References
-
Bendat J., Piersol A. Applications of Correlation and Spectral Analysis. John Wiley and Sons, New York, 1980.
-
Buldygin V. On the properties of the empirical correlogram of Gaussian process with integrable in squared spectral density. Ukrainian Math. J. 1995, 47 (7), 1006-1021. doi: 10.1007/BF01084897 (translation of Ukrain. Mat. Zh. 1995, 47 (7), 876-889. (in Russian))
-
Buldygin V., Kozachenko Yu. Metric characterization of random variables and random processes. Amer. Math. Soc., Providence, RI, 2000.
-
Buldygin V., Zayats V. On the asymptotic normality of estimates of the correlation functions stationary Gaussian processes in spaces of continuous functions. Ukrainian Math. J. 1995, 47 (11), 1696-1710. doi: 10.1007/BF01057918 (translation of Ukrain. Mat. Zh. 1995, 47 (11), 1485-1497. (in Russian))
-
Jenkins G., Watts D. Spectral Analysis and Its Applications. Holden Day, Merrifield, 1971.
-
Ivanov A. A limit theorem for the evaluation of the correlation function. Theory Prob. Math. Statist. 1978, 19, 76-81.
-
Ivanov A., Leonenko N. Statistical Analysis of Random Fields. Kluwer, Dordrecht, 1989.
-
Kozachenko Yu.V., Kozachenko L.F. A test for a hypothesis on the correlation function of Gaussian random process. J. Math. Sci. (New York) 1995, 77 (5), 3437-3444. doi: 10.1007/BF02367991 (translation of J. Obchysl. Prykl. Mat. 1993, 77, 61-74. (in Ukrainian))
-
Kozachenko Yu., Moklyachuk O. Pre-Gaussian random vectors and their application. Theory Prob. Math. Statist. 1994, 50, 87-96.
-
Kozachenko Yu., Oleshko T. Analytic properties of certain classes of pre-Gaussian stochastic processes. Theor. Prob. Math. Statist. 1993, 48, 37-51.
-
Kozachenko Yu., Stadnik A. On the convergence of some functionals of Gaussian vectors in Orlicz spaces. Theor. Probab. Math. Statist. 1991, 44, 80-87.
-
Kozachenko Yu., Troshki V. A criterion for testing hypotheses about the covariance function of a stationary Gaussian stochastic process. Modern Stoch.: Theory and Appl. 2014, 1, 139-149.
doi: 10.15559/15-VMSTA17
-
Kozachenko Yu., Fedoryanych T. A criterion for testing hypotheses about the covarians function of a Gaussian stationary process. Theor. Probab. Math. Statist. 2005, 69, 85-94.
-
Fedoryanych T. One estimate of the correlation function for Gaussian stochastic process. Bull. Taras Shevchenko National University of Kyiv 2004, 11, 72-76. (in Ukrainian)
-
Yadrenko M. Spectral Theory of Random Fields. Vyshcha Shkola, Kyiv, 1980. (in Russian)