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w-EUCLIDEAN DOMAIN AND LAURENT SERIES

Itis proved that a commutative domain R is w-Euclidean if and only if the ring of formal Laurent
series over R is w-Euclidean domain. It is also proved that every singular matrice over ring of formal
Laurent series Rx are products of idempotent matrices if R is w -Euclidean domain.
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INTRODUCTION

Let R will always denote a commutative domain with nonzero unit element. Let ¢ : R — Z
be a norm satisfying ¢(0) =0, ¢(a) > 0fora # 0, and ¢(ab) > ¢(a).

Definition 1. Domain R is called Euclidean if for any a,b € R withb # 0, there existgq,v € R
such that

a=bg+r and ¢(r) < ¢(b).

Leta,b € R, b # 0, and k be an arbitrary positive integer. We talk about k-term divisibility
chain [7] if there exists a finite sequence of equalities

a=bgq+r,b=riqa+ry ..., 1k—2 = re_1qx + k. (1)

Definition 2. Domain R is called w-Euclidean ring [7] relatively to norm IN, if for every pair
of elements a,b € R, b # 0 can be found k € IN and such divisibility chain (1) of length k that

¢(rk) < ¢(b).

Clearly, 1-Euclidean domain is an Euclidean domain. Now let Ry = R[[X]][X~!] be the ring
of formal Laurent series with coefficient in R. P. Samuel in [6] proved that if Rx is euclidean,
R is so. Also F. Dress proved the converse in [3]. Also in [1] it is proved similar results are for
2-Euclidean domain.
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MAIN RESULTS

Let R be an integral domain with a norm map ¢ : R — Z and let Ry = R[[X]][X~!] be the
ring of formal Laurent series with coefficient in R.
For any element

f=YaX €Rx, ;R h€Z a,#0

i>h
we put a norm map ¥ : Rx — R satisfying ¢(f) = a5, and ¢(0) = 0, where a;, be a variable
coefficient in the lowest degree.

Proposition 1. For any f,¢ € Rx with g # 0 we have that f = gu or, f = gu + v, where
$(8) 1 ¢(o).

Proof. Let h (resp. k) be the lowest degree of f (resp. g). Set ¢(f) = ¢(g)q +r, where g, € R.
Then we can write
v = f —gX" k¢ = rX" + higher degree terms.

It p(g) {1, we get (g) 17 = ¢(v).

If ¢(g) | 7, we similarly construct v; = v — g, X" kg, (h; = order of v) and so on. If the
process stops after a finite number of steps, we obtain

f=gutov,  P@) 1)
Otherwise the infinite sum
= gX" K g xR g Xk
is true sense, and we obtain f = gu. O
Letamap ¢y : R — Z by ¢x(f) = ¢(¢(f)). Then we obtain the following.

Theorem 1. If R is w-Euclidean domain with respect to ¢, then Rx is w-Euclidean domain
with respect to x = ¢ - .

Proof. By Proposition 1 for any f, g € Rx with g # 0 we have the following;:
(1) f=gu, or
2) f=gutv, 9(g) 1)

It is obvious that the case (1), Rx is Euclidean domain and thus R is w-Euclidean.

In the case of (2) review:

a) if p(¥(v)) < @(¥(g)), then we have ¢,(v) < @y(g) by definition, Ry is Euclidean do-
main and thus R is w-Euclidean;

b) if (¥ (v)) > @(1p(g)), then
P(v) = (g +11, Y(&) =rga+712,..., T2 = Tk1qk + Tk ()

and ¢(rx) < ¢(¢(g)), because R is w-Euclidean domain.
Now if we set
v — quhlfkg =11, (hy-order ofv),
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we have f = (u + g1 X" )¢+ v; and ¢ (v;) = rq. If we set
g — quk’hzvl =10y, (hp-order of v7),
we have ¢ = g, X*20; + v; and (vp) = 5. Continuing this process in the k step we get
Uk_n — X1 Moy = vy, (I — order of v_1),
then vy_p = g X"-1"v;_1 + vp and ¢(vi) = ry. If 7y # 0, we obtain
f=Wu+ quhlfk)g +v1, §= X201+ 0y, v = X Ty 4y,

and
9x(8) = @(¥(g)) > @(rr) = @x(vk).

If rp = 0, we have rx_ = r¢_14x. Then we have.
If (y(g)) > ¢(rk_1), we obtain (k — 1)-term divisibility chain, because

P(P(g)) = ¢x(8) > ¢x(vr—1) = @(r—1).

On the other hand, since ¢(rx_1) > ¢(¢(g)), then with (2) we get ¥(g) = rr_1m, where
m € R. Then ¢(m) = 1.

Hence,
e =p(gm!
and
¥(o) = 9(g)x,
for some x € R. This is contradictory to for ¢(g) 1 ¢(v). O

Theorem 2. If Ry is w-Euclidean domain with respect to ¢, then R is w-Euclidean domain
with respect to ¢.

Proof. Let a,b € R, where b # 0. Since Rx is w-Euclidean domain, there exist such
qi,---,qn,71,--.,n € Rx that

a=bgq1+r,b=riga+r2 ..., tu—2 =Ty_1Gn +"n, 3)

where @y (rn) < @x(D).
Note that

q; = q;quf + higher degree terms, ~r; = g X* 4 higher degree terms

(1) Let @x(r1) < ¢@x(b). If k4 < 0, we have ky = s; and bqfc1 +r;, = 0, and hence
px(r1) = @(rs)) = ¢(—bqy,) > @(b) = @x(b). This is a contradiction. Therefore we get k; > 0,
thena = bal, +7l,, () = gx(r1) < 9x(b) = p(b).

(2) Let x(r1) > @x(b). If s1 + ko < 0, we get s; +kp = sp and r{ q;, + 15, = 0 and note
that a chain 3 we get r, = r1x™ + rpy* for some x*, y* € Rx. Then ¢y (1) = @x(r1x* +rpy*) =
p((x* = g1,y )rs,) = @(rs,) = @x(b).

Hence ¢x(rn) < @x(b), this is contradiction and we get s; + k > 0. Then we can consider
possibility.

Case 1) ry, # 0.
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If k1 < 0, we get bql’q +r¢, = 0. On the other hand with chain 3 we have r,, = bx + r1y, for
some x,y € Ry,

Px(rn) = @x(bx +r1y) = @((x — g1,y )b) > @(b) = gx(b).
This is contradiction, because ¢y (7,) < ¢x(b). Hence we have k; > 0. The we obtain

. / / ! / / / ! / /
a—= b‘7k1 + rsl,b =Tk T Tsyr-rTs, 5 =Ts, 1Ak, T Tspr

where ¢x(r1) = ¢(r;,) < ¢(b) = ¢x(0).
Case 2) r;, = 0.
In this case, we distinguish now two subcases.
1) If ky > 0, it is obvious that

a= bq]/q + rél,b = r.glq;(z +O’

and ¢(0) < ¢(b).

2)If k; < 0 we have k; = 51 < 0 and bqfc1 + 15, = 0.

On the other hand, since b = r{ g, we have r{ q; q; +r, = 0iq; ¢;, +1 = 0and hence
qk,- Iy, are units. Then we can obtain:

b= (e, X 4 ) (g, X0+ ) + (X2 4 ) =1,
2
+ (rglq;(z-i-l + 7’;14_1‘7]/(2))( + (rglqll(z—O—Z + r;1+1q;(2+1 + r;1+2q;(2>x +t (rézxsz + )

Therefore we get the following equations:

’ol / I

rslqk2+1 + r51+1qk2 =0,

1’/ / + 1,/ ! + 1,/ ! 0

519k, 42 51419k, +1 sp+29k, = Y )

! ! / !/ / / !/
rslqkz—FSz + r51+1qk2+52—1 +ot 7"SlJFSquZ + 7’52 =0.

Since q;q is a unit, we have

rien = (@) ak e = (@) 7 g (az,) 7D

Hence we get b | r_ , ;. Similarly, we have

/ /
b ’ r51+2’ T ’r51+52—1'

Then if s; +s, < 0, we have b, |, + {4, = 0 and hence b | r{ ;. By above equations

(4), b | 1y, and ¢(r;,) > @(b). This is a contradiction with ¢(r;,) < @(b). Therefore we get
s1+ s > 0.

Now, if 51 +sp > 0, there exist an integer h such that rélq,/(#h + r;l +th’(2 — 0 and
b | réﬁh = r(. Hence we obtain a = bg, + r}, = bg*.

If 51 4+ 55 = 0, the equation (4) we have

rélq;(z-i-Sz + T + r;1+52q;(2 = rélqll(z—}—Sz + e + (a - quO)q;(z + 7’;2 = 0

Then we obtain

and ¢((q1,) ' (=7%,)) = ¢(r5,) < (). O
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As a consequent we obtain the following.
Theorem 3. R is w-Euclidean domain if and only if Rx is w-Euclidean domain.

A ring R has IP,-property, if every square singular matrix of n order over R is a product
of idempotent matrices. If this is true for any singular matrix over R, then the ring R has
IP-property.

Theorem 4. Let R is Bezout domain with I P,-property, then Rx is a domain with IP-property.

Proof. Let R be Bezout domain with IP,-property, then R is GE;-ring [4]. Since the condition
GE;-ring over Bezout domain implies the presence of the infinite divisibility chain for any two
elements with R, hence R is w-Euclidean domain. According to Theorem 1, Rx is w-Euclidean
domain, then from [2] for any two elements of Ry there exists the infinite divisibility chain.
Then, according to Theorem 6.2 and Proposition 2.4 of [5] implies that Rx has I P-property. [J

Given from theorem 2, consequently the following result is true.

Theorem 5. Let Rx — w-Euclidean domain, then R has I P-property.
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AOBEA€HO, III0 KOMyTaTVBHA OOAACTDb € W-€BKAIAOBOIO TOAi i TIABKM TOAI, KOAM Kinblle dpop-
MaABHMX AOpPaHOBMX PSIAIB € w-eBKAiAOBOIO obaacTio. TaxkoXX IOKa3aHO, IO AOBiABHA OCObAVBa
MaTpuIs HaA KiAbIeM dpopMaAbHUX AOpaHOBUX PSIAiB Rx € A0OYTKOM iAeMIIOTEHTHMX MaTpUIb,
SIKIIO R € w-eBKAiAOBE KiAbITe.

Kontouosi cnoea i ppasu: w-eBKAiAOBa 06AACTD, KinbIle popMarbHMX AOPAHOBUX PSIAIB, iAeMIIO-
TEHTHIi MaTPULI.



