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AN INVERSE PROBLEM FOR A 2D PARABOLIC EQUATION WITH NONLOCAL
OVERDETERMINATION CONDITION

We consider an inverse problem of identifying the time-dependent coefficient a(t) in a two-
dimensional parabolic equation:

up = a(t)Au+ by (x,y, t)uy + ba(x,y, t)uy +c(x,y, t)u + f(x,y,t), (x,y,t) € Qr,
with the initial condition, Neumann boundary data and the nonlocal overdetermination condition
n (t)u(oly()/ t) + VZ(t)u(h/yOI t) = ]/l3(t)l te [01 T]/

where v is a fixed number from [0, [].

The conditions of existence and uniqueness of the classical solution to this problem are estab-
lished. For this purpose the Green function method, Schauder fixed point theorem and the theory
of Volterra intergral equations are utilized.

Key words and phrases: inverse problem, determining coefficients, parabolic equation, nonlocal
overdetermination condition, rectangular domain.
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INTRODUCTION

This paper discusses the problem of identifying an unknown pair of functions
(a(t), u(x,y,t)) for the equation

ur = a(t)Au+bi(x,y, Hux + ba(x,y, t)uy +c(x,y, u+ f(x,y,t),

(xx,y,) e Qr:={(x,y,1):0<x<hO0<y<l,0<t<T} @
with the initial condition
u(x,y,0) = ¢(x,y), (xy) €[04 x[0,1], 2
boundary conditions
ur(0,y,8) = pua(y, 1), ux(hy,t) = pa(y,t), (v, 1) € [0,1] x [0, T], 3)
uy(x,0,8) = i (x,8), wy(x,1,t) = pa(x,t),  (x,8) € [0,1] x [0, T). @

With the only above data this problem is underdetermined and we are forced to impose an ad-
ditional condition to determine a(t). In particular, we shall take a nonlocal overdetermination
condition, that arises in practical applications [15]:

vi(H)u(0,yo,£) +va(t)ull, yo, t) = pa(t), t€[0,T], ®)

YAK 517.95
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where y is a fixed number from [0, I].

In the past few decades a great deal of interest has been directed towards the coefficient
inverse problems. In 1993 Ivanchov M. considered nonlocal inverse problems of determining a
leading time-dependent coefficient in a 1D heat equation [8, 9, 10]. For parabolic equations in
one space variable, Bereznytska I. [1] considered the problem of determining conductivity a(t)
in a general parabolic equation subject to the Neumann boundary data and nonlocal overde-
termination condition. Analogous problem with the Dirichlet boundary data was investigated
in [12]. Later Huzyk N. investigated the problem of identifying time-dependent coefficients
in a degenerate parabolic equation also subjected to Neumann boundary data and nonlocal
overdetermination condition [5], [6]. All these papers are united by the approach utilized to
proof the existence of solution: the inverse problem is reformulated as a fixed point problem
for a certain nonlinear map, so that the Schauder theorem can be applied to it.

The other approaches to this problem addressing the question of existence and uniqueness
are the Fourier method utilized by Ismailov M.1., Kanca F. [11], Oussaeif T.-E., Bouziani A. [16]
and the theory of reproducing kernels used by Mohammadi M., Mokhtari R. and Isfahani E.T.
[14].

The numerical results to nonlocal inverse problems have been obtained in works of Les-
nic D. et al [13] with the help of Ritz-Galerkin method. A numerical marching scheme based on
the discrete mollification for the recovery of the diffusivity coefficient in the two-dimensional
inverse heat conduction problem has been presented by Coles C., Murio D.A. [2, 3].

Since the satisfactory results to the nonlocal coefficient inverse problems were successfully
obtained in one-dimensional case, this paper represents an attempt to extend these results to
multidimensional case, which is more interesting for its applications.

1 NOTATIONS AND ASSUMPTIONS

Let Gi(x, t,&, T) be the Green function of a 1D problem for the equation u; = a(t)uy, with
a Dirichlet boundary condition, when k = 1, Neumann bondary condition, when k = 2. These
functions are defined by the equality

X ) 1 I (x — &+ 2nh)?
@<J¢”7—z¢nww—wmwn§?< p< 46 - (”>

1V ex _(x+§+2nh)2 B B ta
(1) p( 4(6“)_9@))), k=12, 9(t)—0/ (7)dr.

(6)

At the same time we define the function G, (y, t, 77, T) analogously to Gi(x, t, &, T).
Now, let us introduce the 2D heat equation

ur =a(t)Au+ f(x,y,t), (x,y,t) € Qr. (7)
Green functions for (7) are determined as follows
Gen (5,9, £,6,1,7) = Gelx,t, &, )Gy, £, 7), Ky =1,2. ®)

The Green function of the problem (7), (2)-(4) is defined by (8), when k = m = 2.



AN INVERSE PROBLEM FOR A 2D PARABOLIC EQUATION 109

For a € (0,1) we denote

C*(Qr) :=={f € C(QD)|If (x2,y2,t) = f(x1,y1,t)| < C(|x2 = x1|* + |y2 — 11]%),
(xi/yir t) € @TI i= 172}

Throughout this paper, we assume that:

(A1) f € C*°(Qyp), by, by ceC0(Qr), ¢ C*[0,h] x[0,1]), uz,vi, 1, € CY[0,T)),
pir iz € C2H([0,1] x [0, T]),  par, paa € C>([0, 1] x [0, T]);

(A2) p3(t) —vi(t)b1(0,y0, t)p11 (Yo, t) — v2(t)br (B, yo, t) 12 (Yo, t) — vi(£) £(O, y0, )—Vz(f)
t) >0, vi(t)+vi(t)e(0,y0,t) <O, vyt )+V2(f c(h,yo, t) <
v(t) 20, k=12, b(0,y0,t) <O, bp(h,yo,t) <O, €[0,T], e¢(x, y)
py(x,y) = 0, (x,y) € [0,h] x[0,1], par(x,t) >0, uzz(x,t> 20, (xt)€[0h x[0T];

(A3) v1(t) +12(t) >0, te€[0,T], A¢(x,y) >0, (x,y) €0k x][01];

(AD) ¢+(0,y) = p11(y,0), @x(hy) = p12(y,0), y € [0,1], @y(x,0) = p21(x,0), @y(x,h)
= p22(x,0), x € [0,h], v1(0)¢(0,0) +v2(0)@(h,yo) = u3(0).

2 EXISTENCE OF A SOLUTION

Theorem 1. Provided that (A1)-(A4) hold, the problem (1)—(5) has at least one solution (a, u) €
C([0,t*]) x C*1(Qs), a(t) > 0,t € [0,t*], where t* € (0, T] is determined from the input data.

Proof. To proof the existence of the solution to (1)-(5) we are first going to reduce it to an
equivalent in a certain sense operator equation with respect to a and afterwards to proof the
existence of the operator equation solution by the Schauder fixed point theorem.

In order to obtain an equation with respect to a(t), (1) is applied to the overdetermination
condition (5) previously differentiated:

a(t) = [uz(t) — vi(£)b1(0,y0, t) 11 (Yo, t) — va(t)b1(h, yo, t) 12 (Yo, t) — va(t)
x f(0,y0,t) —va(t) f(h, o, t) — (vi(t) +vi(t)c(0,y0,t))u(0, yo, t) — (v3(t)
+va(t)e(h, yo, t))ulh, yo, t) — vi(t)b2(0, yo, t)uy(0, yo, t) — va(t)ba(h, yo, t)
x 1y (h, yo, )] [va (£)Au(0,y0,t) +v2 () Au(h, yo, t)] !, t € [0, T).

To continue the investigation of the equation (9), it is necessary to get some representation of
the terms (0, yo,t), u(h,yo,t), uy(0,yo,t), uy(h,yo,t), Au(0,yo,t), Au(h,yo,t).

The solution to the problem (7), (2)-(4) is denoted as uo(x,y,t) under the temporary as-
sumption thata € C([0,T]), a(t) > 0, t € [0, T] is a known function. Therefore, taking advan-
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tage of (8) we represent 1 as the solution to (7), (2)-(4)

I

o(x, .1 //hczzxy,tcn, 0 (&, n)dedy //Gzzxy,t50r><>
0

0

% i1 (& T)dEdT + / / Gon(%,, £, &1, T)a(T) pina (&, ) dEd T
00

t 1 t1 (9)
—//Gzz(x,y,t,O,iy,r)a(r)yn(;y,r)dndr+//Gzz(x,y, t,h,y,T)a(T)
00 00
t 1 h
X prz(1, T)dndt + / / / Goa(x,y,t, 8,1, T)f (&, 1, T)dGdndr,  (x,y,t) € Qr.
000
Denote by
v(x,y,t) == (biuy + byuy + cu)(x,y,t),
w1(JC, y, t) = Ux(xr y/ t) = (bluxx + bzuxy + beMy —+ (blx -+ C)ux + Cx”)(x, y, t), (10)

wa(x,y,t) == vy(x,y,t) = (bruxy + bauyy + (bay + c)uy + bryux +cyu)(x,y,t),
(x,y,t) € Q.

Problem (1)-(4) is reduced to the equation

t I h
u(x,y,t) = ug(x,y,t) + / / / G (x,y,t,&,1,7T)0(, 1, T)dédydr, (x,y,t) € Qr.  (11)
000

Thus, from (11) we obtain
t o1

v(x,y,t) = (brugy + bauoy + cug) (x,y, t +// (b1(x,y,t)Gox (%, 9,1, 8,7, T)
00

\w

(12)

\_/

+b2(x, ¥, t) Gy (%, y,t, 8,71, T )+C(x,y, Gu(x,y,t,¢,1,7))0(¢,n,T)d¢dndT,

(x,y,t) € Qr.

By differentiating (12) with respect to x, applying the Green function properties and inte-
gration by parts we obtain the equation

wy(x,y,t) = (blqux + battoxy + baxtioy + (b1x + ) tiox + cxtig) (X, Y, t)
t

+/// blx x y/ G22x(x yrt g ", )+bzx(x/yrt)GZZy(xrylt/CITIIT>
0

(13)

X GlZX(x/yrtrgrﬂr )+b2(x y, )Glzy(x yrt g n, (x Y, )

t 1 h
+ (%, 1, )G (%, , £, &, 17, T))0(E, 17, T)dEdndT + / / / (b1 (2,9, 1)
0
)+
X Guo(x,y,t,&,1,7))wi (&, 7, T)dEdndt, (x,y,t) € Or.
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Analogously to (13), by differentiating (12) with respect to y, we obtain

wy(x,y,t) = (blquy + bauoyy + (bay + ) oy + biytox + cytio) (X, Y, t)
t

+/// bly X, y/ G22x(x yrt g ", )+be(x/]/rt)GZZy(xr%tICIW,T)
00

I h (14)
+ (0, )G (3, £,8,1,7))0 (&, 1, T)dzdnd + / JRACER
00
X Gorx(%,y,t,8,1,T) + ba(x,y,t)Gary (x, 4, £, E, 17, )+C(x,y,t)
X Go1(x,y,t, 6,1, T))wa (8, m, T)dgdndT,  (x,y,t) € Qr.
We find from (11)
t 1 h
uy(x,y,t) = uoy(x,y,t) —|—///G22y(x,y, t,¢,n,7)o(& n,T)dédydr, (15)
000
t 1 h
Au(x,y,t) = Aug(x,y,t —|—///Glzx(x,y,t,(;",iy,r)wl(g,n,r)d(;"dndr
000 (16)

t I h
+ ///G21y(xl Y, tr C, n, T)WZ(CI n, T>d€d77de (JC, Y, t) € @T/
000

where 1, Aug are calculated from (9):

I

h
uoy (X, y,t) //Gmxyrtéﬂr )%(Cﬂdé‘dnJr//szxy,t<§0f> (7)
0

0

x par (¢, )G — / / Gong (%, 1,81, ¥)a(D)pza (8, e
00 | (17)

t 1
_//621(x,y, t,O,n,T)a(T)ylln(17,T)d17d1'+//G21(x,y,t,h,17,r)a(r)
00 00

t I h
X pizy (17, T)dndT + / / / Gazy(x,y,t,¢,1,7)f(E, 1, T)dGdndr,
00 0
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I h t h
tuo(x,y, )= [ [ Gl t,8n,0089(E gy — [ [ Gl y,t,2,0,7)
00 00

X o1 (&, T)dedT + / / Goa(x,y,t,¢,1, Ty (&, T)dédT
00

(18)
t o1
—//Gzz(x,y,t,O,q,r)yllT(iy,T)diydT—l—//Gzz(x,y,t,h,iy,r)
00 00
t I h
X 12 (17, T)dndt + / dt / / AGxn(x,y,t, 8,1, 7)f(&n,T)dédy, (x,y,t) € Qr.
00
By substituting (11), (16), (15) into (9) we obtain:
o Ql(‘ll U)(t)
a(t) B QZ(a/ w1, wZ)(t), (19)
where
Qu(a,v)(t) = p5(t) —vi(£)b1(0,yo, t) 11 (Yo, t) — va(£)br(h, yo, t) p12 (Yo, 1) — va (t)
x f(0,y0,t) —va(t) f(h, o, t) — (vi(t) +vi(t)c(0,y0,t))u0(0, yo, ) — (va(t)
+va(t)c(h, yo, t))uo(h, yo, t) —v1(t)b2(0, yo, t)uoy (0, yo, t) — va()b2(h, yo, t)
bl
20
 ttoy (0,0, +///5cn, @) + (00 y0, )G O yo LG T)
0 0
— (va(t) +va(t)e(h,yo, t))Gaa (B, yo, t, &, 11, T) — vi(£)b2(0, yo, t)
x Gazy(0,%0,t, 8,17, T) — va(t)ba(h, yo, t) Goay (h, yo, t, &, 1, T) )dGdndr,
Qa(a, w1, wy)(t) = v1(£)Aug(0, yo, t) + vo(t)Aug(h, yo, t)
t 1k
+ / £)Gr2x(0,y0,t, &, 1, T) + v2(£)Grax (h, 0,1, &, 1, T)) w1 (&, 1, T)dEdndT o
0

e
[

h
/ GZly O Yo, £, g 1, ) + VZ(t)G21y (hr Yo, £ gr n, T))WZ(C/ n, T>d€d77dTr
0

where v, w1, wy are solutions to the system of integral equations (12)—(14).
Denote

o NV :={a e C([0,t*]) : Ap < a(t) < Ay}, where the constants Ay, A; € Ry, t* € (0, T]
are to be established below;

Q1(a,v)

~ — \3 -~
e P: N x (C — N, such that P(a,0,wq, wp) = ——1—+:
(c(@n)) ( 12) Qo (a, wy, wy)

e P:N — (C (@T))3 an operator that maps each element a € N into the solution of the
system of integral equations (12)—(14).
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Since the functions v, wy, wy in (19) are now defined by 15, the equation (19) can be rewritten
as the following operator equation:

a = Pa, where Pa:= P(a,P(a)), acN. (22)

The problem (1)-(5) is equivalent to the equation (22) in the following sense: if (a,u) is a
solution to problem (1)—(5), then a is a solution of (22) and, on the other hand, if 2 € C([0, T])
is a solution of (22), then (a,u) is a solution to the problem (1)-(5), where u is determined by
the equations (11).

From the way the equation (22) has been obtained it follows, that if (a, 1) is the solution to
(1)—(5), then a satisfies (22).

Reciprocally, for any 4 € N functions u, v are uniquely determined from (11), (12) and such
a system of integral equations is equivalent to the direct problem (1)—(4). Thus, it is left to be
shown that (5) follows from (22). By implementing all the substitutions in the reverse order we
move from (22) to (9). After (9) is multiplied by its denominator and integrated with respect to
time, regarding (A4), the overdetermination condition (5) is obtained.

Consequently, the existence of solution to (1)—(5) is equivalent to the existence of solution
to the operator equation (22).

In order to apply the Schauder fixed point theorem we show that P is compact and that it
maps N into itself.

Since for each a € N uqy, Ugy, Uoxx, Uoxy, Uoyy are continuous functions aCCOEding to (A1),
it follows from the properties of the systems o of Volterra integral equations that P is a bounded
operator. The compactness of the operator P follows from [7] Therefore P is compact as the
composition of bounded operator P and compact operator P .

Thus, the next goal is to establish Ay, A; € R4, such that Ay < (Pa)(t) < A,
te0,t*],aeN.

From the explicit representation of up and its derivative ug, (9), (17), the Green function
properties and (A2) it follows that

limug(x,y,t) = @(x,y),
t—0

tim o, (x,,£) = lim (| G1 (v, 1,00, G )y + [ Gy (98,0, D)z (x, )i
0 0

_ / Gy (v, t, 1, T)a(t)pn(x, T)dT) .

Then for any (x,y) € [0,h] x [0,]]

0< li Y f) < 'Y)
o) < iy ) < e ot

0 <min{ min ¢@,(x,y), min pu(x,t), min pux(x, t)}g}in(}uoy(x,y,t)
—

[0,1] x[0,]] [0,1] x [0,T] [0,1] % [0,T]
< g t t
max{[om ax @ Py(x,Y), /o X Hon 1(x,1), ¥ tiany }yzz(x )}

The last term in (20) vanishes, when t — 0, according to the properties of Newtonian poten-
tials.
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Therefore, thanks to (A2) there are such constants n11, M; that
0<m < }E%Ql(t) < M.
Namely,

my := min(p3(t) — vi(£)b1(0,yo0, t)p11 (yo, t) — va(t)b1 (R, o, t) 12 (yo, t) — vi(t)
[0.T] (23)

x f(0,y0,t) —va(t)f(h,yo, 1)),

My = max(ps(£) — v (£)b1 (0, yo, )11 (o, £) — va (£)b1 (1, yo, )12 (vo, £) — va (£)

[0,7]
x f(0,y0,t) —va(t)f(h, yo,t)) + r[rge%(—(%(f) +v1(t)c(0,yo, 1)) — (va(t) +12(t)
' (24)
h,yg,t , — £)b>(0,vyo,t) — )bo(h,yp, t
x c(h, yo )))mﬁgféﬂfp(x y)+rﬁaﬁ<( v1(£)b2(0,y0,t) — v2(t)b2(h, Yo, t))
t ,E) ¢
8 max{[oﬁf e (. y), o) 21 (% 1), 0> xa[)o(,T}yZZ(x )}

Thus from the definition of limit it derives that for ¢ = %ml there is such a value t; € (0, T},
that

1 1
5™ <Qi(t) <M+ 5 t € [0, t1]. (25)

Similarly, from the explicit representation (18) of Aug

lim Aug(x,y,t) = Ag(x,y).
t—0

Denote
Mo lﬁlﬁl(vla) + Vz(t))[O,i?ir[(l)’”Aqo(x,y), (26)
M> :=m t t m A ). 27
2 [O%)]((Vl( ) +va( ))M ) ¢(x,y) (27)

Then 0 < mp < }inSQz(t) < M. Analogously, there is such a value t, € (0, T], that
%

1 1
Emz < QZ(t> < M2 + EmZI te [Or tZ] (28)
Define
1 1
M M M
Ay = 271, A= %, t* := min{ty, tr }.
M2 + zmz zmz

and make sure that: if a € N, then Ay < (Pa)(t) < Ay, t € [0, ].
From the Schauder fixed point theorem follows the existence of the solution to (22), and,
hence, for the problem (1)—(5). O
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3 UNIQUENESS OF A SOLUTION

Theorem 2. Under the condition (A2) the problem (1)<5) cannot have more than one solution
(a,u) in the space C([0,t1]) x C*!(Qy,), such that Au € C*0(Q, ) and a(t) > 0,t € [0, 1],
where t; € (0, T] is determined from the input data.

Proof. Suppose that there exist two solutions (ay(t),u1(x,y,t)) and (ax(t), uz(x,y,t)) of the
problem (1)—(5). Denote

az(t) :=ay(t) —ax(t), t€]0,T), (29)
uz(x,y,t) == uy(x,y,t) —ux(x,y,t), (x,y,t) € Qr. (30)
Then (a3(t), uz(x,y,t)) is solution of the problem

ugs = ay(t)Auz +by(x,y, t)uzy + ba(x,y, t)uzy +c(x,y,t)us + az(t)Auz, (x,y,t) € Qr, (31)

uz(x,y,0) =0, (x,y)€[0,h] x[0,1], (32)
uze(0,y,£) =0, wuz(hyt) =0, (yt)€[0,1]x[0,T] (33)
usy(x,0,t) =0, usy(x,1,t) =0, (x,t) €0k x[0,T], (34)
v1(t)uz(0,yo, t) + va(t)us(h,yo, t) =0, t€[0,T]. (35)

By calculating the derivative of (35) and applying (31) to it, we obtain for t € [0, T|
(v1 (£)Aua(0, yo, t) + va(t) Aua(h, yo, £))as () = — (v (t) +v1(£)e(0, yo, )
x u3(0,yo, t) — (va(t) +va(t)e(h, yo, t))us(h,yo, t) — vi(t)ba(0, yo, t)usy (0, yo, )  (36)
—va(t)ba(h, yo, H)usy(h, yo, t) — va(t)ar (£) Buz (0, yo, ) — va(t)ar () Aus (h, yo, t).

Denote by Gy (x,y,t,& 1,T) a Green function of the problem (31)~(34). Since a; (t) is a known
function, the solution to the problem (31)—(34) is unique and can be calculated by the formula:

(x,y,t) /// (x,y,t,¢,1,7)az(t)Auy (¢, n, T)dédndr. (37)
By differentiating (37) with respect to y and applying to (37) the Laplacian , we obtain
t
uzy(x,y,t) :///ézzy(x,y, t,&,n,7)az(t)Auy (&, n, 7)dédndr, (38)
0
t I h
Auz(x,y,t) /dT//A (x,y,t,&,1,7)az(T)Auy (&, n, T)dédy. (39)
00

Therefore, by applying (37)—(39) to (36), we obtain an equation with respect to a3 (t)

t I h
-1 )
) = 08800, o, ) + 1) Btz (o, ) O/ | / (“’1“) * 10 yo. 1))

0

A

x G2 (0,y0,t,&,1,7) + (v5(t) +V2(f)0(h,y0/f))G (h,yo, t,E,1,7)
+v1(£)b2(0, yo, £) Gazy (0, y0, 1, &, 17, T) 4+ v2 () b2 (B, yo, t) Gy (h, Yo, £, &, 17, T) (40)

+1 (t)al (t)Aézz(O, Yo, t, g, n, T) + Vz(t)al (i’)Aézz (h, Yo, t, g, n, T))

X a3(T) Auy (8, 17, T)dGdr.
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It is still necessary to ensure that for
v1(#)Auz (0, yo, t) + vo(t)Auz (h, yo, t) > 0. (41)

Since (ap, u7) is a solution of (1)—(5) it follows from (9) that ¢ € [0, T|

v1(£)Auz(0, yo, t) + va(t) Auz (b, yo, t) = azl(t) (u3(t) = v1(t)f(0, o, t) — va(t)

x f(h,yo,t) — (vi(t) +v1(t)e(0,y0,t))u2(0, yo, 1) — (va(t) +va(t)e(h, yo,t))
x uz(h, yo, t) — v1(t)b2(0,yo, t)uay (0, yo, t) — va(t)ba(h, yo, t)uay (h, yo, t))-

Thus, it follows from (42), (20) and (25), ensured by (A2), that

(42)

V1 (H)Au2(0, yo, £) + va(F)Aua (B, yo, ) > 2:%%) >0, teloh] (43)
2

Hence, (40) is a homogeneous Volterra integral equation of the second kind on [0, t1]. Since
Au, € C¥0 (@tl), according to [4] the kernel of (40) is integrable. Therefore, (40) has a unique
solution az(t) = 0, t € [0, f1], and from the equality (37) it follows that u3(x,y,t) =0,

(x,y,t) € Qy, The proof of the theorem is complete. O
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PosrasiaaeMo obepHeHy 3apauy BU3HAUEHHS 3aA€XKHOTO BiA dacy KoedilieHTa a(t) y ABOBUMIp-
HOMY apaboAiYHOMY piBHSHHI:

up = a(t)Au+ by (x,y, t)ux + ba(x,y, t)uy +c(x,y, t)u + f(x,y,t), (x,y,t) € Qr,
i3 MOUAaTKOBOIO YMOBOIO, KparoBumu yMoBamu HeiiMaHa Ta HeAOKaABHOIO yMOBOIO IepeBU3HAUEHHST

v (H)u(0,yo,t) + va(H)u(h,yo, t) = us(t), t€][0,T],

Ae Yo pikcoBaHe 3HaveHHsI 13 [0, 1].

BcraHOBAEHO yMOBM iCHYBaHHSI Ta €AMHOCTI KAQCMUHOTO pO3B’sI3KY 3aadi. 3 Li€l0 MeTOI 3aCTO-
coBaHo MeToA pyHKUIi 'piHa, Teopemy Illayaepa mpo HepyXOMy TOUKY Ta TeOpPilO iHTerpasbHMX
piBHsHDL BoAbTeppa.

Kontouosi cnosa i ¢ppasu: obepHeHa 3arava, BU3HAUeHHs KoedpillieHTiB, mapaboriuHe piBHSHHSI,
HeAOKaAbHA yMOBa IlepeBM3HavYeHHs], IIPSMOKYTHa OOAACTb.



