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KRASNIQI XH.Z.

ON A NECESSARY CONDITION FOR L?(0 < p < 1)—~CONVERGENCE (UPPER
BOUNDEDNESS) OF TRIGONOMETRIC SERIES

In this paper we prove that the condition Zif[ﬂ] #(fl))zfp = o(1) (=0(1)), is a necessary
—12

condition for the LF(0 < p < 1)—convergence (upper boundedness) of a trigonometric series.
Precisely, the results extend some results of A. S. Belov [1].

Key words and phrases: trigonometric series, LY —convergence, Hardy-Littlewood’s inequality,
Bernstein-Zygmund inequalities.
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1 INTRODUCTION AND PRELIMINARIES

Let

n=1

Z c e (112—0 + Z a, cosnx + b, sin nx> (1)
n=—oo

be a trigonometric series in the complex or real form respectively, and we use the following
standard notations for alln > 0

p = Cp +C—p,

by = (cn —c—n)i,

An(p) = \/2 len[?P + |c—n[?P),

Ty = \/|an|2+|b 2= \/2(eul? + le_af?),

An(x) = e 4 e = g, cosnx + by sinnx,
Sn(x) = co + Z Ag(x)
k=1

1 n
on(x) = nrl k;lsk(x)
~ n |
Su(x) = Z (ag sinkx — by coskx) = —i Z (cke —c ke—zkx) ‘
k=1
The square brackets denote the integer part of a number.
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For f € Ly, the L' —metric is defined by the equality

1
T

2m
Il =171 = 5= [ 1f@ldx.

Regarding to the series (1) Belov [1] has proved a necessary condition, expressed in terms
of its coefficients, for the L!—convergence or L' —boundedness of its partial sums proving the
following statement.

Theorem 1. Ifn > 2 is an integer, then

2n
Tk
—— <100 — Sl
D TR TR R
k=[5]
In particular:
1 If
1o = Sml| = o(1) (= O(1)), 2
then
N 0 ivel
) K1 0(1) (= O(1) respectively) . 3)

N3

]

]

2. Assume that series (1) converges (possesses bounded partial sums) in the L' —metric,
then condition (3) holds.

Also the author has considered the cosine and sine series

112—0 + nX::l 4, COS X, (4)
Y aysinnx, )
n=1

where for the series (4) or (5) the coefficients a, are the same as in the trigonometric series
(1) except for coefficients of series (5) which are denoted a, instead of b,, and the following
corollary has been proved by him.

Corollary 1. 1. Assume that series (4) or (5) satisfies condition (2), then

% =0(1) (O(1) respectively) . 6)

gl

]

]

2. Assume that series (4) or (5) converges (possesses bounded partial sums) in the L!-
metric, then condition (6) holds.

NI=

For f € L} ,0 < p < 1, the L’ —metric is defined by the equality

T 1/p
e =151 = (55 [ Vorar)
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Of course || - ||, for 0 < p < 11is not a norm, it does not satisfy the triangle property, and it is
known as quasi-norm.

The above statements, for r—th derivative of the series (1.1), has been generalized by present
author in [2]. But nothing seems to be done so far concerning L —convergence (0 < p < 1)
of the series (1) in the direction as Belov did in [1]. Therefore, our main goal in this paper is
studying of L? —convergence of the series (1) for 0 < p < 1.

Our main tools in proving the main results are Bernstein-Zygmund’s inequality and Hardy-
Littelwood’s theorem in the spaces L” (0 < p < 1), and H? (0 < p < 1), respectively.

Lemma 1 ([3] or [5]). Let T,(x) be a trigonometrical polynomial of order n and 0 < p < 1.
Then the inequality || T; ||, < Cpn||T,||, holds true.

Lemma 2 ([4]). If p(z) = Y2 gcxz’, |z| < 1land ¢ € H?,0 < p < 1, then
Y (k+1)P2|eel? < Cpllgllp.
k=0

Throughout in this paper C, denotes a positive constant that depends only on p, not nec-
essarily the same at each occurrences.

2 MAIN RESULTS

We begin with the following helpful statements.

Lemma 3. Foreverym € N and 0 < p < 1, we have

m ) p m ) p
min{ Z ce™ 1, Z cre k¥ }
k=0 p k=0 P
1 m m
> & max { Y (k+1)P2|eel, Y (m —k + 1)P—2|ck|v} .
p k=0 k=0

Proof. The proof of this lemma is an immediate result of the Lemma 2. Indeed, we have that

m m

m ) p 1 27 P 1 27 .
Z cpe®|| = 2—/ Z cxe™| dx = 2—/ cre | dx
k=0 p <TI0 Tizo TJ0 1i=o
1 27| . m iy 1 2 | m . p
_ 2_/ pimx Tre kx| gy — 2_/ Ekez(m k)x dx
TJ0 k=0 TJ0 - li=o
UL 1
= | Lae > ) =k 1) 2o
k=0 p P k=0
The inequalities for Y/, cxe~*** one can prove in the same way in view of equality
Z Ckefzkx — Z Ekezkx
k=0 p k=0 14
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Lemma 4. Given an arbitrary trigonometric series (1) and arbitrary natural numbers n and N

such thatn < N < 2n + 1. Then for 0 < p < 1 the following estimates hold:

Sp1—-Skll, <C S, —8S,_
Jmax 5,1 Silly < Gy max, (1S = Su-ally,

m ..
WD (Z ) = C, I 15m = Sn-all
m ..
_max Z c_je " <Cp _max |Sm — Sn—1llp,

max 1Sk — Su-1llp < Cp max Sk — okl

1/p
N ekl + Jel?
- <C S —S.-1lln,
(Z(kJrl—n)Z—P < Cp max [ISk = Su-ally

k=n

1/p
N Jekl? + [eilP
E — < GCyllSn — Si1l|»,

where C, is a positive constant depending only on p.

Proof. (7). Let m, n be two natural numbers such that m > n. Using the equality

m—1 1

S1ma(3) = S () = 12 (Sn() =S, 1(0) + X gy (540 = Shs

k=n
Lemma 1 and well-known inequalities
|a|P + |b|P, ifo<B<1
la+b|PF <
26 (Jalf + b]f), ifp>1
we have that [|S; — S)_,||, < Cpk||Sk — Sp—1||p, and

1

~ ~ 1 m—1
1Sn—1—=Smllp < 27Cpq 1Sm = Sn-1llp + Yo =115k = Su-1lly
= k+1

m—1
1

k—n k=mn,..

Thusforn < N <2n+1

N—-1 1 1
1 — <1 N—n) <2,
+k;1k+1_ +n+1( n) <

we obtain
(max [[Sn—1 = Sellp < Cp, max [ISx = Su-allp-

(7)

(8)

©)

(10)

(11)

(12)
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(8). From the equality

2) el = (Su(x) = Su1(x)) +i (Sn(x) = Sua(0))

(g

which is the required estimate. The estimate (9) we can prove in the same manner as the
estimate (8). It is sufficient to use the equality

and (7) we get

1 ~ ~
2 _max_ < 2p{mma,),(,NH5m_Sn_1|’p+m£}3§1\l|’5m_S”_al}

p
1
< 27 (1+GCp) mg}ﬁfw 1Sm — Sn—1llp,

2§:c e — (S0 (x) — s%ﬂ@)—i@guy—ahﬂm),

therefore by the reason of similarity we omit the details.
(10). By the equality

m+1

Sm(x) = Sp-1(x) = —— (Sm(x) — om(x))

_+Z x) = 0(x)) = (Su-1(x) = 1 (x))

we have that

1(m+1 m-lq
15 = Sucally < 2H{ 25— ully + L 211k il + ISt = ol
k=n

H

1 o1
:v{wmcwu+z%wrwwfwaq—%4m}

1

27 <2+Z ) max Hsk—O'ka.

Thus 1
max ||S; — S, _ <5.27  max S, — o for n—1.
k:n,...,N” £~ Snallp = k:n—l,...,NH k= okl

The case when n > 2 can be treated in a similar manner. Indeed, since forn < N <2n +1

we have
N-n+1 2

2 <24 — <34+ =<4,
+Zk +— — <3+_-<
then the estimate (10) holds for all n > 1.
(11). From the estimate (8) we have
HL := <C Sk — Su_1l|»- 13
= pk:nnl,a)fNH k n 1”}7 (13)

p
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On the other hand, by the Lemma 3 we obtain

i d . % |cx|? v
HL := cie™|| > — — ) (14)
= R =1
Hence, from (13) and (14) we get
i loxl” " < C, max ||St— Sp_1| (15)
f—n (k +1-— n)Z—P =P k=n,..,N k n=1llp-
In a similiar manner one can find the following estimate
i lo—il? " < C, max ||St— Sp_1| (16)
= (k +1-— n)Z—P =P k=n,..,N k n=1llp-

It is obvious that from (15) and (16) follows

1/p
N ek + Jei]P
k —k
<C St — S, 1lln,
(kg1 (k+1—mn)2-r - pkfr}?}NH = Sn-1lly

which proves the estimate (11).

N .. N ..
(12). The equality Sy (x) — S;,—1(x) = Y cie™ + ) c_je” " and Lemma 3 give

j=n j=n

u ek l” v
kz (N+1—k)2r < GpliSn = Su-ally
=n

and

- lc—kl? v
=n

Using the last two estimates we obtain

1/p
N JeklP + le_k]?
> < CplISn = Sn_illp-
(kgn (N+1—k>2_P — PH N n 1”P

This completes the proof of the Lemma 4. O

We shall prove now an another lemma which in this paper do not need us. The only its
importance is that it extends the Lemma 2 in [1] from the case p = 1 tothe case 0 < p < 1. It
may be useful for the other aspects.

Lemma 5. For any trigonometric series (1) and arbitrary natural number n, the following esti-
mate holds (0 < p < 1):

1 n—1
low = Sullp < Cp{n—+1 ]; 157 = Sgialy +2k:[nn}g]),(...,n 15k = S[n/Z]”p}- (17)
If
S,—S =o0(1) (=0(1)), 18
k:[g}gﬁvnﬂ k= Syzlly =0(1) (= O(1)) (18)

then condition (20) (see below in this paper) is satisfied.
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Proof. Applying Lemma 1 to the equality

n—1
(1 +1) (Sa() =en(1) = L (8i(x) =Sy ()
]:
n—1
1 (Su(x) = Sy () =2 X (8i(x) = Sy (),
j=[n/2]+1

we obtain

1 n—1
(n+1)|[Sn —oullp < 4”{ Y IS; = Spiallp +1llSn — 5[n/21||p}
=1

141 n—1 1 n—1
+27 ) ||S]'_S[n/2}”17§4p{ Y 1S = Spisllp + 111 = Spusallp
j:[n/2]+1 j=1

1+
12" (n—[n/2] -1 Sy —S
(n—[n/2] -1) k:[nrr}gﬁml\ k= Sy llp

1 [ n=l
<4r S;—Sy; 2n—1 Sp—S .
< {Jg 1S; = Sij/2yllp + (2n )k:mn}%),(...,n” k [n/Z]HP}
Supposing that (18) holds, then from (17) obviously the estimate (20) holds. O

The main results of this paper are the following statements which extends Theorem 1 and
Corollary 1 from the case p = 1 to the case 0 < p < 1.

Theorem 2. Ifn > 2 is an integer and 0 < p < 1, then

1/p

= Ax(p)
C — Skl »- 19
(k%] (=K + 127 < Pk:[%f?aﬁ.znﬂffk kllp (19)

In particular:
1 If
0% = Sullp = o(1) (= O(1)), (20)
then )

L A

Z = kk‘(ji)l)z_p =0(1) (= O(1) respectively) . (21)

NI

]

]

2. Assume that series (1) converges (possesses bounded partial sums) in the
LP(0 < p < 1)—metric; then condition (20) holds.

Proof. From Lemma 4, according to the estimates (11) and (10)

2o\ 2 o7 4 Jeylr )
<k§1 (k+1—mn)>r <G k; (k+1—mn)>r (22)

=G ke n2n 1Sk = Sn-allp = G ke 2 1Sk = ellp-
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On the other hand according to the estimates (12) and (10), for 2[n/2] + 1 > n we have

R WO N Y GO S
ck|P + c_k|?
Z +1— 7 SR> +1—k)2?
k=[] ( ky? k=[3] (n (23)
< — S < — o[-
—CP‘S" 5[2]1Hp_cpk=[1;]1a)l(,...,n”5k kllp

Adding (22) and (23) we obtain (19). In addition, from (20) and (19) imply (21).
Let the series (1) converges (possesses bounded partial sums) in the LP (0 < p < 1)-metric,
then

1
o = Sull, <27 {1 = Sull, + llow = £1l, b = o(1) (= O(1)).
Therefore (20) implies (21). This completes the proof of the Theorem 3.1. O

The following corollary is a direct consequence of the Theorem 2.

Corollary 2. 1. Assume that series (4) or (5) satisties condition (20), then

2n

|ax|” ;
— =0(1) (= O(1) respectively) . (24)
kzz[%] (n k| + 127 pecivey

2. Assume that series (4) or (5) converges (possesses bounded partial sums) in the
LP(0 < p < 1)-metric, then condition (24) holds.
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A(p)
[3] (n—K+1)7
At LP(0 < p < 1)—36ixHOCTi (06MeXeHOCTi 3BepXy) TPUMIOHOMETPUYHOTO PsIAy. PesyabraTi
CTaTTi y3aTraAbHIOIOTE AesiKi pesyabTatu beaosa A.C. [1].

B miit craTTi AOBEAEHO, III0 YMOBa Zi =0(1) (=0(1)), € HEOBXiIAHOIO YMOBOIO

Kntouosi cnosa i ppasu: TpUroHOMeTpwuHMIA psia, LP —36ixHicTh, HepiBHICTD XapAi-AiTTAByAQ,
HepiBHOCTI bepHITeltHA-3irMyHAR.



