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A WORPITZKY BOUNDARY THEOREM FOR BRANCHED CONTINUED
FRACTIONS OF THE SPECIAL FORM

For a branched continued fraction of a special form we propose the limit value set for the
Worpitzky-like theorem when the element set of the branched continued fraction is replaced by
its boundary.
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INTRODUCTION

A lot of convergence criteria for continued fractions are characterized by convergence do-
mains. Such domains are indicated in the complex plane, that if elements ay, by of a continued
fraction belong to these domains then the continued fraction
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converges. At first convergence domains for continued fractions we can find in papers of Wor-
pitzky (1865), Pringsheim (1899) and Van Vleck (1901) [8].

Despite of the fact that a well known convergence theorem for continued fractions was
proposed by J. Worpitzky in 1865, its new proofs, generalizations and applications are actual
even at present [3, 6, 8].

H. Waadeland [10] formulated the Worpitzky theorem in a slightly more general form than
classical one [8], using conditions on the coefficients of the continued fraction proposed by F.
Paydon and H. Wall [9].

Theorem 1. Letp € (0,1/2] be any positive number, and let all elements of a continued fraction
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a;, i =1,2,..., be complex numbers, bounded by
la;| <p(l—p), i=12,.... (2)
Then the continued fraction (1) converges and its values are contained in the disk |w| < p.
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For the continued fraction (1) Haakon Waadeland raised the question: What happens to
the set of values of the continued fraction (1) when the condition (2) in the Worpitzky theorem
would be replaced by |a;| = p(1 —p), i = 1,2,...? Answering on his question H.Waadeland
proved [10], that the set of all possible values of the continued fraction (1) is the annulus

0
< |lw| <
plelp
In the classical case of the theorem (p = 1/2),i.e. |a;] = 1/4, i = 1,2,..., the annulus is

1/6 <|w| <1/2.

The same question one can put for multidimensional generalizations of the continued frac-
tion, such as for example,

a branched continued fraction (BCF) [3]
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where 4; ;, ; be complex numbers, z; be Complex variables, i(k) = i1y . . . i be multiindex;
a branched continued fraction with independent variables [1]
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where 4;;, ; be complex numbers, z; be complex variables, i(k) = iip.. .1 be multiindex
1 Sikgl‘kfl, k:1,2,..., iOIN,'
or a two-dimensional continued fraction (TDCF) [6]
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(5)

where a;j,i=0,1,...,j=12,..., be complex numbers, z1, z, be complex variables.
It was found this question for the branched continued fraction (3) withz; = z, = ... =
zny = 1 is answered by the following theorem [11].

Theorem 2. Letp € (0,1/2] and N > 2 be an integer. In the family of branched continued
fractions

N aj e (k)
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where a; ;, ; be complex numbers, i (k) = iyip .. .1 be multiindex, (k) satisfy the conditions

ai(k)’ = P(l—l\;())/ then the set of possible branched continued fraction values is the closed

disk |w| < p.
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Thus, in this case the set of possible BCF values is unchanged when all elements of (6) are
restricted to the boundary of the disk.
For TDCF (5) with z; = zp = 1 the answer is proposed by the following theorem [7].

Theorem 3. Let p be a real number in (0,1/2], and let F, be the family of two-dimensional
continued fractions

2
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where ajj, i=0,1,...,j=1,2,..., be complex numbers that satisfy conditions ‘ai,]-| = Ep(l —

p), i,j =1
Then the set of all possible values f of the TDCF (7) in F, is the annulus A,, given by

p(1—p) 1
R-—————<|f|<R, R==(4/1—-2p(1— 1—-4p(1—p)).
R pieg) SWISR R=3(/1-2001-p) +/1-4p(1-p))
In the case p = 1/2 the annulus is (8 + \/5) /124 < |f| < 1/2V2.
In the present paper the answer will be done for the branched continued fraction with
independent variables (4) with z; = z; = ... = zy = 1 (named the branched continued
fraction of the special form [2, 5, 4]).

1 THE WORPITZKY-LIKE THEOREMS FOR BRANCHED CONTINUED FRACTIONS OF THE
SPECIAL FORM

Since the beginning we prove the Worpitsky-like theorem in a slightly more general form
than it was done in [1].

Theorem 4. Letp € (0,1/2] and N > 2 be an integer. In the BCF of the special form

a00
14 B e K
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where a;,;, ; be complex numbers, i(k) = iiy...i be multiindex1 < i < i1,k =1,2,...,
ip = N, aj(y satisfy the conditions ai(k)‘ < = %, lao] < p(1—p).

Then the BCF of the special form (8) converges, and its values are contained in the disk
[w| < p.

Proof. 1t is not difficult to show that a periodic continued fraction

p(L—p)
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is the majorant fraction for the BCF of special form (8).
It means that approximants of these fractions satisfy the relation:

|fn — fm| < M- |80 — &ml,
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where f,, gn are the nth approximants of the BCF of the special form (8) and continued fraction
(9) respectively, M is a certain constant, 1, n are natural numbers.

For the difference between the nth and mth approximants of the BCF of the special form (8)
the following relation is true [1]:
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Using the method of complete mathematical induction it is easy to prove that

Q)| = hs s (1)

where hy, is the m th approximant of the continued fraction
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for all possible index sets.
Let us write the difference formula for approximants of the continued fraction (9)
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From (11) follows that all Q(S) # 0. Hence, taking into account (10) and (12) we have
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The continued fraction (9) converges, and therefore the BCF of the special form (8) is also
convergent.
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Let us write the m th approximant of (8) in the form
400 _ 400
N 14+w)
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zZ =

From the conditions of the theorem on the fraction coefficients and inequalities (11) one can
write
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Putting g, = P,/ Qu, where P, is the nth numerator and Qj, is the nth denominator of the
approximant g it is easy to find by induction that

Q= Y61
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If Q is the value of the infinite fraction (9), and Q, > 0, n =1,2,.. ., then we get
(p(1 —p))"
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i.e., the sequence {g,} grows monotonically. Hence,|w| < Q. Since Q = p(1—p) - (1 —-Q)~},
and taking into account that Q = 0, if p = 0, the solution of this quadratic equation with
respect to Q gives Q = p.

Therefore, |w| < p, and |z| < p. O

Now we obtain the boundary version of this theorem.

Theorem 5. Let p € (0,1/2] and N > 2 be an integer. In the family of branched continued
fractions of the special form F,

o (13)
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where a; ;, ; be complex numbers, i(k) = 1112 zk be multiindex1 < i < i1, k=1,2,.
ip = N, a;() satisfy the conditions ‘ ‘ = , laoo] = p(1 — p), the set of all possjble
branched continued fractions of the spec1al form Values is the annulus A,, given by
1-p
< lw| <
P 1 —p Slel=e

Proof. Let fj be a possible value of the BCF of the special form (13). Then all values f with |f| =
| fo| are possible BCF of the special form values in F,. Hence the set of values of such fraction
must be a disk or an annulus, in both cases centered at the origin. From the Worpitzky-like
theorem (Theorem 4) follows that this disk or annulus must be contained in the disk |f| < p.

We shall first prove that the set of all values must be contained in A,. Any BCF of the special
form in F, can be written in the form

)0 N a;
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a1y - N
Since i(1)

€ F, we have, using the previous Theorem 4
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It means that

and |w| < p. Since |w| < p it follows that for any value f of a BCF of the special form in F, we
1-p
h >0 —.
ave |f| > p- 14
That is sharp, follows from the fact that

and that the right-hand side is in F,.

We next prove that A, is contained in the set of values of BCFs of the special form in F,
with independent variables |w| < p.

By the mapping ¢ = 1/1 + w the circle w = p is mapped onto the circle

1 P
‘g_l—ﬂ 1
Then, by & — p(1 — p)e?¢, for all 6 € [0,27r) we get all points in the annulus A,.
Hence, A, is contained in the set of BCF with independent variables values for F,. O
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AASI TIAASICTOTO AQHITIOTOBOTO APOOY CTIeIiaABHOTO BUI'ASIAY 3aITPOIIOHOBAHO MEXXOBY MHOXVHY
3HaUeHb y TeopeMi Tumy Bopmillbkoro, KoAM MHOXMHA eAeMEHTIB TiAASCTOTO AAHIFOTOBOTO APO6y
3aMiHeHa ii MeXero.

Kontouosi cnosa i ppasu: MHOXVHA eAeMeHTiB, MHOXIHA 3HaueHb, MAASICTII AQHIIOTOBII Apib
CTIeLiaABHOTO BUTASIAY.



