References
-
Castro C., Micu M. Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method. Numer. Math. 2006, 102 (3), 413-462.
doi: 10.1007/s00211-005-0651-0
-
Ervedoza S. Spectral conditions for admissibility and observability of Schrödinger systems: Applications to finite element discretizations. Asymptot. Anal. 2011, 71 (1-2), 1-32.
doi: 10.3233/ASY-2010-1028
-
Ervedoza S., Zheng C., Zuazua E. On the observability of time-discrete conservative linear systems. J. Funct. Anal. 2008, 254 (12), 3037-3078.
doi: 10.1016/j.jfa.2008.03.005
-
Ervedoza S., Zuazua E. The wave equation: Control and numerics. In: Cannarsa P.M., Coron J.M. (Eds.) Control of Partial Diferential Equations, Lecture Notes in Mathematics, CIME Subseries. Springer Verlag, 2012.
-
Ervedoza S., Zuazua E. Transmutation techniques and observability for time-discrete approximation schemes of conservative systems. Numer. Math. 2015, 130 (3), 425-466.
doi: 10.1007/s00211-014-0668-3
-
Glowinski R., Li C.H., Lions J.L. A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 1990, 7 (1), 1-76.
doi: 10.1007/BF03167891
-
Infante J.A., Zuazua E. Boundary observability for the space semi-discretizations of the one-dimensional wave equation. M2AN Math. Model. Numer. Anal. 1999, 33 (2), 407-438.
-
Isaacson E., Keller H.B. Analysis of numerical methods. John Wiley and Sons, London-New York, 1966.
-
León L., Zuazua E. Boundary controllability of the finite-difference space semi-discretizations of the beam equation. ESAIM Control Optim. Calc. Var. 2002, 8, 827-862.
doi: 10.1051/cocv:2002025
-
Lions J.L. Contrôlabilité exacte-Pertubations et stabilisation de systémes distribués. Masson, Paris, 1988.
-
Münch A. A uniformly controllable and implicit scheme for the 1-D wave equation. ESAIM Math. Model. Numer. Anal. 2005, 39 (2), 377-418.
doi: 10.1051/m2an:2005012
-
Negreanu M. Métodos numéricos para el análisis de la propagación, observación y control de ondas. PhD thesis, Universidad Complutense de Madrid, 2003.
-
Zheng C. Boundary Observability of Time Discrete Schrödinger Equations. Int. J. Math. Model. Numer. Opt. 2009, 1 (1/2), 128-145.
doi: 10.1504/IJMMNO.2009.030092
-
Zuazua E. Remarks on the controllability of the Schrödinger equation. In: Quantum Control: mathematical and numerical challenges, CRM Proc. Lect. Notes, 33. AMS Publications, Providence, R.I., 2003. 181-199.