ISSN 2075-9827 http://www.journals.pu.if.ua/index.php/cmp
Carpathian Math. Publ. 2015, 7 (1), 101-107 KapmnaTcoki maTem. my6a. 2015, T.7, Ne1, C.101-107
doi:10.15330/cmp.71.101-107

[\

OSYPCHUK M.M.

ON SOME PERTURBATIONS OF A STABLE PROCESS AND SOLUTIONS OF THE
CAUCHY PROBLEM FOR A CLASS OF PSEUDO- DIFFERENTIAL EQUATIONS

A fundamental solution of some class of pseudo-differential equations is constructed by a method
based on the theory of perturbations. We consider a symmetric a-stable process in multidimensional
Euclidean space. Its generator A is a pseudo-differential operator whose symbol is given by —c|A|%,
where the constants « € (1,2) and ¢ > 0 are fixed. The vector-valued operator B has the sym-
bol 2ic|A|*~2). We construct a fundamental solution of the equation u; = (A + (a(-), B))u with a
continuous bounded vector-valued function a.
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INTRODUCTION

Let A denote a pseudo-differential operator that acts on a twice continuously differentiable
bounded function (¢(x)), g« according to the following rule

(AQD)(JC) — j% » q)(x +y) — Ty(’);)j%_ (y,VqD(X)) dy, (1)

an_ill"(Z — o)l <”‘T+1> cos 72

wherec > 0,1 < & < 2,d € N are some constants, »xc = — and
ala —1)T (dlz"‘)
V is the Hamilton operator (gradient). Here (-, -) denotes the scalar product in R¥.
It is known that the function u(t, x) = / , ¢(y)g(t, x,y) dy, where
R
1 ‘ "
tx, _ i(y—x,A)—ct|A] da, 2
859 = o f @
is a solution of the following Cauchy problem
ou(t,x) d
T—Axu(t,x), t>0, x € RY, 3)

u(0+,x) =¢(x), x€RY,

for any bounded continuous function (¢(x)) ,cpa-
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If an operator acts on a function of several arguments, then it will be provided by a corre-
sponding subscript, for example, Ay in (3) means that the operator A is acting on u(t, x) as the
function of the variable x.

Note, that the function (g(t,x,Y));~0 xere yere Serves as transition probability density of a
Markov process in IR?, called a symmetric stable process. The operator A is the generator of it.

Let us consider the equation

ou(t, x)

T Asu(t,x) + (a(x),Byu(t,x)), t>0, x € RY, (4)

with some R%-valued function (a(x)),.gs and d-dimensional pseudo-differential operator B
of the order less than «.

In this article, we consider the case, where the a is a bounded continuous function and the
operator B is defined on a differentiable bounded function (¢(x)),.re by the equality

(Bo)x) = oo [ PO gy

Note, that A = 1div(B).

We construct a fundamental solution of equation (4) by perturbing the transition proba-
bility density of a symmetric stable process. The fundamental solution of equation (4) was
constructing in [2] under the assumption that the function a satisfied Holder’s condition.

Symmetric stable processes were perturbed by terms of the type (a(x), V) under various
assumptions on the function (a(x)),cr« in many papers (see, for example, [1, 3, 5, 6]). The
perturbation of stable processes with delta-function in coefficient is constructed in [4].

1 TPERTURBATION OF A STABLE PROCESS

We consider a function (G(t, X,¥)) .0 vere yere as a result of perturbing the transition prob-
ability density g(t, x, y) of a symmetric stable process, if it is a solution of the following equa-
tion

t
G(t,x,y) = g(t,x,y) —{—/O dt /Rd e(t—1,x,2)(B:G(T,2,¥),a(z)) dz. (5)

Now we define a function (e(x)),cr« by the equality e(x) = ﬁa(x) for x € R¥ such that
|a(x)| # 0 and an arbitrary value (with preservation of the measurability) otherwise. Then the
equation (5) takes the form

Glt,x,y) = g(t,x,y) + /Ode /.8t =7.%,2) (B:G(x,2,9), () |a(z) | d=. ©)

It is easy to establish the following equality using the representation (2) and integration by
parts Byg(t, x,y) = %g <(t, x,y). Denote by Vy(t, x, y) a function that is given by the equal-
ity

2(y —xe(x))

Vot x,y) = (Bag(t, x, ), e(x)) = =———g(t, x,y). (7)

We will construct the solution of (6) in the form

t
Glt,xy) = gltxy) + [ ar [ g(t—7x2)V(nzy)a() 8 ®)



ON SOME PERTURBATIONS OF A STABLE PROCESS 103

where the function V (¢, x, y) satisfies the equation

t
V(t,x,y) = Vot x,y) —{—/O dt /Rd Vo(t —7,%,2)V(T,2,y)|a(z)| dz. )

The equation (9) can be solved by the method of successive approximations, namely its solution
will be found in the form .
V(txy) =) Viltxy), (10)
k=0
where V) (t, x, y) is defined by the equality (7) and for k > 1 the following equality

t
Vi(t, x,y) :/0 dT/]Rd Vo(t —7,%,2)Vi_1(7,2,y)|a(z)| dz

is valid.
The well-known estimate (see [2]) (t > 0, x € R, Y€ R%, and N > 0 is a constant)
t

g(t,x,y) <N (11)

allows us to write down

2 — 2 N
Vot %) < 2 = o

(1172 |y — x[)d+e = o (1172 4 |y — x[)d+a-1"

Then, we get that the inequality

1
Vil x)| < Ll 2 [ [ e e (2 ) s
is true, where ||a|| = sup |a(x)].
xER?

In order to estimate Vi we make use of the following inequality (see [2])

/dr/ 1 L dz
0 R? ((t_T)l/zx+ ’Z_de—Hx—l (rl/"‘—i— \z—x\)d“‘—l

« 1 po+1/a
< Z
SRS (”‘SB <5>> (74 [y —+)e

valid for § > —1/a, where C > 0, and B(-, -) is the Euler beta function. We obtain for k > 1

k+1 a k k/w k n
ilt ) < GVl L t |>M1H<” ()

o kU (/% + |y — x x \a' «

2NC||al|t!/* )k k= 1
Note, that 1, = ( H;:'H ) I <1 +28B (— g)) is positive and the relation
’ n=1

1/a
lim 7 i NGl O K (RN
k—oo Ty k—eo  k+1 o 0w
is true. Therefore, the series on the right hand side of (10) converges uniformly in x € RY,
y € R? and locally uniformly in ¢ > 0. Thus, the function V, given by the equality (10), is a
solution of the equation (9). In addition, the following inequality
1

[Vt x,y)| < CT(tl/zx Tty — x|)FreT

(12)

is proved for x € R, y € R"and 0 < t < T, where Cr is a positive constant that may be
depended on T > 0.
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Remark. The constructed function V(t, x,y) is the unique solution of equation (9) in the class
of functions that satisfy inequality (12).

Define the function G(t, x,y) by the equality (8) where the function V (¢, x,y) is defined in
(10). Then we can perform the following calculations

(BxG(t, x,y),e(x)) = Vo(t, x,y) + /0th /IRd Vo(t — T, x,2)V(T,2,y)|a(z)| dz
=V(t, x,y).

We here took the possibility of applying of the operator B under integral, which is proved in
the following Lemma.

Lemma. The equality

t t
Bx/o dT/Rdg(t—T,x,z)V(T,z,y)]a(z)]dz :/0 dr/]Rd B.g(t—7,x,2)V(T,2z,y)la(z)|dz

is true.

Proof. Let us consider a set of operators {B¢ : ¢ > 0} that act on a continuously differentiable
bounded function (¢(x)), g« according to the following rule
2c x+u)— ex
R e =S

Xt J|u|>e

It is clear that lirOnJr(ng)) (x) = (Bg)(x) for all functions ¢, described above, and x € R%.
e—
The inequalities (11) and (12) allow us to assert that

u

W(g(t —Tx+u,z) =gt = 1,%,2))V(T,2,y)|a(z)]

const t—t " t—71
— |u|d+txfl ((t_T)l/a+|Z_x_u|)d+tx ((i’—T)l/’X—}—|Z—x|)d+’X
X 1 .
(Tl/a + ’y _ Z‘)d—i—a—l

It is easy to see that the right hand side of this inequality is the integrable function with respect
to (1, T,z) on theset {|u| > e} x (0;t) x R¥ forallt > 0and x € R, y € R?. Here we used the
results of [2, Lemma 5], where it is proved that

t (t —T)P/" T/
/ dT/ dz
0 R4 ((t_r)l/a_,_ ’Z_x’)d+uc+k (Tl/uc+ ’y_z‘)d+a+l

B—k Y\ 1k 1

<C|B|{——,14+ =)t = 13
B y—1\ Bt 1

+B <1 ™ a t (tl/rx + 1y — x|)d+rx+k

for —a < k < B, —a < < <y and C > 0, which depends only on d, «, k and [.
Therefore, we obtain the following equality

t t
Bg;/d/ F—1,x,2)V(T,2, d:/d/Bg;t—,,v,, dz,
. Rdg( T,x,2)V(T,2,y)|a(z)| dz LT gt —1,x,2)V(T,2y)la(2)] 2(14)
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using the Fubini theorem.

t
The inequalities (12), (13) and |B,g(t, x, < cons allow us to assert that
q S\L XY (178 1 [y — x|)d+a—T

t
the integral / dT/ , B.g(t —7,x,2)V(7,2,y)|a(z)| dz exists. Now we have to pass to the limit
R

with & — 0+ in the equality (14) to complete the proof of Lemma. O

We have thus got that the function G(t, x, y) is the perturbation of the transition probability
density g(t, x,y) of a symmetric stable process.

Considering estimates (12), (11) and inequality (13), we can write for t € (0;T], x € RY,
y € R4

t

G(t,x,y)| <N

t t—1 1
NCrlall [ v [ d
+ rlall 0 T R ((t_r>1/tx+‘z_x‘)d+tx (Tl/“—l—]y—zl)d“‘*l z
K

- t m 14 1/
- (tl/rx_i_‘y_x‘)dﬂxfl tl/lX_'_’y_X‘ 4

where K is a positive constant, which depends on T, &, ¢, ||a|| and d. Note that the right hand
side of the last inequality can be estimated from above by the following expression

Ktlfl/lx

o r—d/w
(tl/rx + ’y _ x‘)dﬂxfl < Kt ’

where K = (2T"/* + 1)K.

2 THE FUNDAMENTAL SOLUTION OF THE CAUCHY PROBLEM

It is known (see [2]) that the function g(¢, x, y) is the fundamental solution of the Cauchy
problem (3) and, in addition, the function

t
fx) = bxy)dy+ [ dr [ g(t—Tx)f(ny)d
ut) = [ oWt xy)dy+ [ v [ gt =7, xy)f(ry)dy
is the solution of the Cauchy problem

ou(t, x)
ot
u(0+,x) = ¢(x), x€RY,

= Au(t,x)+ f(t,x), t>0,x¢€ RY, (15)

for any bounded continuous functions (¢(x)),cre and (f(t, X))~ rcre- Moreover, this solu-
tion is unique in the class of functions that vanish as |x| — oo.
Thus, the function

u(tx) = [ o)G(txy)dy

= [ oW xydy+ [Car [ st-7xy) [ V(Ew2)eE) delal) dy
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is the unique (in the class of functions that tends to zero at infinity) solution of the Cauchy
problem (15) with f(t, x) = /d V(t,x,z)p(z) dz|a(x)|.
R
Now we note that V(¢,x,y) = (BxG(t,x,y),e(x)). Then

f(t,x) = /Rd(BxG(t,x,z),a(x))go(z) dz = (a(x),B,U(t,x)),

and the function U(t, x) is a solution of the Cauchy problem for the equation (4) with bounded
continuous function a(x) and operators A and B defined by equalities (1) and (5) respectively.
Let us prove that the function G(t, x, y) satisfies the equation of Kolmogorov-Chapman

G(t+s,xy) = /]Rd G(s,x,z)G(t,z,y)dz (16)

foralls >0,t>0,x € RY, y € R%. Note, the function <(t, x,y) satisfies the equation (16).
Let (¢(x)),cre be a continuous bounded function. Put U(s, x, ¢) = / , G(s,x,y)(y) dy,
R

u(s,x,9) = [ 8(sxy)e)dyand Wis,x 9) = [ V(s,x1)e(y)dy.
Note, that the function W(t, x, ¢) is the unique solution of the following equation

W(t, x,¢) = Wo(t, x, @) + /Ot dt /IRd Vo(t —7,x,2)W(T,z,¢)|a(z)| dz, (17)

where Wy (s, x, @) = /IRd Vo(s, x,v)e(y) dy.
Then the function U(s, x, ¢) can be given by the equality (see (5))

U(t,x, @) =u(t,x, @)+ /Ot at /Rd St —1,x,2)W(T,z, ¢)|a(z)| dz.
Now, let us find the function U(f + s, x, ¢). We have
U(t+s,x,¢) =u(t+s,x ¢)+ /OHS dt /Rd g(t+s—1,x,2)W(T,z ¢)la(z)| dz
= /]Rdg(s,x,y)u(f,y, ¢)dy
+ [ s myay [dr [ glt- iy Wz g)la)|ds
+ /:Hdr /]Rd gt+s—1,x,2)W(T, 2 ¢)la(z)| dz
= /]Rdg(s,x,y)u(f,y, ¢) dy
+ /OS dt /]Rd g(s—7,x,2)W(t+1,2 ¢9)la(z)|dz.
Therefore, the function W;(s, x, ¢) = W(t + s, x, ) satisfies the equation (17), where the func-

tion ¢ is replaced by U(t,-, ¢). Then W(t +s,x,¢) = W(s,x,U(t,-, ¢)) and we arrive at the
equality U(t +s,x, ¢) = U(s,x, U(t, -, ¢)) or, what is the same,

| Gt +sxyewdy = [ Gls,xz) [ Gtz y)ew) dydz

:/Rd ?(y) dy/]Rd G(s, x,2)G(t,z,v) dz.
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Then the relation (16) is proved because the function ¢ is an arbitrary bounded continuous
one.

Next, we get / ) G(t,x,y)dy = 1 from (8) and (9), because there are obvious equalities
R

/Rdg(t,x,y) dy =1 and /]R"’ Vo(t, x,y)dy = <Bx /Rdg(t,x,y) dy,e(x)) =0

forall t > 0, x € R, and the uniqueness of the solution of equation (9) leads us to the identity

/]Rd V(t,x,y)dy = 0.

Unfortunately, we can not guarantee non-negativity of the function G(t, x,y) and the exis-
tence of a Markov process with the generating operator A + (a(-), B).
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3 AOIIOMOTOI0 METOAY TeOpil 30ypeHb 3HaliAeHO (PYHAAMEHTAABHMII PO3B’SI30K AESIKOTO KAa-
Cy TICeBAO-AVidPepeHIIaAbHMX PiBHSHD. PO3TASHYTO CMeTpUYHMIT X-CTiliKMiT ITpoIiec B 6araToBu-
MipHOMY eBkAiaoBomy mpocTopi. Horo renepatop A e mceBAo-AMdpepeHIiaAbHMM OMepaToOpoM
Ui CMMBOA 3apaeTbest pyHKuiero —c|A|%, ae @ € (1,2) i ¢ > 0 3aprani cTari. BexTopHO3HauUHMIT
onepatop B Mae cumBoa 2ic|A|*"2A. TTobyaoBaHO (PyHAAMEHTAABHMUI PO3B’SI30K PIiBHSHHS Uy =
(A + (a(-), B))u 3 HemepepBHOI O6MEKEHOI0 BEKTOPHO3HAUHOIO (PYHKILEHO 4.

Kntouosi cnoea i ppasu: crivikumi mponec, 3arada Ko, iceBao-andpepeHtiiarbHe piBHSIHHS, IIiAD-
HiCTb VIMOBipHOCTi Iepexoay.



