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ANALOGUES OF WHITTAKER’S THEOREM FOR LAPLACE-STIELTJES INTEGRALS

Lower estimates on a sequence for the maximum of the integrand of Laplace-Stieltjes integrals
are found. Using these estimates we obtained analogues of Whittaker’s theorem for entire functions
given by lacunary power series.
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INTRODUCTION
For an entire function -
g(z) =) a,z", z=re", (1)
n=0
— InIn M(r) . InlIn Mg(r)
let My (r) = max{|g(z)|: |z| =r}and ¢ = rgTw S A= rE_TooT be the

order and the lower order of g correspondingly. J.M. Whittaker [1] has proved that A < ¢p,
where p = lim (In A,)/In A,4q. For an analytic in {z : |z| < 1} function (1) of the order

n—r+00
—  InlInM —  Inln M
0o = lim Lg(r) and the lower order Ag = lim Lg(”) L.R. Sons [2] tried to prove
1 —In(1—7) M1 —In(1—7)

that Ag +1 < (0o + 1)B. In [3] this result is disproved and it is showed that Ay < @¢p, i. e.
absolute analogue of Whittaker’s theorem is valid. Moreover, in [3] it is obtained analogues of

(o]
Whittaker’s theorem for Dirichlet series ) a,e’s, s = o + it, with an arbitrary abscissa of the
n=0
absolute convergence 0, = A € (—0c0, 40|, where 0 = Ay < A, T 400, 1 — o0.

Here we investigate similar problems for Laplace-Stieltjes integrals.

1 MAIN RESULTS

Let V be the class of all nonnegative nondecreasing unbounded continuous on the right
functions F on [0, +o0). We say that F € V(I)if F € V and F(x) — F(x —0) < < +oco0 for all
x> 0.

For a nonnegative function f on [0, +c0) the integral

[e¢]

I(0) = /f(x)e’“’dl—"(x), ceR, (2)

0
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is called of Laplace-Stieltjes [4]. Integral (1) is a direct generalisation of the ordinary Laplace

integral I(¢) = [;° f(x)e*dx and of the Dirichlet series Z aye™” with nonnegative coeffi-
n=0
cients a, and exponents A,, 0 < A, T 400, n — oo, if we choose F(x) = n(x) = Y. 1and
An<x

f(Ay) = an > 0forall n > 0. The maximal therm of this Dirichlet series is defined by formula
(o) = max{a,e*? : n > 0}.

By ()(A) we denote the class of all positive unbounded on (—oo, A) functions ® such that
the derivative @' is positive continuously differentiable and increasing to +oo on (—oo, A).
From now on, we denote by ¢ the inverse function to @', and let ¥(x) = x — ®(x)/P’(x) be
the function associated with ® in the sense of Newton. It is clear that the function ¢ is con-
tinuously differentiable and increasing to A on (0, +o0). The function ¥ is [4-6] continuously
differentiable and increasing to A on (—oo, A).

For® € O(A)and 0 < a < b < +co we put

b
Gi(a,b,®) = ba_ba/cb(;g(t)dt’ Go(a, b, ) ( _a/go )

a
It is known [5] that Gy (a,b, @) < Gy(a,b, @), and in [3] the following Lemma is proved.

Lemma 1. Let (x;) be an increasing to +oco sequence of positive numbers, ® € Q(A) and
up(0) be the maximal term of formal Dirichlet series

= i exp{—x ¥ (p(xr)) +sxr}, s=oc+it.

k=1
Then | ) n1 )
——In Up(o ——Inn Upl\o
Iim———~2 =1 S e NV
e e B B N P B ®)
In pp(0) G1 (% X1, D)
Jim - #P\T) lim 4
0 R Galvnen, D) @
and if (0 )q>”( )
then In In ip (o) In G ( )
. InIn up(oc N Gy (X, X1y
im —————~ = lim . 6
A In CI)((T) oo IN Gz(xk,ka,CD) ©

It is clear that integral (2) either converges for all ¢ € R or diverges for all ¢ € R or there
exists a number o, such that integral (2) converges for o < . and diverges for ¢ > c.. In the
latter case the number o is called abscissa of the convergence of integral (2). If integral (2)
converges for all ¢ € R then we put 0, = +o0, and if it diverges for all ¢ € R then we put
0c = —o00.

Let

u(o,I) =sup{f(x)e’: x >0}, ceR,

be the maximum of the integrand. Then either y(c,I) < +ooforallo € R or (o, I) = 4o for
all o € R or there exists a number ¢}, such that y(c, I) < 4o forall ¢ < 0, and p(c, I) = +oo
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for for all ¢ > ¢,. By analogy the number ¢, is called abscissa of maximum of the integrand.
It is well known ( [4]) thatif F € V and In F(x) = o(x) as x — +oo then o, > 0y,.

For each Dirichlet series 0. < 0. In general case this inequality can be not executed. We
will say in this connection as in [4] that a nonnegative function f has regular variation in regard
to Fif thereexista > 0,b > 0and h > 0 such that for all x > a

x+b

[ F0are = (). %

In [4] it is proved that if F € V and f has regular variation in regard to F then o, < 0;,. We
need also the following lemma.

Lemma 2 ( [4]). Leto, = A € (—o0,+o0] and ® € O(A). In order thatInp(c,I) < ®(c) for
allo € [0y, A), it is necessary and sufficient thatIn f(x) < —x¥(¢(x)) for all x > x.

Let L be the class of all positive continuous functions & increasing to +oo on (xg, +0),
xp > —oo. Wesay thata € LY if o € L and a((1+0(1))x) = (1+0(1))a(x) as x — +oo, and
a € Lgjifa(ex) = (1+0(1))a(x) as x — +oo for each ¢ € (0, +00).

Using Lemmas 1 and 2 first we will prove the following theorem.

Theorem 1. Let 0, = +o0o, ® € () (+00), In p(co,I) < &(0) forallc > oy and X = (xi) be
a some sequence of positive numbers increasing to +oo. Suppose that f is a nonincreasing
function. Then:

1) if eitherIn f(x;) —In f(xp41) = O(1) ask — oo orln f(xx) = (14+0(1))In f(xxyq1) as
k — ocoand ® € L% orxj 1 —xx < H < +oo forallk > 0, or x;1 = (1+0(1))xx as
k — oo and ® € LY, then

Inp(e, ) _ . G1(x X1, D).

lim im ; 8
ot P(0 k—oo G2(Xk, Xk 41, P) ®
2) if
P (0)P"(0)
il S > — >
In o+ ( (@’(0’))2 1) In q)<‘7) 24> —%, 020, ©)

and either In f(x;) —In f(xx,1) = O(1) ask — o0 orln f(x;) = (1+0(1))In f(xx41)
ask - coandIn ® € LY orln f(x;) < aln f(x441),0 < a < 1,andIn ® € Ly, or
Xpp1 — X < H < 4oo forallk > 0, or xp41 = (1+0(1))xx ask — co and ® € LY or
Xpi1 < Axy forallk > 0 andIn ® € Lg; then

lim InIn pu(o,I) < lim In G1(xg, x541, D)

. 10
coteo INP(0) T S In Gaxg, Xper1, P) (10)

Proof. At first we remark that in view of the condition ¢}, = +co we have f(x) — 0 as x — 4c0
and ¢ = o(lnu(s,I)) as ¢ —  +oo. Now, we put xp = 0 and
u(o, I; X) = max { f(xx)e’ : k > 0}. Clearly,

In p(o,I) =sup(ln f(x) +ox) > sup(In f(xx) +ox) = In u(o, I, X). (11)
x>0 k>0



242 DOBUSHOVSKYY M.S., SHEREMETA M.M.

Therefore, In p(c, I; X) < ®(0) for all ¢ > 0p and by Lemma 2 In f(x;) < —x¥(¢(xx)) for all
k > ko. Hence it follows that In u(c, I; X) < In up(r) for o > 0p. Therefore, by Lemma 1 from
(4) we obtain

lim M < lim G (xk, ka,qb)' (12)
ot P(0) koo G2(Xk, X i1, P)
On the other hand for o > 0
In u(o,I) =max sup (In f(x)+x0) <max(In f(xx) + xg410). (13)
k20 <x<myy k20

If In f(xx) = (14+0(1))In f(x41) as k — oo then for every ¢ > 0 we have In f(x;) <
(In f(xgs1))/(1+¢) forall k > ko = ko(¢). Therefore,

max(In £(x;) + x¢410)

k>0
In f(x
= max {maxin £(x) + 110), max (2 i flor) + e ) |
In f(x
< max {O(U),gg%( <—]1((+k8+1) + xk+1‘7> }
1
< T max(In f(xe) + X110 (1 +¢)) +O(0), = oo

Hence and from (13) it follows that In y(c,I) <In p (0(1 +¢),I; X) for 0 > . Thus,

In (o, 1) In pu(oc(l1+e),; X)

lim < lim
r—+oo CD((T> T ot (D((T) (14)
. Inu(e, [ X) — P(o(l+¢)) . Gy(xg, xpi1, P)
< Iim —~—"—~% lim —————> < A(¢) lim ,
ST A e M I G 0, @)

where A(e) = rE_eroo w. For ® € L%in [7] is proved that A(e) \, 1 as ¢ | 0. Therefore,

(14) implies (8).
If xp 11 = (1 +0(1))xx as k — oo then for arbitrary € > 0 from (13) it follows that
Inu(o,I) <Inu(oc(l+e),[X)+0(0), o5(e) <o — oo,

whence in view of the condition ® € L? as above we obtain (8).
IfIn f(x;) —In f(xgy1) = O(1) as k — oo then from (13) we have

In pu(o,I) < r]?;ag(ln f(xpi1) +x0+1In f(xg) —In f(xge1)) <In p(o, I; X) 4+ const,  (15)

that is in view of (12)

lim DAL oy B LX) o C1lk X, @)
rotee  P(0) o——too D(0) oo G (Xp, Xpi1, @)

(16)

Finally, if x; 11 — x¢ < H < 4oo for all k > 0 then from (13) follows that

In u(o,I) < rkn>aa<(ln fxx) +xx0 + 0 (x4 41 —x%)) <In p(o,[; X) + Ho, (17)
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that is in view of (12) we obtain again (16). The first part of Theorem 1 is proved.

Now we will prove the second part. Since In ¢ = o(In p(c,I)) as ¢ — +o0, condition (9)
follows from (5).

If either In f(xx) —In f(x41) = O(1) ask — o0 or xp11 — xx < H < 400 for all k > 0 then
from either (16), or (17) in view of (12) and Lemma 1 we obtain

lim RInp@D) o Inlnp( LX) o In Gl ¥, @)
rotoo  In D(0) roteo N D(0) koo IN Go (g, Xg 11, D)

If either In f(xx) < (14 0(1))In f(xgy1) or g1 = (1 +0(1))x, as k — o0 as x — +oo
then as above from (13) we have In In p(c,I) < Inln pu (c(1+¢),I; X) for every € > 0 and all
o > 0y(e), whence (10) follows in view of the condition In & € L°.

IfIn f(xx) <aln f(xx41),0 < a <1, then from (13) we have

In pu(o, 1) < arlf1>ag<(ln f(xgs1) +x410/a) = aln u(o/a, I; X);

and since In® € L;, we obtain

lim InIn pu(c,I) < lim Inln p(o/a,I; X) e In ®(c/a) < lim In G1(xg, X511, D)

rotee IN®0) T 550 In®(c/a)  roteo InP(0) T S In Goxg, Xpi1, P)

If xp 7 < Axy forallk > 0thenln (o, I) < In u(Ac,I;X)+ O(0) as ¢ — +oco, whence in
view of the condition In ® € Lj; we obtain (10). The proof of Theorem 1 is complete. ]

Now we consider the case 0, = 0. Let L be the class of all positive continuous on (g, 0),
0p > —oo, functions B, increasing to +oco. We say that p € [0 if B € L and
B((1+0(1))e) = (14+0(1))B(c) as o 1 0,and B € L; if B(co) = (1+0(1))B(c) as o 1 0
for each ¢ € (0, +0).

Lemma 3. Let § € L and B(5) = Hw

at0 ,5(0’)
and sufficient that B(6) — 1 asé | 0.

8 > 0). In order that B € L, it is necessar
( y

Proof. Suppose that g € L% but B(6) 4 1as d J 0. Since the function B($) is nondecreasing,
there exists 1}151 B(é) = b* > 1, thatis B(d) > b* > 1. We choose an arbitrary sequence (J,) { 0.

For every ¢, there exists a sequence (0, x) T 0 such that B((1+ ;)0 k) > bB(0y, k), 1 < b < b*.
We put o7 = 0q,1 and 0, = min{o,, x > 0,1 : k > n — 1} and construct a function y(c) — 0,
o 10, such that y(0,) = 6. Then (0 /(14 ¥(0x))) = B(on/ (14 6n)) > bB(0n). In view of
definition of L? it is impossible.
On the contrary, let B(6) — 1as ¢ | 0 but B & LO. Then there exists a function y(¢’) — 0,
o 10, and sequence (0,,) T 0, n — oo, such that y}l_r)r(}o B(on/(1+v(0w))/B(0n) = a # 1. Clearly,
a < 1 provided y(c,) < 0 and a > 1 provided y(c,) > 0. We examine, for example, the
second case. Let > 0 be an arbitrary number. Then y(0,,) < ¢ for n > ng and
—Ble/(1+9)) Blan/(1+9)) o 1— Blon/(1+7(0n)))

B($) = lim > lim > lim

M B0 A o Cam pan T

which is impossible. Lemma 3 is proved. O
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Theorem 2. Let o, = 0, ® € O(0), In (o, I) < ®(0) forallc > oy and X = (x) be some
sequence X = (xi) of positive numbers increasing to +oco. Suppose that f(x) ,* +oo as
x — +o0. Then:

1) if eitherIn f(xxyq) —In f(xx) < Horxgy —xx < H < +oo forallk > 0, orln f(x;) =
(1+0(1))In f(xpy1) ask — c0cand ® € [0, orx 1 = (1+0(1))x; ask — coand @ € L0,
or x41 < Axy fork > 0 and ® € L; then

. Inp(o,I) . Gy(xg, Xeq1, @)
Iim ————~ < lim , 18
0 PO) T S Ga(Xk Xpg1, D) (1)
2) if
P(0)P"(0)
Rl A > _
( (@ ()2 1)In®(0) >g > —0c0, 0 € [0p,0), (19)
. InlIn p(o,I) . In Gi(xg, 11, D)
lim ———>2 < lim . 20
oo In®(0) T S In Gaxg, xpi1, P) 20

Proof. As above let u(c,I; X) = max{f(xx)e’™ : k > 0}. Clearly, (11) holds. Therefore,
In p(o,; X) < ®(0) forall o € [09,0) and by Lemma 2 In f(x;) < —x¥(@(x¢)) for all k > ko,
thatisIn y(co, I; X) < In up(r) for ¢ > 0p. Therefore, by Lemma 1

li_mln u(o, I; X) < lim Gl(xk,xkﬂ,@)' 1)
0 Do) k—oo G2 (XK, Xp 41, D)
On the other hand for o < 0 now we have
In p(o,I) = max  sup (In f(x)+x0) < rl?a(;((ln f(xga1) + x0). (22)
>

X <X

Therefore, if either In f(x; 1) —In f(x;) < Hor x;,q — xx < H < +oo for all k > 0 hence we
obtain either In y(c,I) <1In u(c,; X) + Horln pu(c,I) <In pu(c,I; X) + Ho, whence

li_mln u(o,I) Sli_mln ‘u((T,I,'X).
0 P(o) 0 Do)
Inequalities (21) and (23) imply (18).

If either x5 = (1 +0(1))x,orln f(xx) = (14+0(1))In f(xx41) ask — oo then from (23) as
in the proof of Theorem 1 for every ¢ > 0 we have correspondingly In p(c,I) < In u(c/(1+
e),;X)and In u(c,I) < (1+¢e)In u(c/(1+¢),I;X) for o € [op(¢),0), whence in view of
condition In ® € L% of Lemma 3 and of the arbitrariness of ¢ we obtain (23) and, thus, (18)
holds.

Finally, if x;,1 < Axy for k > 0 then In p(c,I) < In u(c/A, I X), whence in view of
condition ® € Lg; we obtain again (23). The first part of Theorem 2 is proved.

For the proof of the second part we remark that from the condition f(x) , +coasx — 400
it follows that In u(c,I) T +oco as ¢ 1 0. Therefore, (19) implies (5). We remark also that
if either In f(xg1) —In f(xx) < Hor xpyq —xx < H < +ooforallk > 0orln f(x) =
(1+0(1))In f(x441) ask = ccand In ® € L0 or x4 = (1+0(1))xrask — coand In @ € [0
or xp1 < Ax fork > 0and In ® € L; then from the inequalities obtained above we get
(20). If In f(xgy1) < Aln f(xx) for k > 0 then from (21) we obtain the inequality In u(c,I) <
Aln u(o/A,I;X), whence in view of the condition In ® € L,; inequality (20) follows. The

(23)

proof of Theorem 2 is complete. O
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2 ANALOGUES OF WHITTAKER’S THEOREM

Examing the other scale of growth from Theorems 1 and 2 gives us a possible to get the
series of results for Laplace-Stieltjes integrals. Here we will be stopped only for two cases
which more frequent at meet in mathematical works. The most used characteristics of growth
for integrals (2) with 0, = +o0 (by analogy with Dirichlet series) are R-order gr[I], lower R-
order AR[I] and (if or[I] € (0,+o0)) R-type Tr[I], lower R-type tgr[I], which are defined by
formulas

orll] = Em IO = RO
gte o o—> 400 o

o=+ exp{coor[I]}’ o—-+eo exp{oor[I]}

We will show that in this formulas In I(c) can be replaced by In (o, I) and will use the
following Lemmas for this purpose.

Lemma 4 ( [4,8]). Let F € V, f has regular variation in regard to F and either 0, = +o0 or
oy = 0 and 1—1>_T f(x) = +oo. Thenln u(c,I) < (14 0(1))In I(0) as o 1 0.
X [}

Lemma 5 ( [4,9]). Let F € V, 0, = +o0 and lim (In F(x))/x = T < +oo. Then I(¢) <

X——+00

u(oc+t+e¢1) foreverye > 0andallo > o(e).
It is easy to check that these lemmas imply the following statement.

Proposition 1. Let F € V, f has regular variation in regard to F and 0, = +oo. IfIn F(x) =
O(x) as x — +oo then

oxll] = Tim In In y(o,l), ARl = lim In In y(U,I), (24)

o0 o T—+00 o

and ifIn F(x) = o(x) as x — +oo then

— 1 I
Tr[l] = lim M, tz[l] = lim _nple,D) (25)
o +eo exp{or[1]} o -+oo eXpLoer 1]}
Using Theorem 1 and Proposition 1 we prove the following theorem.
Theorem 3. Let F € V, 0, = 400 and X = (x;) be some sequence of positive numbers
increasing to +co. Suppose that f is a nonincreasing function and has regular variation in
regard to F.
IfIn F(x) = O(x) asx — +o0 and In f(x;) = (1+0(1))In f(xx.1) ask — oo then
. Inx
AR[] < Borll], B = lim —* (26)

k—o0 In Xk+1

Ifln F(x) = o(x) asx — 400 and In f(x;) —In f(xry1) = O(1) ask — oo then

tr[I] < Tr[I] T exp 1+'yln’y In l, ¥ = 11_rni (27)
1 1 Y k—o0 Xk+1
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Proof. From (24) and (25) for every € and all ¢ > op(e) we have accordingly In u(c,I) <
exp{(or[I] +¢)c} and In u(o,I) < (Tg[I] + ¢)exp{or[I]c}. We choose ® € (+4o0) such
that ®(0) = Te? for ¢ > op(e), where either ¢ = or[I] +eand T = 1 or ¢ = og[I] and
T = Tr[I] + & ThenIn u(c,I) < ®(0) for o > op(e), In @ € L and it is well known ( [4,10])
that

1 XX Xk+1
G1(xk, X1, P) = = In
Q Xg+1 — Xk Xk
and

1 Xpgq1In X1 — xp In xp
Ga (X, Xp 11, P) = o0 &P { = Xk; . :

Since ®(0)®"(0) /®'(0)? = 1, condition (9) holds and by Theorem 1 we have

XX X
Xk+1 — Xk Xk

AR[T] < o lim (28)
[l ¢ o X1 In xpqq — xpIn xy
provided In f(x;) = (14+0(1))In f(xgy1) ask — oo, and
XeXk+1 In Xk+1

. Xk+1 — Xk Xk
tr|I] <eT lim 29
rll] < k—o0 {xk+1ln Xpp1 — Xk In xk} @9)

exp
Xk+1 — Xk

provided In f(x;) —In f(x 1) = O(1) as k — oo.

We suppose that f < 1. Then there exist a number * € (B, 1) and an increasing sequence
(kj) of positive integers such that In x;; < p*In xy, 41, thatis x;, = 0(xy;41) as j — co. There-
fore, from (28) we obtain

xk]'xk]'-i-l In xkj+l)

Yki+1 — Xkj Xk;

(xkj+1 - xkj) In (
AR[I] < o lim

oo X110 X1 — X Inx
In xp; +0(1) +1In In x4 _

*
= 7

< olim
j—o0 In xkj+1

whence in view of the arbitrariness of p* and € we obtain inequality (26) follows.
Further, if 7 € (0,1), then x; = (1+ 0(1))7x);41 as j — oo for some increasing sequence
(kj) of positive integers and from (29) we obtain

Xk Xk 11 I (X 1/ x,)
] " ] ]

tr[I] < eT lim
j—ro0 Xk.+1 In Xk.4+1 — Xk, In X
(xkj+1 - xk]) exp : : — - :
xk]'-i-l xkj
Xr.a11n (1/
— T lim TXkj+1 (1/7) _ lnlexp{l—k,ﬂnly},
b I=7)exp{ln x01 — (YIn )/ 1 =7} " 1-7 v 1—1

1 1
whence in view of the arbitrariness of ¢ we get (27). Since 1 ’_y In p” exp {1 + ’Y—L"YY} -1

as v — 1, then inequality (27) is obvious if ¥ = 1. Finally, if v = 0, then In x;, = o(In xk].H) as
j — oo for some increasing sequence (k;) of positive integers and from (29) we obtain
X

Xki+1

j—oo €Xp{In xi 11 +0(1)} j—oo Xkj+1 Xk;

xk/' (h’l xkj-i-l —In .ij) —0
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i.e. inequality (27) holds. The proof of Theorem 3 is complete. O

Now we consider the case 0}, = 0. The order g [I], the lower order Ag[I] and (if 0 < go[I] <
+00) the type Tp[I] and the lower type ty[I] are defined by formulas

—Inln I(0) . Inln I(0)
= —_— 7 - lim -
ol = ey Mol = ey
To[I] = lim |o|®Wn I(0), to[I] = lim |o| In I(0).
o10 at0

We will show that in this formulas In I(0) can be replaced by In y(c, I) and will use for this
purpose the following lemmas.

Lemma 6 ([4,9]). LetF € V,0, = 0andIn F(x) < hln f(x) for x > xq. Then for every ¢ > 0
and all o € [op(e),0)

1nl(a)§(1+h+s)lny< I>+K, K = K(¢) = const.

_ 7
1+h+¢
Lemma7 ([4,9]). LetF € V,0, = 0andIn F(x) = o(xy(x)) as x — oo, where 7y is a positive

continuous and decreasing to 0 function on [0, +00) such that xy(x) 1 400 as x — +oo. Then
foreverye > 0 and all o € [0p(¢),0)

o elo] 1 ol
InI(c) <1 —, 1 — — |-
" <J)_ny<1—|—8' >+1+£7 (e(1+£)2
Lemmas 4, 6 and 7 imply the following statement.

Proposition 2. Let F € V, 0, = 400, f has regular variation in regard to F and f(x) /* +co as
x — 4o0. If eitherIn F(x) = O(In f(x)) orln In F(x) = o(In x) as x — oo then

——InIn u(o,I) InIn p(c,I)

I - —_— )\ = 1' _—
Wl = mazen T B A 0
and if either In F(x) = o(In f(x)) orln In F(x) = o(In x) as x — oo then
Tol1] = Tim || in p(e, 1), tol1] = lim|o|*llin (o, 1), (31)
4 010

Proof. If In F(x)) = O(In f(x)) (accordingly In F(x) = o(In f(x))) as x — oo then formulas
(30) (accordingly (31)) easy follows from Lemmas 4 and 6.

If we choose function < such that y(x) = x°~! for x > xo, where § € (0,1) is an arbitrary
numbers, then v satisfies the conditions of Lemma 7. Therefore, if In F(x) = o(x?) as x — +o0
then

1-6
o elo| [e(1+¢)?
< __
lnI(U)_lny(1+€,I)+l+€< o]

=Inu <1L+€, I) +2°(14e)" 2|0’ =Inp <1;:_S,I> +0o(1), o10,

whence the formulas (30) and (31) follow. It remained to notice that the condition
InIn F(x) = o(In x) as x — +oo implies the condition In F(x) = o(x%) as x — +oo for
0 € (0,1). Proposition 2 is proved. O
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Using Theorem 2 and Proposition 2 we prove the following theorem.

Theorem 4. Let F € V, 0, = 0 and X = (x;) be some sequence of positive numbers increasing
to +00. Suppose that f has regular variation in regard to F and f(x) /* 400 as x — +oo.

If either InF(x) = O(lnf(x)) or mInF(x) = o(lnx) as x — oo
andIn f(x;,1) = O(In f(x;)) ask — oo then

. In X
Aolll < Boolll, B = Lim . 32
oll] < Pooll], p = lim 7= o (32)
If either In F(x) = o(ln f(x)) or InlnF(x) = o(lnx) as x — +co and
In f(xgi1) = (140(1))In f(xx) ask — oo then
boll] < To[JA(y), 7= lim -, (33)
k—oco Xk+1
where /(e+1) 1/(e+1) /(0+1)
e/(e+1) (1 — 1/(e 1 — e/(e+1))e
A(y) = 7 (1-7 )+(1 1 )¢
(1=7)°
Proof. 1f go[I] < +oo (To[I] < +o0) thenIn u(c,I) < O(0) = T forall o € [op(e), 0), where

o]
either 0 = go[I] +eand T = 1 or ¢ = go[I] and T = Ty[I] + ¢. Clearly, ® € L0 and In ® € L;.
It is known [4, p. 40] that for this function

_ T(o+1)  xkXpeqa 1 !
Gl(Xk, xk—|—1/q)) - (TQ)Q/(Q+1) Xk+1 — Xk x]lc/(QJrl) 11/(1Q+1)
+

and

/(0+1 /(o+1)\ ¢
(04 1)(To)V/ (et 1) x&/teHD) _ yo/te )) |

Ga(xp, Xk11,®) =T
( +1,®) ( Q Xk+1 — Xk

We remark that

(o)D" (0) ) 1 T
AP 1) n®(0) = -In — 1 +0o, o 10,
( (®'(0))? o |of?
that is (19) holds.
Therefore, if In f(x;1) = O(In f(x¢)) as k — oo then by Theorem 2 in view of arbitrariness
of
In Xk Xkt1 1 _ 1
Xk4+1 — Xk x}(/(Q"‘l) xllc/(lg—H)
Ao[I] < golI] lim N (34)
ke In ( Xk+1 — Xk )
o/(e+1) _  e/(e+1)
Y1 T

andifln f(xg 1) = (1 4+0(1))In f(xx) as k — oo then

0+1 o/(e+1) _ _o/(e+1)\ °
to[I]STo[I](Q+1g) lim KK+ ( LI ) (ka i . (35)

Q k—o0 Xk+1 — Xk x;/(QJrl) x;i(ngrl) Xk+1 — Xk
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We suppose that f < 1. Then there exists a number §* € (B, 1) and an increasing se-
quence (k;) of positive integers such that In x;, < B*In xj, 11, that is x, = 0(xk;+1) as j — oo
Therefore, from (34) we obtain

! Xk Xkj+1 1 1
n J—
X1 — Xk, 1/(e+1) 1/(0+1)
kj+1 kj xk]- xk]--i-l

Q

Ao[I] < go[I] lim
J7ree Xki+1 — Xk

In (07 (1) _  e/(e+)
kj+1 k;
[I] ) In x}é{’]‘/(Q-i-l) [1] . In Xk].
= Qo(l] M ——————= = Qo[/| 1m
j—o0 an x]ij/+(§+1) j—o0 In xkj+1

< oo[1]B%,

i.e. in view of arbitrariness of B* we obtain the inequality A¢[I] < Boo[I]. For B = 1 this
inequality is trivial.

Now we suppose that y € (0, 1). Then there exists an increasing sequence (k;) of positive
integers such that X, = (140(1))y Xj;+1 S ] — 0o Therefore, from (35) we obtain

o/ (e+1) _ o/ (e+1) ¢

o+1 Xie: Xk 41 Xp.1q k:
tolt) < To[n) OV iy ML L) (e
¢ j—roo ki1 kj xk], xijrl ki+1 ki
o+1 _ ~0/(e+1)Ye o+1
0¢ v—1 /')/1/(Q+1) (1 — ,),)Q 0
It is easy to show that A(y) — (gﬁﬁ as v — 1 that (2) is transformed in obvious inequality
to[p] < Tolg] as v — 1. If v = 0 then x;; = 0(xy;41) as j — oo and from (2) we obtain easy that
to[I] = 0, because A(0) = 0. The proof of Theorem 4 is complete. O
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AAsl MakcMMyMy MiAiHTerpaAbHOro Bupasy iHTerpary Aamaaca-CTiaTbeca 3HaA€HO HVDKHI
OLIIHKM Ha AESIKili OCAIAOBCHOCTI. BuxopumcToByroun 1i OLIiHKM, OTPMMAaHO aHAAOTU Tepemu YiT-
TeKepa AAS HIAMX PYHKIIIN, 306pakeHNX AaKyHapHIMM CTETIeHEBYMM PSIAAMIL.

Kntouosi cnosa i ¢ppasu: iaTerpan Aamaaca-CTiaTbeca, MaKCMMYyM TiAIHTErpaAbHOTO BUpa3sy, Teo-
pema VYirrekepa.



