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LATERAL CONTINUITY AND ORTHOGONALLY ADDITIVE OPERATORS

We generalize the notion of a laterally convergent net from increasing nets to general ones and

study the corresponding lateral continuity of maps. The main result asserts that, the lateral continu-

ity of an orthogonally additive operator is equivalent to its continuity at zero. This theorem holds

for operators that send laterally convergent nets to any type convergent nets (laterally, order or norm

convergent).

Key words and phrases: orthogonally additive operator, lateral continuity.

Chernivtsi Medical College, 60 Geroiv Maidanu str., 58001, Chernivtsi, Ukraine

E-mail: anna_hostyuk@ukr.net

1 INTRODUCTION

Some versions of laterally (i.e., horizontally) continuous maps acting between vector lattices

were considered in [4] and [6]. A net (xα) in a vector lattice E in the mentioned above papers

is called laterally convergent to x ∈ E if xα ⊑ xβ ⊑ x as α < β and xα
o

−→ x. Here and in the

sequel the relation u ⊑ v means that u is a fragment (component, in another terminology) of

v, that is, u ⊥ (v − u), and the notation xα
o

−→ x means that the net (xα) order converges to x,

i.e. there is a net (uα) in E with the same index set such that |xα − x| ≤ uα for all α, and uα ↓ 0,

that is, (uα) is a decreasing (in the non-strict sense) net with zero infimum. In our opinion,

the assumption xα ⊑ xβ ⊑ x on the net in the above definition of the lateral convergence is

too restrictive and unjustified. One of the tasks of the present note is to generalize the lateral

convergence to not necessarily laterally increasing nets.

In [4] the authors considered maps that laterally convergent nets send to order convergent

nets (such maps were called disjointly continuous). In [6] the maps that laterally convergent

nets send to norm convergent nets in a normed space were called laterally-to-norm continuous.

In both papers [4] and [6] laterally convergent nets were considered to be laterally increasing.

Another task of the present paper is to analyze the relationships between different versions of

lateral continuity. We provide an example of a disjointly continuous map which is not laterally

continuous in the sense of new (generalized) definition of the lateral continuity. However, we

do not know if there exists an orthogonally additive operator of the kind.

Due to the generalized definition of the lateral continuity, there are nontrivial nets laterally

converging to zero. So, it is naturally to ask, whether the lateral continuity of a linear (or, more

general, orthogonally additive) operator can be reduced to the same continuity at zero. Our

mail result answer this in the affirmative.
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1.1 Terminology and notation

Terminology, notation and facts on vector lattices, that are familiarly used in the paper

were taken from [1]. The equality z = x ⊔ y for elements x, y, z of a vector lattice E means

that z = x + y and x ⊥ y, that is, |x| ∧ |y| = 0. All vector lattices considered in the paper are

assumed to be Archimedean.

For the first time orthogonally additive operators on vector lattices were considered and

investigated in [4] and [5]. Let E be a vector lattice and X be a vector space. A function

T : E → X is called an orthogonally additive operator if T(x ⊔ y) = T(x) + T(y). In other

words, orthogonally additive operators the sum of two disjoint elements send to the sum of

their images.

An important example of a nonlinear orthogonally additive operator is the positive part

x+ of an element x in a vector lattice E. Show that, if x ⊥ y then (x + y)+ = x+ + y+.

Using the well known properties (u + v) ∨ (u + w) = u + (v ∨ w) [1, Theorem 2.1] and

sup(−A) = − inf A [1, p. 3] for u, v, w ∈ E and A ⊆ E, taking into account that x+ ⊥ y−,

y+ ⊥ x−, and that the disjoint (orthogonal) complement is a linear space [1, Theorem 3.3], we

obtain (x+ + y+) ∧ (x− + y−) = 0, and hence

(x + y)+ = (x + y) ∨ 0 = (x+ + y+ − x− − y−) ∨ (x+ + y+ − x+ − y+)

= x+ + y+ +
(

−(x− + y−) ∨−(x+ + y+)
)

= x+ + y+ − (x+ + y+) ∧ (x− + y−) = x+ + y+.

We use several times the example of a vector lattice R
Ω of all functions x : Ω → R with

respect to the pointwise linear operations of taking the sum and the multiplication by a scalar,

and with the pointwise order: x ≤ y if and only if x(t) ≤ y(t) for all t ∈ Ω. Given a subset

A ⊆ Ω, the symbol 1A denotes the characteristic function of A, that is, the function 1A : Ω → R

given by

1A(t) =

{

1, if t ∈ A,

0, if t ∈ Ω \ A.

Definitions and necessary properties of Boolean algebras see in [2, Definition 7.9].

1.2 The lateral order

For the first time the lateral order and its properties were considered in [3]. But, as far as

we know, the cited paper is not yet published. So, for convenience of the reader, propositions

that we took from [3], we provide with complete proofs and citation.

Proposition 1 ([3]). Let E be a vector lattice and x, y ∈ E.

(1) If x ⊑ y then

(a) x+ ⊑ y+ and x− ⊑ y−,

(b) x+ ≤ y+ and x− ≤ y−,

(c) x− ⊥ y+ and x+ ⊥ y−,

(d) |x| ⊑ |y|.

(2) x ⊑ y if and only if x+ ⊑ y+ and x− ⊑ y−.
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Proof. Assume x ⊑ y, that is, y = x ⊔ (y − x). Then y+ = x+ ⊔ (y − x)+, which implies

x+ ≤ y+ and (y − x)+ = y+ − x+. Hence y+ = x+ ⊔ (y+ − x+), i.e., x+ ⊑ y+. Analogously,

x− ≤ y− and x− ⊑ y−. Thus, (a), (b) and the “only if” part of item (2) is proved.

(c) By (b), 0 ≤ x− ∧ y+ ≤ y− ∧ y+ = 0. The second part of (c) is proved analogously.

(d) By (a), x+ ⊥ y+ − x+, and by (c), x+ ⊥ y−. Moreover, x+ ⊥ x−. Hence x+ ⊥ |y| − |x|.

Analogously, x− ⊥ |y| − |x|. The latter two relations yield |x| ⊥ |y| − |x|, that is, |x| ⊑ |y|.

The “if” part of (2). Suppose x+ ⊑ y+ and x− ⊑ y−. Then the first relation implies

x+ ≤ y+. Then 0 ≤ x+ ∧ y− ≤ y+ ∧ y− = 0, and hence x+ ⊥ y−. Taking into account

x+ ⊥ (y+ − x+) and x+ ⊥ x−, one gets x+ ⊥ (y+ − x+ − y− + x−), i.e., x+ ⊥ (y − x).

Analogously, x− ⊥ (y − x), and thus, x ⊥ (y − x).

Proposition 2 ([3]). Let E be a vector lattice. Then the binary relation ⊑ is a partial order on E.

Proof. For every x ∈ E the relation x ⊑ x means that x ⊥ 0, which is obviously valid.

Assume x, y ∈ E and x ⊑ y ⊑ x. Since x ⊥ (y − x) and y ⊥ (y − x), one has

(y − x) ⊥ (y − x), that is, y − x = 0. Let x, y, z ∈ E and x ⊑ y ⊑ z. Then x ⊥ (y − x).

Moreover, by (1) (b) of Proposition 1 one has |x| ≤ |y|. The latter inequality together with

y ⊥ (z − y) gives x ⊥ (z − y). Since the orthogonal complement is a linear space [1, Theo-

rem 3.3], we obtain x ⊥ (y − x) + (z − y) = z − x, that is x ⊑ z.

Given any e ∈ E, by Fe we denote the set of all fragments of e, Fe = {x ∈ E : x ⊑ e}. Item

(1) of the following proposition is very known for e ≥ 0 [1, Theorem 3.15].

Proposition 3 ([3]). Let E be a vector lattice and e ∈ E. Then

(1) the set Fe of all fragments of e is a Boolean algebra with zero 0, unit e with respect to the

operations x∪∪∪ y = (x+ ∨ y+)− (x− ∨ y−) and x∩∩∩ y = (x+ ∧ y+)− (x− ∧ y−);

(2) if e ≥ 0 then the lateral order ⊑ on Fe coincides with the lattice order ≤, and hence the

lateral supremum (infimum) of an arbitrary set A ⊆ Fe equals its lattice supremum;

(3) x∪∪∪ y equals the supremum, and x∩∩∩ y equals the infimum of a two-point set {x, y} ⊆ Fe

with respect to the lateral order ⊑ both in Fe and E.

Proof. (1) By [1, Theorem 3.15], Fe+ and Fe− are Boolean algebras with zero 0, units e+ and e−

respectively and operations ∨ and ∧, that coincide with the lattice operations on E. Consider

the direct sum Fe+ ⊕ Fe− , that is, the Cartesian product Fe+ × Fe− with zero (0, 0), unit (e+, e−)

and operations (x1, y1)∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2) and (x1, y1)∧ (x2, y2) = (x1 ∧ x2, y1 ∧ y2).

Obviously, Fe+ ⊕ Fe− is a Boolean algebra. Then the bijection τ : Fe+ ⊕ Fe− → Fe given by

τ(x, y) = x − y for any (x, y) ∈ Fe+ ⊕ Fe− (the facts that τ(x, y) ∈ Fe, and that τ is one-to-one

follow from Proposition 1) induces the Boolean algebra structure on Fe. It remains to observe

that τ sends (0, 0) to 0, (e+, e−) to e+ − e− = e, and the induces operations are given by the

formulas given in the statement of (1).

(2) Assume e ≥ 0 and x, y ∈ Fe. By Proposition 1, x, y ≥ 0.

Let x ⊑ y. By (1) (b) of Proposition 1, we get x ≤ y.

Let x ≤ y. Then 0 ≤ x ∧ (e − y) ≤ x ∧ (e − x) = 0, and hence x ⊥ (e − y). Since x ⊥ (e − x)

and the disjoint complement is a linear subspace [1, Theorem 3.3], we obtain x ⊥ (y − x), and

hence x ⊑ y.

(3) follows from (2) and Proposition 1.
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By Proposition 3, using the well known equality x + y = x ∨ y + x ∧ y [1, Theorem 1.2], we

obtain the following consequence.

Corollary 1 ([3]). Let E be a vector lattice, e ∈ E and x, y ⊑ e. Then x + y = x∪∪∪ y + x∩∩∩ y.

Proof. The proof follows from equalities:

x + y = x+ + y+ − (x− + y−)

= x+ ∨ y+ + x+ ∧ y+ − (x− ∨ y− + x− ∧ y−) = x∪∪∪ y + x∩∩∩ y.

In the sequel, on the Boolean algebra Fe we will consider the set-theoretical operations

x \\\ y = x∩∩∩ (e − y) = x − x∩∩∩ y and x△△△y = (x \\\ y)∪∪∪ (y \\\ x) = (x \\\ y) ⊔ (y \\\ x).

Definition 1. A subset A of a vector lattice E is said to be laterally bounded if A ⊆ Fe for some

e ∈ E.

2 LATERAL CONVERGENCE

In this section, we generalize the lateral convergence from laterally increasing nets to arbi-

trary ones. All statements that are used to prove the main result are given as lemmas, however

they could be of their own interest. By a laterally converging net in a vector lattice we mean any

laterally bounded order converging net. But not only such nets. The point is that, by attach-

ing of several new elements to a laterally bounded net, one can spoil the lateral boundedness,

however, by the idea of convergence, this should not affect the lateral convergence. Taking this

into account, we give the next definition.

Definition 2. An order converging net (xα) to an element x of a vector lattice E, so that there is

an index α0 such that the net (xα)α≥α0 is laterally bounded, is said to be laterally converging to

x, and the element x is called the lateral limit of (xα). The notation xα
lat
−→ x means that the net

(xα) laterally converges to x. In the particular case, where xα ⊑ xβ for any α < β, the laterally

convergent net (xα) is called up-laterally convergent to its lateral limit1.

It is interesting to observe that the lateral limit is laterally bounded by the same element as

the net itself. This follows from the next statement.

Lemma 1. Let E be a vector lattice and e ∈ E. Then the set Fe is order closed.

Proof. Let xα
o

−→ x, where xα ∈ Fe and x ∈ E. Show that x ⊑ e. By the order continuity of the

lattice operations, 0 = |xα| ∧ |e − xα|
o

−→ |x| ∧ |e − x|, and hence, |x| ∧ |e − x| = 0.

As an immediate consequence of Lemma 1 we obtain the following fact.

Lemma 2. Let E be a vector lattice, e ∈ E and xα
lat
−→ x, where x ∈ E and xα ⊑ e for all α ≥ α0.

Then x ⊑ e.

1Recall that exactly these nets in [4] and [6] were said to be laterally convergent.
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We say that a subset A of a vector lattice E is laterally closed if the lateral limit of any net

from A belongs to A. Using this terminology, Lemma 2 asserts that, for any e ∈ E the set Fe is

laterally closed.

Next we show that, in the definition of the lateral convergence, one can choose a majorizing

net to be laterally bounded.

Proposition 4. Let E be a Dedekind complete vector lattice, e ∈ E, xα
lat
−→ x, where x ∈ E and

xα ⊑ e for all α ≥ α0. Then there is a net (vα) with the same index set such that vα ⊑ |e| and

|xα − x| ⊑ vα for all α ≥ α0 and vα ↓ 0.

For the proof, we need the following lemma.

Lemma 3. Let E be a vector lattice, e ∈ E and x, y ⊑ e. Then |x − y| = |x△△△y| ⊑ |e|.

Proof of Lemma 3. Subtracting from the equality x = (x \\\ y) ⊔ (x∩∩∩ y) the equality y = (y\\\ x) ⊔

(x∩∩∩ y), we obtain x− y = (x\\\ y)− (y\\\ x). Since (x\\\ y) ⊥ (y\\\ x), by the orthogonal additivity

of the positive part of an element and Corollary 1, we obtain

|x − y| = |x \\\ y|+ |y \\\ x| = |(x \\\ y) + (y \\\ x)| = |(x \\\ y)∪∪∪ (y \\\ x)| = |x△△△y|.

Since x△△△y ⊑ e, by item (1)(d) of Proposition 1 we get |x△△△y| ⊑ |e|.

Proof of Proposition 4. Let (uα) be a net in E such that |xα − x| ≤ uα ↓ 0. For every α we set

vα =
∨

β≥α |xβ − x|. The supremum exists because |xβ − x| ≤ 2e for all β and E is Dedeking

complete. By Lemma 3, |xβ − x| ⊑ |e| for all β. By (2) of Proposition 3, vα equals the lateral

supremum of the net (|xβ − x|)β≥α. Hence vα ⊑ |e|. The inequality |xα − x| ≤ vα for all α

follows from the construction of vα. Finally, the condition vα ↓ 0 follows from

0 ≤ vα ≤
∨

β≥α

uβ = uα ↓ 0.

Lemma 4. Let E be a vector lattice, (xα) a net in E and x ∈ E. Then the following assertions are

equivalent:

(i) xα
lat
−→ x;

(ii) x+α
lat
−→ x+, x−α

lat
−→ x− and (xα)α≥α0 is laterally bounded for some α0;

(iii) The set {x} ∪ {xα : α ≥ α0} is laterally bounded and xα△△△x
lat
−→ 0.

Moreover, each of (i)–(iii) implies |xα|
lat
−→ |x|.

Proof. (i) ⇔ (ii) The equivalence of xα
o

−→ x and the conditions x+α
o

−→ x+, x−α
o

−→ x− is

easily seen. It remains to observe that, the lateral boundedness of (xα) implies that of the nets

(xα) and (xα) by Proposition 1.

(i) ⇒ (iii) Assume xα
lat
−→ x. By Lemma 2, there is e ∈ E such that x, xα ⊑ e for all α ≥ α0.

Then the net (xα△△△x)α≥α0 is laterally bounded by e. Moreover, by Lemma 3, |xα△△△x| = |xα − x|,

and hence xα△△△x
o

−→ 0.

(iii) ⇒ (i) directly follows from Lemma 3.

It remains to observe that the condition |xα|
lat
−→ |x| follows from (1) (d) of Proposition 1.
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Remark that the assumption of lateral boundedness of the set {x} ∪ {xα : α ≥ α0} in (iii)

serves for the elements xα△△△x to be well defined, and the implication (ii) ⇒ (i) may fail to

be valid if one removes the assumption of lateral boundedness of the net (xα) in (ii), as the

following example shows.

Example 1. There exist a vector lattice E, a sequence (xn) in E and an element x ∈ E such that

x+n
lat
−→ x+, x−n

lat
−→ x−, but for every n0 ∈ N the sequence (xn)n≥n0 is not laterally bounded,

and hence, (xn) laterally diverges.

Proof. Indeed, consider the vector lattice E = R
R with the pointwise order and the sequence

(xn) in E, given by

xn(t) =

{

1, if t ∈ (−∞, 1
n ],

−1, if t ∈ ( 1
n ,+∞).

It is a simple technical exercise to show that the sequence (xn) order converges to

x(t) =

{

1, if t ∈ (−∞, 0],

−1, if t ∈ (0,+∞),

however, the sequence (xn)n≥n0 is not laterally bounded for all n0 ∈ N. On the other hand,

x+n = 1(−∞, 1
n ]

o
−→ 1(−∞,0]. Since x+n ⊑ 1(−∞,1] for al n ∈ N, one has that

x+n = 1(−∞, 1
n ]

lat
−→ 1(−∞,0]. Analogously, x−n = 1( 1

n ,+∞)
lat
−→ 1(0,+∞).

3 LATERAL CONTINUITY

In this section we study versions of continuity connected to the lateral convergence.

Definition 3. Let E, F be vector lattices. A function f : E → F is said to be:

(L-L) laterally continuous at a point x ∈ E if for any net (xα) in E the relation xα
lat
−→ x implies

f (xα)
lat
−→ f (x);

(L-O) laterally-to-order continuous at a point x ∈ E if for any net (xα) in E the relation xα
lat
−→ x

implies f (xα)
o

−→ f (x).

Definition 4. Let E be a vector lattice and F a normed space. A function f : E → F is said to be

(L-N) laterally-to-norm continuous at a point x ∈ E if for any net (xα) in E the condition xα
lat
−→

x yields ‖ f (xα)− f (x)‖ → 0.

Following the terminology of [4], a map f : E → F acting from a vector lattice E to a

vector lattice or a normed space F is said to be disjointly laterally (disjointly order or disjointly

norm) continuous at a point x ∈ E if for every net (xα) in E up- laterally converging to x the net
(

f (xα)
)

laterally (order or norm, respectively) converges to f (x) in F. The corresponding type

of convergence we denote by (DL-L), (DL-O) or (DL-N).

We say that a function f : E → F is continuous in some of the senses ((L-L), (L-O), (L-N),

(DL-L), (DL-O) or (DL-N) ), if f is continuous in the same sense at any point x ∈ E.
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Notice that the generalization of the notion of a laterally convergent net from up-laterally

convergent nets to arbitrary nets may affect the lateral continuity at a fixed point. Indeed, if

a net (xα) in a vector lattice E up-laterally converges to zero then xα = 0 for all α. Hence, an

arbitrary map f : E → F up-laterally convergent to zero nets sends to convergent nets in any

sense. So, it is not a big deal to provide an example where the same happen at a nonzero point

x0 ∈ E (say, at a point x0 which is an atom in E, that is, the only fragments of x0 are 0 and

x0 itself). It is clear that not every map acting from E = R
R to a nontrivial vector lattice or a

normed space is continuous in any of the senses (L-L), (L-O) or (L-N) at x0. For instance, the

one given by f (x0) = 0 and f (x) = y0 6= 0 for all x ∈ E \ {x0}. Indeed, the sequence xn = 1[0, 1
n ]

laterally converges to x0, however f (xn) = y0 6→ 0 in any of the senses (L-L), (L-O) or (L-N).

The following theorem, which is the main result, in particular, asserts that the lateral con-

tinuity of an orthogonally additive operator is equivalent to its lateral continuity just at zero.

Theorem 1. Let E be a vector lattice, F a vector lattice or a normed space, T : E → F an

orthogonally additive operator. Let X be one of the letters L, O or N. Then the following

assertions are equivalent:

(1) T is (L-X) continuous;

(2) T is (L-X) continuous at zero.

Proof. The implication (1) ⇒ (2) is obvious. Prove (2) ⇒ (1). Let (xα) be a net in E, x ∈

E and xα
lat
−→ x. Choose e ∈ E and an index α0 so that xα ⊑ e as α ≥ α0. Then, by

Lemma 2, x ⊑ e. Next, Lemma 4 implies that xα△△△x
lat
−→ 0. Let (uα) be a net in E such that

|xα△△△x| ≤ uα ↓ 0. Taking into account that xα△△△x = (xα \\\ x) ∪∪∪ (x \\\ xα), we obtain

|xα \\\ x| ≤ uα ↓ 0 and |x \\\ xα| ≤ uα ↓ 0. Then xα \\\ x
o

−→ 0 and x \\\ xα
o

−→ 0, and hence,

xα \\\ x
lat
−→ 0 and x\\\ xα

lat
−→ 0. By the (L-X) -continuity at zero, T(xα \\\ x) → 0 and T(x\\\ xα) → 0

in the sense of X-convergence, because T(0) = 0 (as T is orthogonally additive). Since xα =

(xα \\\ x) ⊔ (xα ∩∩∩ x), by the orthogonal additivity of T,

T(xα) = T(xα \\\ x) + T(xα ∩∩∩ x). (1)

Analogously,

T(x) = T(x \\\ xα) + T(x∩∩∩ xα). (2)

Subtracting from (1) the equality (2), we obtain T(xα)− T(x) = T(xα \\\ x)− T(x \\\ xα) → 0

in the sense of X.

The following example shows that, the notion of lateral continuity changes when replacing

the up-laterally convergent nets with arbitrary lateral converging nets.

Recall that, following [4], a map f : E → F between vector lattices E and F is called dis-

jointly continuous if for every x ∈ E and every up-laterally convergent net (xα) the condition

xα
lat
−→ x implies f (xα)

o
−→ f (x).

Example 2. There exist vector lattices E, F and a disjointly continuous map f : E → F which is

not laterally-to-order continuous.
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Proof. Set E = R
[0,1], F = R

[0,2] and define a map f : E → F by f (0) = 0 and f (x) = x + 1(1,2]

for x ∈ E \ {0}. Then f is disjointly continuous at zero, because all up-laterally convergent

to zero nets consist of zero elements, and the disjoint continuity of f at any nonzero point is

obvious. Show that f is not laterally continuous at zero. Indeed, for the sequence xn = 1(0, 1
n )

,

n = 1, 2, . . . one has xn
lat
−→ 0, and nevertheless, f (xn) = xn + 1(1,2]

lat
−→ 1(1,2] 6= 0 = f (0).

We do not know if there is an orthogonally additive operator with the same properties.

Problem. Do there exist vector lattices E, F and an orthogonally additive operator

T : E → F which is not laterally-to-order continuous?

Remark that any other version of Theorem 1 holds true in which instead of the convergence

in the sense X one considers another convergence (say, topological), which has the property of

uniqueness of limit and such that the sum of two convergent nets converges to the sum of their

limits.
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Ми узагальнюємо поняття латерально збiжної сiтки зi зростаючих сiток на довiльнi та ви-

вчаємо вiдповiдну латеральну неперервнiсть вiдображень. Основний результат стверджує,

що латеральна неперервнiсть ортогонально адитивного оператора еквiвалентна до його лате-

ральної неперервностi в нулi. Ця теорема має мiсце для операторiв, що переводять латераль-

но збiжнi сiтки у сiтки, якi збiгаються в будь-якому розумiннi (латерально, порядково чи за

нормою).

Ключовi слова i фрази: ортогонально адитивний оператор, латеральна неперервнiсть.


