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ON A COMPLETE TOPOLOGICAL INVERSE POLYCYCLIC MONOID

We give sufficient conditions when a topological inverse A-polycyclic monoid P, is absolutely H-
closed in the class of topological inverse semigroups. For every infinite cardinal A we construct the
coarsest semigroup inverse topology T,,; on P, and give an example of a topological inverse monoid
S which contains the polycyclic monoid P; as a dense discrete subsemigroup.
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In this paper all topological spaces will be assumed to be Hausdorff. We shall follow the
terminology of [10, 12,16, 31]. If A is a subset of a topological space X, then we denote the
closure of the set A in X by clx(A). By IN we denote the set of all positive integers and by w
the first infinite cardinal.

A semigroup S is called an inverse semigroup if every a in S possesses a unique inverse, i.e.
if there exists a unique element a~! in S such that

aa a=a and ataat=a"l.
A map that associates to any element of an inverse semigroup its inverse is called the inversion.

A band is a semigroup of idempotents. If S is a semigroup, then we shall denote the subset
of idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multipli-
cation. The semigroup operation on S determines the following partial order < on E(S): e < f
if and only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice is
a commutative semigroup of idempotents. A semilattice E is called linearly ordered or a chain if
its natural order is a linear order. A maximal chain of a semilattice E is a chain which is properly
contained in no other chain of E. The Axiom of Choice implies the existence of maximal chains
in any partially ordered set. According to [35, Definition I1.5.12] a chain L is called w-chain if
L is order isomorphic to {0, —1, —2, —3, ...} with the usual order <. Let E be a semilattice and
ec€ E.Wedenote le={f€E|f<elandTe={f €E|e<f}.

If S is a semigroup, then we shall denote by Z, .2, 2 and J# the Green relations on S
(see [17] or [12, Section 2.1]):

aZb if and only if aS' = bS'; 4.2 if and only if S'a = S'b;
D = LR =R, H =LNXZ.

The Z-class (resp., .£-, 7-, or Y—class) of the semigroup S which contains an element a of S
will be denoted by R, (resp., Ly, Hy, or D,).
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The bicyclic monoid € (p,q) is the semigroup with the identity 1 generated by two ele-
ments p and g subjected only to the condition pg = 1. The semigroup operation on €(p, q) is
determined as follows:

qkpl . qmpn _ qk+m7min{l,m}pl+n7mir\{l,m}.
It is well known that the bicyclic monoid #(p, q) is a bisimple (and hence simple) combina-
torial E-unitary inverse semigroup and every non-trivial congruence on %(p,q) is a group
congruence [12]. Also the well known Andersen Theorem states that a simple semigroup S with
an idempotent is completely simple if and only if S does not contains an isomorphic copy of the bicyclic
semigroup (see [2] and [12, Theorem 2.54]).

Let A be a non-zero cardinal. On the set By = (A x A) U {0}, where 0 ¢ A x A, we define
the semigroup operation “ - ” as follows

o) = { 0 0

and (a,0)-0=0-(a,b) =0-0=0fora,b,c,d € A. The semigroup B, is called the semigroup
of A X A-matrix units (see [12]).

In 1970 Nivat and Perrot proposed the following generalization of the bicyclic monoid (see
[34] and [31, Section 9.3]). For a non-zero cardinal A, the polycyclic monoid on A generators Py
is the semigroup with zero given by

Py = ({pitiex Api " Yiea | pip; ' = Lpip; ' = 0fori # j).

If A = 1 the semigroup P is isomorphic to the bicyclic semigroup with adjoined zero. For ev-
ery finite non-zero cardinal A = n the polycyclic monoid P, is congruence free, combinatorial,
0-bisimple, 0-E-unitary inverse semigroup (see [31, Section 9.3]).

A topological (inverse) semigroup is a Hausdorff topological space together with a continu-
ous semigroup operation (and an inversion, respectively). Obviously, the inversion defined on
a topological inverse semigroup is a homeomorphism. If S is a semigroup (an inverse semi-
group) and T is a topology on S such that (S, 7) is a topological (inverse) semigroup, then
we shall call T an (inverse) semigroup topology on S. A semitopological semigroup is a Hausdorff
topological space endowed with a separately continuous semigroup operation.

Let GT6®( be a class of topological semigroups. A semigroup S € GTE& is called
H-closed in GGy, if S is a closed subsemigroup of any topological semigroup T € GTE&&,
which contains S both as a subsemigroup and as a topological space. The H-closed topological
semigroups were introduced by Stepp in [39], and there they were called maximal semigroups.
A topological semigroup S € STE® is called absolutely H-closed in the class GTE&,, if any
continuous homomorphic image of S into T € GTS® is H-closed in 6GTG&&. Absolutely
H-closed topological semigroups were introduced by Stepp in [40], and there they were called
absolutely maximal.

Recall [1], a topological group G is called absolutely closed if G is a closed subgroup of
any topological group which contains G as a subgroup. In our terminology such topologi-
cal groups are called H-closed in the class of topological groups. In [36] Raikov proved that a
topological group G is absolutely closed if and only if it is Raikov complete, i.e., G is complete
with respect to the two-sided uniformity. A topological group G is called h-complete if for every
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continuous homomorphism #: G — H the subgroup f(G) of H is closed [13]. In our terminol-
ogy such topological groups are called absolutely H-closed in the class of topological groups.
The h-completeness is preserved under taking products and closed central subgroups [13].
H-closed paratopological and topological groups in the class of paratopological groups were
studied in [37]. The paper [7] contains a sufficient condition for a quasitopological group to
be H-closed, which allowed us to solve a problem by Arhangel’skii and Choban [3] and show
that a topological group G is H-closed in the class of quasitopological groups if and only if G
is Raikov-complete. In [18] it is proved that a topological group G is H-closed in the class of
semitopological inverse semigroups with continuous inversion if and only if G is compact.

In [40] Stepp studied H-closed topological semilattices in the class of topological semi-
groups. He proved that an algebraic semilattice E is algebraically s-complete in the class of
topological semilattices if and only if every chain in E is finite. In [27] Gutik and Repov$ stud-
ied the closure of a linearly ordered topological semilattice in a topological semilattice. They
obtained a characterization of H-closed linearly ordered topological semilattices in the class of
topological semilattices and showed that every H-closed linear topological semilattice is ab-
solutely H-closed in the class of topological semilattices. Such semilattices were studied also
in [11,20]. In [5] the closures of the discrete semilattices (IN, min) and (IN, max) were described.
In that paper the authors constructed an example of an H-closed topological semilattice in the
class of topological semilattices, which is not absolutely H-closed in the class of topological
semilattices. The constructed example gives a negative answer to Question 17 from [40]. H-
closed and absolutely H-closed (semi)topological semigroups and their extensions in different
classes of topological and semitopological semigroups were studied in [8, 18, 19,21-26]

In [6] we showed that the A-polycyclic monoid for an infinite cardinal A > 2 has similar al-
gebraic properties to that of the polycyclic monoid P, with finitely many n > 2 generators. In
particular we proved that for every infinite cardinal A the polycyclic monoid P, is congruence-
free, combinatorial, O-bisimple, 0-E-unitary, inverse semigroup. Also we showed that every
non-zero element x € P, is an isolated point in (P, T) for every Hausdorff topology on P,,
such that P, is a semitopological semigroup; moreover, every locally compact Hausdorff semi-
group topology on P, is discrete. The last statement extends results of the paper [32] treating
topological inverse graph semigroups. We described all feebly compact topologies T on P,
such that (P, 7) is a semitopological semigroup. Also in [6] we proved that for every cardi-
nal A > 2 any continuous homomorphism from a topological semigroup P, into an arbitrary
countably compact topological semigroup is annihilating and there exists no Hausdorff feebly
compact topological semigroup containing P, as a dense subsemigroup.

This paper is a continuation of [6]. In this paper we give sufficient conditions on a topo-
logical inverse A-polycyclic monoid P, to be absolutely H-closed in the class of topological
inverse semigroups. For every infinite cardinal A we construct the coarsest semigroup inverse
topology T,,; on P, and give an example of a topological inverse monoid S which contains the
polycyclic monoid P; as a dense discrete subsemigroup.

It is well known that for an arbitrary topological inverse semigroup S and every element
x € S the continuity of the semigroup operation and the inversion in S implies that any .#-
class Ly and any #-class Ry which contain the element x are closed subsets in S. Indeed, the
Wagner—Preston Theorem (see Theorem 1.17 from [12]) implies that Ly = L, -1, and Ry = R,
for arbitrary x € S and since the maps ¢: S — E(S) and : S — E(S) defined by the formulae

(x)p = xx 1 and () = x"1x
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are continuous, we get that Ly = (x 'x)¢~! and Ry = (xx~1)¢~! are closed subsets of the

topological semigroup S. This implies that for any idempotents e and f of a topological inverse
semigroup S the following .7-classes of S:

Hg:Reng al’ld He,f:RgmLf

are closed subsets of the topological inverse semigroup S too. Moreover, the relations ., #
and 7 are closed subsets in S x S, but Z and _# are not necessary closed subsetsin S x S for
an arbitrary topological inverse semigroup S (see [15, Section IIJ).

The following proposition describes Z-equivalent #-classes in an arbitrary topological
inverse semigroup.

Proposition 1. Let S be a Hausdorff topological inverse semigroup and a,c be Z-equivalent
elements of S. Then there exists b € S such that a%b and b.-Yc in S, and henceas = b, bs' = a,
tb = ¢, t'c = b, for somes,s',t,t' € S. The mappings f,.: Hy — Hc: x — txs and f.q: He —
H,: x — t'xs’ are continuous and mutually inverse, and hence are homeomorphisms of closed
subspaces H, and H, of the topological space S. Moreover, if H, and H, are subgroups of S
then H, and H, are topologically isomorphic closed topological subgroups in the topological
inverse semigroup S.

Proof. The above arguments imply that H, and H. are closed subspaces of S. Also, the alge-
braic part of the statement of our theorem follows from Theorem 2.3 of [12] and Theorem 1.2.7
from [28]. The continuity of the semigroup operation in S implies that the maps f,.: H, — H,
and f.,: H. — H, are continuous and hence are homeomorphisms. Now, the proof of The-
orem 1.2.7 from [28] implies that in the case when H, and H. are subgroups of S, then there
exist u,u’ € S such that the maps f,: H, — Hc: x — uxu’ and foq: He — Hy: x — u'xu are
mutually inverse isomorphisms and the continuity of the semigroup operation in S implies
that so defined maps are topological isomorphisms. O

Remark 1. The proof of Proposition 1 implies that any two Z-equivalent ¢ -classes of a Haus-
dorff semitopological semigroup S are homeomorphic subspaces in S, but they are not neces-
sary closed subspaces in S, and a similar statement holds for maximal subgroups in S (see [18]).

Lemma 1. Let T and S be a Hausdorff topological inverse semigroup such that S is an inverse
subsemigroup of T. Let G be an ¢ -class in S which is a closed subset of the topological inverse
semigroup T and D¢ be a Z-class of the semigroup S which contains the set G. Then every
€ -class H C D¢ of the semigroup S is a closed subset of the topological space T.

Proof. First we consider the case when G has an idempotent, i.e., G is a maximal subgroup of
the semigroup S (see Theorem 2.16 of [12]).

In the case when the .7#-class H contains an idempotent, Theorem 2.16 in [12] implies that
H is a maximal subgroup of S and hence H is a subgroup of topological inverse semigroup T.
We put e and f are unit elements of the groups G and H, respectively. Since the idempotents e
and f are Z-equivalent in S, Proposition 3.2.5 of [31] implies that there exists 2 € S such that
aa~! = eand a~'a = f. Now by Proposition 3.2.11(5) of [31] the idempotents ¢ and f are Z-
equivalent in the semigroup T. Put H] and H' be the ./#-classes of idempotents ¢ and f in the
semigroup T, respectively. We define the maps f,s: T — T and ff.: T — T by the formulae
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(x)fef = a~'xa and (x)fs, = axa™!, respectively. Then forany s € H and t € H} we get the
equalities

(5)fe,f ((5)fe ) = a lsa(atsa) P =atsaa s la =a"tses ta = alssTla = alea
((5)fe,f) 1(s)fef = (atsa)talsa=atslaa s =a s lesa = a s lsa = alea
(Ofre((DFfe) =ata Nata )P =ata lat o =atft la 7t =att o = afa”!
—aa ' = e,
((B)fre) 1(t)ffe = (ata D lata ' =at o lata = at et = at e = afa!
-1
=aa " =e,

((S)fe,f)ff,e = aa 'saa™! = ese = s,
(O fe)fer=alata la = ftf =t,

1 1 1

because aa™" =ss*' =s 's =e¢,ea =a,af = aand a g =1 =¢1= f. Similarly, for
arbitrary s,v € HeT and t,u € H} we have that

1 1 1

(S)fe,f(v)fe,f =a Ysanva = a " lseva = a~

sva = (sv)fe,f

and
()ffe(t)ffe = ata taua™! = atfua~! = atua~! = (tu)ffe-

Hence the restrictions f, f| HT: HI — HJI and f | HI : HJI — H[ are mutually invertible group

isomorphisms. Also, since a € S we get that the restrictions fe,f]G: G — Hand ff,e\ g: H—G
are mutually invertible group isomorphisms too. This and the continuity of left and right
translations in T imply that H is a closed subgroup of the topological inverse semigroup T.

Next we consider the case when the .7#’-class H contains no idempotents. Then there exists
distinct idempotents e, f € S such that ss™! = e and s™'s = f for all s € H. Suppose to
the contrary that H is not a closed subset of the topological inverse semigroup T. Then there
exists an accumulation point x € T \ H of the set H in the topological space T. Since every
#€-class of a topological inverse semigroup T is a closed subset of T we get that H and x are
contained in a same #-class Hy of the semigroup T. Then xx~! = e and x"!'x = f. Now
the #-class H! in T which contains the idempotent e € S is a topological subgroup of the
topological inverse semigroup T and by Proposition 1 the subspace H/ of the topological space
T is homeomorphic to the subspace Hy of T. Moreover, Theorem 1.2.7 from [28] implies that
there exists a homeomorphism f: H, rightarrowH] such that the image (H)f is a topological
subgroup of the topological inverse semigroup T and (H)f is topologically isomorphic to the
topological group G. Then (H)f is not a closed subgroup of T which contradicts our above
part of the proof.

Assume that G has no idempotents. By the previous part of the proof it suffices to show that
there exists a maximal subgroup H, with an idempotent e in the Z-class D such that H, is a
closed subgroup of topological semigroup T. Suppose to the contrary that every maximal sub-
group in the Z-class D¢ is not a closed in T. Fix and arbitrary subgroup H, with an idempotent
e in the Z-class D¢ such that xx~! = e for all x € G. Then Proposition 3.2.11(3) of [31] implies
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that there exist //-classes H. and H/ in the semigroup T which contain the set G and group
H,. Since in the topological semigroup T every .7#-class is a closed subset in T, we have that
G is a closed subset of the space HL and H, is not a closed subgroup of the topological group
HET . Then Proposition 3.2.11 of [31] and Proposition 1 imply that there exist s, s’, t, t prime < g
such that the maps f.: Hl — Hl:x +— txs and fg: H. — H[l: x — t'xs’ are mutually
invertible homeomorphisms of the topological spaces H] and H[ such that the restrictions
felp,: HI — G and fg|g: G — H, are mutually invertible homeomorphisms. This is a contra-
diction, because H, is not a closed subset of H!. This completes proof of the lemma. O

Lemma 1 implies the following corollary.

Corollary 1. Let T and S be a Hausdortf topological inverse semigroup such that S is an inverse
subsemigroup of T. Let G be a maximal subgroup in S which is H-closed in the class of
topological inverse semigroups and D¢ be a Z-class of the semigroup S which contains the
group G. Then every s¢-class H C Dg of the semigroup S is a closed subset of the topological
space T.

Lemma 2. Let S be a Hausdorff topological inverse semigroup such following conditions hold:
(i) every maximal subgroup of the semigroup S is H-closed in the class topological groups;
(ii) all non-minimal elements of the semilattice E(S) are isolated points in E(S).

If there exists a topological inverse semigroup T such that S is a dense subsemigroup of T and
T\ S # @ then for every x € T \ S at least one of the points x - x ! orx~! - x belongs to T \ S.

Proof. First we consider the case when the topological semilattice E(S) does not have the small-
est element. Then the space E(S) is discrete and Theorem 3.3.9 of [16] implies that E(S) is an
open subset of the topological space E(T) and hence every point of the set E(S) is isolated in
E(T). Also by Proposition I1.3 [15] we have that cl7(E(S)) = clg1)(E(S)) and hence the points
of the set E(T) \ E(S) are not isolated in the space E(T).

Fix an arbitrary point x € T\ S. By Corollary 1 every .7#/-class is a closed subset of the
topological inverse semigroup T. Since x is an accumulation point of the set S in the topo-
logical space T we have that every open neighbourhood U(x) of the point x in T intersects
infinitely many #-classes of the semigroup S. By Proposition II.1 of [15] the inversion on T is
a homeomorphism of the topological space T and hence (U(x)) " is an open neighbourhood
of the point x~! in T which intersects infinitely many ##-classes of the semigroup S. Then
the continuity of the semigroup operations and the inversion in T implies that at least one of
the sets (U(x) (U(x))_l) NE(T) or ((U(x))_1 U(x)) N E(T) is infinite for every open neigh-
bourhood U(x) of the point x in the topological semigroup T. This implies that at least one of
x cdotx~1 or x~1 - x is a non-isolated point in the topological space E(T).

In the case when the semilattice E(S) has a minimal idempotent the presented above ar-
guments imply that for arbitrary point x € T \ S and every open neighbourhood U(x) of the
point x in T one of the sets (U(x) (U(x))_1> NE(T) or <(U(x))_1 U(x)) N E(T) is infinite
for every open neighbourhood U(x) of the point x in the topological semigroup T. Since H,
is a minimal ideal of S and it is a Ratkov complete topological group. Then there exists an
open neighborhood U(x) of x in T, such that U(x) N H, = @. If xx ! = e or x 'x = e then
x = xx~'x € H,, which contradicts that x € T\ S. Hence xx ! € T\ Sorx"x € T\ S. O



ON A COMPLETE TOPOLOGICAL INVERSE POLYCYCLIC MONOID 189

Lemma 2 implies the following two corollaries.

Corollary 2. Let S be a Hausdortf topological inverse semigroup satisfying the following con-
ditions:

(i) every maximal subgroup of the semigroup S and the semilattice E(S) are H-closed in the
class of topological inverse semigroups;

(ii) all non-minimal elements of the semilattice E(S) are isolated points in E(S).
Then S is H-closed in the class of topological inverse semigroups.

Corollary 3. Let A > 2 and let Py be a proper dense subsemigroup of a topological inverse
semigroup S. Then either xx~! € S\ Py orx~1x € S\ P, forevery x € S\ Py.

The following theorem gives sufficient condition when a topological inverse A-polycyclic
monoid P, is absolutely H-closed in the class of topological inverse semigroups.

Theorem 1. Let A be a cardinal > 2 and T be a Hausdorff inverse semigroup topology on P,
such that U(0) N L is an infinite set for every open neighborhood U(0) of zero 0 in (P, T) and
every maximal chain L of the semilattice E(P, ). Then (P,, T) is absolutely H-closed in the class
of topological inverse semigroups.

Proof. First we observe that the definition of the A-polycyclic monoid P, implies that for every
maximal chain L in E(P)) the set L \ {0} is an w-chain. Then Theorem 2 of [5] implies that ev-
ery maximal chain L in E(P) ) with the induced topology from (P,, T) is an absolutely H-closed
topological semilattice. Suppose that E(P,) with the induced topology from (P, T) is not an
H-closed topological semilattice. Then there exists a topological semilattice S which contains
E(Py) as a dense proper subsemilattice. Also the continuity of the semilattice operation in S
implies that zero 0 of E(P,) is zero in S. Fix an arbitrary element x € S\ E(P,). Then for an
arbitrary open neighbourhood U (x) of the point x in S such that 0 ¢ U(x) the continuity of the
semilattice operation in S implies that there exists an open neighbourhood V' (x) subseteqU (x)
of x in S such that V(x) - V(x) C U(x). Now, the neighbourhood V(x) intersects infinitely
many maximal chains of the semilattice E(P, ), because all maximal chains in E(P,) with the
induced topology from (P,, T) are absolutely H-closed topological semilattices. Then the semi-
group operation of Py implies that 0 € V(x) - V(x) C U(x), which contradicts the choice of the
neighbourhood U(0). Therefore, E(P), ) with the induced topology from (P,, T) is an H-closed
topological semilattice.

Now, by Corollary 2 the topological inverse semigroup (P,, T) is H-closed in the class of
topological inverse semigroups. Since the A-polycyclic monoid P, is congruence free, every
continuous homomorphic image of (P), 7) is H-closed in the class of topological inverse semi-
groups. Indeed, if h: (Py, ) — T is a continuous (algebraic) homomorphism from (P,, T) into
a topological inverse semigroup T, then the set U(%(0)) N k(L) is infinite for every open neigh-
bourhood U(h(0)) of the image zero /(0) in T. Then the previous part of the proof implies
that /1(P, ) is a closed subsemigroup of T. O

Remark 2. By Remark 2.6 from [30] (also see [30, p. 453], [29, Section 2.1] and [31, Proposi-
tion 9.3.1]) for every positive integer n > 2 any non-zero element x of the polycyclic monoid
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P, has the form u—'v, where u and v are elements of the free monoid .#,;,, and the semigroup
operation on P, in this representation is defined in the following way:

a~lbyd, if b=Dbic forsomeby € My;

(c1a)~'d, if c =cib forsomecy € My;
a b ld =
0, otherwise

(1)
and a 'b-0=0-a"b=0-0=0.

Then Lemma 2.4 of [6] implies that every any non-zero element x of the polycyclic monoid P,
has the form u~'v, where u and v are elements of the free monoid .#), and the semigroup
operation on P, in this representation is defined by formula (1).

Now we shall construct a topology Tmi on the A-polycyclic monoid Py such that (P, Ty;) is
absolutely H-closed in the class of topological inverse semigroups.

Example 1. We define a topology Tp,; on the polycyclic monoid P, in the following way. All
non-zero elements of P, are isolated point in (P), Tp,). For an arbitrary finite subset A of .4,
put

UA(0) = {a—lb ca,be MA\A}.

We put Z,i = {Ua(0): A is a finite subset of .#) } to be a base of the topology Tp,; at zero
0eP,.

We observe that Tp, is a Hausdorff topology on Py because Uy, ,1(0) # a~'b for every non-
zero elementa~'b € P). Also, since (U4(0)) " = U4 (0) for any UA(0) € By, the inversion is
continuous in (Py, Tpy). Fix an arbitrary a~'b € Py and any basic neighbourhood U 4(0) of zero
in (Py, Tyi). Let Sy, be a set of all suffixes of the word b. Put B = P, U{kb € #): ka € A}. It
is obvious that the set B is finite and hence formula (1) implies thata='b - Ug(0) C U4(0). Let
Sa be a set of all suffixes of the word a. Put D = S, U {ta € .#): tb € A}. It is obvious that the
set D is finite and hence formula (1) implies that Up(0) -a~'b C U4(0). Also Ut (0) - Ur(0) C
Ux(0) forT = AU{b € #): bis a suffix of somea € A}. Therefore (P, Tp;) is a topological
inverse semigroup.

Theorem 1 and Example 1 implies the following corollary.

Corollary 4. The topological inverse semigroup (P), Tmi) is absolutely H-closed in the class of
topological inverse semigroups.

Definition 1 ([23]). A Hausdorff topological (inverse) semigroup (S, T) is said to be minimal if
no Hausdorff semigroup (inverse) topology on S is strictly contained in 7. If (S, T) is minimal
topological (inverse) semigroup, then T is called a minimal (inverse) semigroup topology.

Minimal topological groups were introduced independently in the early 1970’s by Doitchi-
nov [14] and Stephenson [38]. Both authors were motivated by the theory of minimal topologi-
cal spaces, which was well understood at that time (cf. [9]). More than 20 years earlier L. Nach-
bin [33] had studied minimality in the context of division rings, and B. Banaschewski [4] inves-
tigated minimality in the more general setting of topological algebras. In [23] on the infinite
semigroup of A X A-matrix units B, the minimal semigroup and the minimal semigroup in-
verse topologies were constructed.
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Theorem 2. For any infinite cardinal A, Tn,; is the coarsest inverse semigroup topology on P,,
and hence (P), Tmi) is a minimal topological inverse semigroup.

Proof. The definition of the topology Tm; on Py implies that the subsemigroup of idempotents
E(P)) of the semigroup P, is a compact subset of the space (P, Tpi). By Proposition 3.1 of [6]
every non zero-element of a semitopological monoid (P,, 7) is an isolated point in the space
(P), 7). This and above arguments imply that the topology T on P, induces the coarsest
semigroup topology on the semilattice E(Py). Also by Remark 2.6 from [30] (also see [30,
p- 453], [29, Section 2.1] and [31, Proposition 9.3.1]) we have that every non-zero element of the
semilattice E(P) ) can be represented in the form a~'a where a are elements of the free monoid
My, and the semigroup operation on E(P) ) in this representation is defined by formula (1).
Also, we observe that for any topological inverse semigroup S the following maps ¢: S —
E(S) and ¢: S — E(S) defines by the formulae ¢(x) = xx~! and ¥(x) = x~lx, respectively,
are continuous. Since the inverse element of u~1v in P, is equal to v~ 1u, we have that U, =
P\ (¢ 1 (A)Uyp~I(A)), for any finite subset A of the free monoid .#,. This implies that
Ua(A) € T for every inverse semigroup topology T on P,, where A is an arbitrary finite subset
of .#,,. Thus, Ty, is the coarsest inverse semigroup topology on the A-polycyclicmonoid Py. [

In the next example we construct a topological inverse monoid S which contains the poly-
cyclic monoid P, = <p1, p2 | p1 pl_l = pzpz_l =1,pm pz_l = pzpl_l = 0> as a dense discrete sub-
semigroup, i.e., the polycyclic monoid P, with the discrete topology is not H-closed in the class

of topological inverse semigroups. Also, later we assume that the free monoid ., is generated
by two element p; and p».

Example 2. Let F be the filter on the bicyclic semigroup € (p1, py*) = <p1, it piprt = 1>,
generated by the base # = {U,: n € N}, where U,, = {pl’ka: k,m > n}. We denote

A= {a’lb € Py: a # piay and b # p1by forany ay, by € .///2}.

For any element a~'b of the set A let #,1, be the filter on P,, generated by the base #,-1, =
{Vu: n € N}, where V,, = a—*U,b = {(pta)~1pTb: k,m > n}. It is obvious that F = F, 1y,
where 1 is the unit element of the free monoid .#,.

We extend the binary operation from P, onto S = P, U { %, 1,: a~'b € A} by the following
formulae:

ﬁ(ea)qd, ifc = eb;
() a'b o\, = F(ey-14, b= pjcforsomen € N, where e is the longest suffix
¢ of a such thate # p1 f for some f € Mj;
{ 0, otherwise;
[ F._,, ifd = es;
() F 1 alb = F o1, ifa = pld for somen € N, where e is the longest suffix
cd of b such thate # p1f for some f € Mpy;
0, otherwise;

ya—ld, jfb = C;
0, otherwise.
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It is obvious that the subset T = S\ P, U {0} with the induced binary operation from S is
isomorphic to the semigroup of w X w-matrix units B, and moreover we have that
(ﬁaqb)fl = ybflu inT.

We determine a topology T on the set S in the following way: assume that the elements of
the semigroup P, are isolated points in (S, T) and the family

‘@(941*%) = {un(gpflb) tUy € ‘@uflb}

of the set Uy(#,1;,) = Uy, U{Z,1,} is a neighborhood base of the topology T at the point
Fo1p € S.

Now we show that so defined binary operation on (S, T) is continuous.

In case () we consider three cases.

Ifa='b-.F,.1; = 0 then we have thata~'b - U,(%.-1;) = {0} for any positive integer n.

Ifa'v- F., = 7 (ea)-14 then ¢ = eb. We claim that a=1b - Uy(F.y) C Un(F (¢a)-1a)
for any open basic neighbourhood Uy (-# ,4)-14) of the point . ;)14 in (S, 7). Indeed, if x €
Un(F.1,) then x = (pi'c) ~1pkd for some positive integers m, k > n, and hence we have that

a~'b- (pi'e)'pid = a” b (pieb)~'pid = (pi'ea) ' pid € Un(F (eq)-1a)-

Ifa=b- F, 1y = F,,, then e is the longest suffix of the word a in .#> which is not equal
to the word p; f for some f € .#,. This holds when b = plc for some positive integer t. We
claim thata='b - Uy44(F.-1;) C Uy (F,-1,) for any open basic neighbourhood Uy, (.%,-1,) of the
point Z, 1, in (S, 7). Indeed, if x € Uy+¢(F,1,), then x = (pi*Tc)~1pi™d for some positive
integers m, k > n, and hence we have that

a b (pi o) ik td = et phe - (PP e) T = (p ) Tk € U ().

In case (Il) the proof of the continuity of binary operation in (S, T) is similar to case (l).

Now we consider case (lll).

If 7,1y - Fo1y = 0 then Uy (F,1y,) - Un(F,-14) C {0}, for any open basic neighbourhoods
U, (Z#,1,) and U, (F,1,) of the points %, 1, and .#, 1, in (S, T), respectively.

If 7, 1, F, 15 = F, 1, thenb = c and for every any open basic neighbourhood U, (.%,-1,)
of the point %, 1; in (S,T) we have that U, (%, 1) - Un(Fp13) € Uu(F,14). Indeed if
(Pha)'pib € Uy(F,1p) and (p1b)~'pi'd € Un(Fy14) then

(Pha)1pib- (pi) 'pid = (pha) Pl (b bV )p ' pid = (pia) " 'pid,

for some positive integers s,z > n, and hence (p5a) ~1pid € U, (F,14).

Thus, we proved that the binary operation on (S, T) is continuous. Taking into account
that P, is a dense subsemigroup of (S, T) we conclude that (S, T) is a topological semigroup.
Also, since T = S\ P, U {0} with the induced binary operation from S is isomorphic to the
semigroup of w X w-matrix units B, we have that idempotents in S commute and moreover
Foay - Fy, - Foa, = Fy-1,. This implies that S is an inverse semigroup. Also, for every open
basic neighbourhood U, (.Z,-1,) of the point ., 1, in (S,T) we have that (U,(Z,-1,)) " =
U, (#,1,) for alln € IN and hence the inversion in (S, T) is continuous.
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BkasaHo AOCTaTHI YMOBH, 3a SIKMX TOIIOAOTiUHII iHBEepCHII A-TIOAIIMKATYHIIT MOHOIA P) € abco-
AIOTHO H-3aMKHEHVMM B KAACi TOIOAOTIYHNMX iHBepCHIMX HAIBIPYIL. AASI AOBIABPHOTO HECKiHUEHHOTO
KapAMHaAY A IOOYAOBaHO HalicAabIly HaIiBIPYIIOBY iHBEpCHY TOIOAOTIIO T,; Ha Py Ta HaBeAeHO
TIPMKAAA TOIIOAOTIYHOIO iHBEpCHOTO MOHOIAA S, IO MICTUTD MOAIIMKAIUHNMIT MOHOIA P sIK ITiABHY
AVICKpeTHY ITiAHaMiBrpyIy.

Kontouosi cniosa i ¢ppasu: iHBepCHa HATIBIrpyma, OGIIVKAIUHMIT MOHOIA, TIOAIMKAIYHII, BiABHIIA
MOHOIA, HaIMiBrpyna MaTPUYHMX OAMHIIIb, TOIOAOrIYHA HAIliBrPyMa, TONOAOTiUHA iHBepCHa HamiB-
rpymna, MiHiMaAbHA TOIOAOTISL.



