order and the sequence
(x,) in E, given by
1, if t € (—oo, l],
t) = i
% (t) { —1, ift € (3, +o0).

It is a simple technical exercise to show that the sequence (x,) order converges to

(1, ifte (—oo0],
x(t)_{ 1, if t € (0, +c0),

however, the sequence (x)n>n, is not laterally bounded for all nyp € IN. On the other hand,
xro= LTI = 1(_c0 Since x; LT 1(_gq) for al n € IN, one has that
x5 = 1 oo tat, 1(_co,9- Analogously, x,; =11 ) Jat, 1(0,4-00)- O

n
3 LATERAL CONTINUITY

In this section we study versions of continuity connected to the lateral convergence.

Definition 3. Let E, F be vector lattices. A function f : E — F is said to be:

(L-L) laterally continuous at a point x € E if for any net (x,) in E the relation x, 1t x implies
lat

flxa) = f(x);

(L-O) laterally-to-order continuous at a point x € E if for any net (x,) in E the relation x, LN
implies f(x,) — f(x).

Definition 4. Let E be a vector lattice and F a normed space. A function f : E — F is said to be

(L-N) laterally-to-norm continuous at a point x € E if for any net (x,) in E the condition x, Jat,

x yields || f(xx) — f(x)|| — 0.

Following the terminology of [4], a map f : E — F acting from a vector lattice E to a
vector lattice or a normed space F is said to be disjointly laterally (disjointly order or disjointly
norm) continuous at a point x € E if for every net (x,) in E up- laterally converging to x the net
(f(x4)) laterally (order or norm, respectively) converges to f(x) in F. The corresponding type
of convergence we denote by (DL-L), (DL-O) or (DL-N).

We say that a function f : E — F is continuous in some of the senses ((L-L), (L-O), (L-N),
(DL-L), (DL-O) or (DL-N)), if f is continuous in the same sense at any point x € E.
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Notice that the generalization of the notion of a laterally convergent net from up-laterally
convergent nets to arbitrary nets may affect the lateral continuity at a fixed point. Indeed, if
a net (x,) in a vector lattice E up-laterally converges to zero then x, = 0 for all a. Hence, an
arbitrary map f : E — F up-laterally convergent to zero nets sends to convergent nets in any
sense. So, it is not a big deal to provide an example where the same happen at a nonzero point
xo € E (say, at a point xp which is an atom in E, that is, the only fragments of xo are 0 and
xo itself). It is clear that not every map acting from E = RR to a nontrivial vector lattice or a
normed space is continuous in any of the senses (L-L), (L-O) or (L-N) at xy. For instance, the
one givenby f(xp) = 0and f(x) =y # Oforall x € E\ {xp}. Indeed, the sequence x,, = 1,1
laterally converges to x, however f(x,) = yo /4 0 in any of the senses (L-L), (L-O) or (L-N).

The following theorem, which is the main result, in particular, asserts that the lateral con-
tinuity of an orthogonally additive operator is equivalent to its lateral continuity just at zero.

Theorem 1. Let E be a vector lattice, F a vector lattice or a normed space, T : E — F an
orthogonally additive operator. Let X be one of the letters L, O or N. Then the following
assertions are equivalent:

(1) T is (L-X) continuous;
(2) T is (L-X) continuous at zero.

Proof. The implication (1) = (2) is obvious. Prove (2) = (1). Let (x,) be anetin E, x €

E and x, i x. Choose ¢ € E and an index ag so that x, © e as &« > wag. Then, by

Lemma 2, x C e. Next, Lemma 4 implies that x,Ax 1t 0. Let (uy) be a net in E such that

|xeAx| < u, | 0. Taking into account that x,Ax = (x,\ x) U (x\ x.), we obtain
lxa \ x| < 1y | Oand |x\ x4| < 1ty L 0. Then x, \ x > 0 and x\ x, — 0, and hence,
X\ X 1% 0 and x\ xq LN By the (L-X)-continuity at zero, T(x, \ x) — 0and T(x\ xo) — 0
in the sense of X-convergence, because T(0) = 0 (as T is orthogonally additive). Since x, =
(x4 \ x) U (x4 N x), by the orthogonal additivity of T,

T(xy) = T(xa \ x) + T(xx N x). (1)

Analogously,
T(x) = T(x\ xa) + T(x N xg). ()

Subtracting from (1) the equality (2), we obtain T(x,) — T(x) = T(xs \ x) — T(x\ xz) — 0
in the sense of X. O

The following example shows that, the notion of lateral continuity changes when replacing
the up-laterally convergent nets with arbitrary lateral converging nets.

Recall that, following [4], a map f : E — F between vector lattices E and F is called dis-
jointly continuous if for every x € E and every up-laterally convergent net (x,) the condition

Xy 2 x implies f(x,) — f(x).

Example 2. There exist vector lattices E, F and a disjointly continuous map f : E — F which is
not laterally-to-order continuous.
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Proof. Set E = R0, F = R0 and define amap f : E — Fby f(0) = 0 and f(x) = x + 11
for x € E\ {0}. Then f is disjointly continuous at zero, because all up-laterally convergent
to zero nets consist of zero elements, and the disjoint continuity of f at any nonzero point is

obvious. Show that f is not laterally continuous at zero. Indeed, for the sequence x;,, = 1,1y,

n=1,2,...onehas x, at, 0, and nevertheless, f(x,) = x, + 11 tat, 11 #0=f(0). O

We do not know if there is an orthogonally additive operator with the same properties.

Problem. Do there exist vector lattices E,F and an orthogonally additive operator
T : E — F which is not laterally-to-order continuous?

Remark that any other version of Theorem 1 holds true in which instead of the convergence
in the sense X one considers another convergence (say, topological), which has the property of
uniqueness of limit and such that the sum of two convergent nets converges to the sum of their
limits.
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Mu y3araAbHIOEMO TIOHSITTSI AaTePaAbHO 3615KHOI CITKM 3i 3pOCcTaiouMx CiTOK Ha AOBiABHI Ta BU-
BYAEMO BIiAIIOBiAHY AaTepaAbHY HellepepBHICTh BiaobpakeHb. OCHOBHMII pe3yABTaT CTBEPAXYE,
IO AaTepaAbHA HeTllepepBHiCTh OPTOrOHAABHO aAMTUBHOTO OIlepaTopa eKBiBaAeHTHa AO JIOTO AaTe-
PaAbHOI HellepepBHOCTI B HyAi. L1st TeopeMa Mae Miclie AAsT oIlepaTopiB, IO IepeBOAATDH AaTepaAb-
HO 361XHi ciTKM y ciTky, sIKi 36iratoThest B 6yAb-SIKOMY PO3YMiHHI (AaTeparbHO, OPSIAKOBO UM 3a
HOPMOIO).

Kontouosi cnosa i ppasu: OpTOrOHAABHO aAMTMBHUI OIlepaToOp, AaTepaAbHa HellepepBHICTb.



