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A WORPITZKY BOUNDARY THEOREM FOR BRANCHED CONTINUED
FRACTIONS OF THE SPECIAL FORM

For a branched continued fraction of a special form we propose the limit value set for the
Worpitzky-like theorem when the element set of the branched continued fraction is replaced by
its boundary.
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INTRODUCTION

A lot of convergence criteria for continued fractions are characterized by convergence do-
mains. Such domains are indicated in the complex plane, that if elements ak, bk of a continued
fraction belong to these domains then the continued fraction

a1

b1 +
a2

b2 +
a3

b3+...

=
∞

D
k=1

ak
bk

converges. At first convergence domains for continued fractions we can find in papers of Wor-
pitzky (1865), Pringsheim (1899) and Van Vleck (1901) [8].

Despite of the fact that a well known convergence theorem for continued fractions was
proposed by J. Worpitzky in 1865, its new proofs, generalizations and applications are actual
even at present [3, 6, 8].

H. Waadeland [10] formulated the Worpitzky theorem in a slightly more general form than
classical one [8], using conditions on the coefficients of the continued fraction proposed by F.
Paydon and H. Wall [9].

Theorem 1. Let ρ ∈ (0, 1/2] be any positive number, and let all elements of a continued fraction

a1

1 +
a2

1 +
a3

1+...

=
∞

D
i=1

ai
1

, (1)

ai, i = 1, 2, . . . , be complex numbers, bounded by

|ai| ≤ ρ(1− ρ), i = 1, 2, . . . . (2)

Then the continued fraction (1) converges and its values are contained in the disk |w| ≤ ρ.
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For the continued fraction (1) Haakon Waadeland raised the question: What happens to
the set of values of the continued fraction (1) when the condition (2) in the Worpitzky theorem
would be replaced by |ai| = ρ(1− ρ), i = 1, 2, . . .? Answering on his question H.Waadeland
proved [10], that the set of all possible values of the continued fraction (1) is the annulus

ρ · 1− ρ

1 + ρ
≤ |w| ≤ ρ.

In the classical case of the theorem (ρ = 1/2), i.e. |ai| = 1/4, i = 1, 2, . . . , the annulus is
1/6 ≤ |w| ≤ 1/2.

The same question one can put for multidimensional generalizations of the continued frac-
tion, such as for example,

a branched continued fraction (BCF) [3]
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1

, (3)

where ai1i2...ik be complex numbers, zik be complex variables, i(k) = i1i2 . . . ik be multiindex;
a branched continued fraction with independent variables [1]
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where ai1i2...ik be complex numbers, zik be complex variables, i(k) = i1i2 . . . ik be multiindex
1 ≤ ik ≤ ik−1, k = 1, 2, . . . , i0 = N;

or a two-dimensional continued fraction (TDCF) [6]
∞
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ai,iz1z2

Φi
, Φi = 1 +

∞
D

j=1

ai+j,iz1

1
+

∞
D

j=1

ai,i+jz2

1
, (5)

where ai,j, i = 0, 1, . . . , j = 1, 2, . . . , be complex numbers, z1, z2 be complex variables.
It was found this question for the branched continued fraction (3) with z1 = z2 = . . . =

zN = 1 is answered by the following theorem [11].

Theorem 2. Let ρ ∈ (0, 1/2] and N ≥ 2 be an integer. In the family of branched continued
fractions
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where ai1i2...ik be complex numbers, i(k) = i1i2 . . . ik be multiindex, ai(k) satisfy the conditions∣∣∣ai(k)

∣∣∣ = ρ(1− ρ)

N
, then the set of possible branched continued fraction values is the closed

disk |w| ≤ ρ.
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Thus, in this case the set of possible BCF values is unchanged when all elements of (6) are
restricted to the boundary of the disk.

For TDCF (5) with z1 = z2 = 1 the answer is proposed by the following theorem [7].

Theorem 3. Let ρ be a real number in (0, 1/2], and let Fρ be the family of two-dimensional
continued fractions
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1
, (7)

where ai,j, i = 0, 1, . . . , j = 1, 2, . . . , be complex numbers that satisfy conditions
∣∣ai,j
∣∣ = 1

2
ρ(1−

ρ), i, j ≥ 1.
Then the set of all possible values f of the TDCF (7) in Fρ is the annulus Aρ, given by

R · ρ(1− ρ)

4R− ρ(1− ρ)
≤ | f | ≤ R, R =

1
2
(
√

1− 2ρ(1− ρ) +
√

1− 4ρ(1− ρ)).

In the case ρ = 1/2 the annulus is
(

8 +
√

2
)

/124 ≤ | f | ≤ 1/2
√

2.
In the present paper the answer will be done for the branched continued fraction with

independent variables (4) with z1 = z2 = . . . = zN = 1 (named the branched continued
fraction of the special form [2, 5, 4]).

1 THE WORPITZKY-LIKE THEOREMS FOR BRANCHED CONTINUED FRACTIONS OF THE

SPECIAL FORM

Since the beginning we prove the Worpitsky-like theorem in a slightly more general form
than it was done in [1].

Theorem 4. Let ρ ∈ (0, 1/2] and N ≥ 2 be an integer. In the BCF of the special form

a00
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∞
D

k=1

ik−1
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ik=1

ai(k)

1

, (8)

where ai1i2...ik be complex numbers, i(k) = i1i2 . . . ik be multiindex 1 ≤ ik ≤ ik−1, k = 1, 2, . . . ,

i0 = N, ai(k) satisfy the conditions
∣∣∣ai(k)

∣∣∣ ≤ αik−1 =
ρ(1− ρ)

ik−1
, |a00| ≤ ρ(1− ρ).

Then the BCF of the special form (8) converges, and its values are contained in the disk
|w| ≤ ρ.

Proof. It is not difficult to show that a periodic continued fraction

ρ(1− ρ)

1− ρ(1− ρ)

1− ρ(1− ρ)

1−...

(9)

is the majorant fraction for the BCF of special form (8).
It means that approximants of these fractions satisfy the relation:

| fn − fm| ≤ M · |gn − gm| ,
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where fn, gn are the nth approximants of the BCF of the special form (8) and continued fraction
(9) respectively, M is a certain constant, m, n are natural numbers.

For the difference between the nth and mth approximants of the BCF of the special form (8)
the following relation is true [1]:

fn − fm = (−1)m
N

∑
i1=1

i1
∑

i2=1
. . .

im−1
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∏
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, n > m ≥ 1, (10)

where

Q(s)
i(s) = 1, Q(s)

i(k) = 1 +
i(k)

∑
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Q(s)
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, k = 1, s− 1, s ≥ 2,

Q(s) = Q(s)
i(0) = 1 +
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∑
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ai(1)

Q(s)
i(1)

, s ≥ 1, fn =
a00

Q(n−1)
i(0)

.

Using the method of complete mathematical induction it is easy to prove that∣∣∣Q(s)
i(k)

∣∣∣ ≥ hs−k, (11)

where hm is the m th approximant of the continued fraction

1− ρ(1− ρ

1− ρ(1− ρ

1−...

for all possible index sets.
Let us write the difference formula for approximants of the continued fraction (9)

gn − gm =
ρm+1(1− ρ)m+1

m
∏
i=0

hn−i−1
m−1
∏
i=0

hm−i−1

. (12)

From (11) follows that all Q(s)
i(k) 6= 0. Hence, taking into account (10) and (12) we have

| fn − fm| ≤
N
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. . .
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m
∏

k=0
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∏

k=0
hm−k−1

= gn − gm.

The continued fraction (9) converges, and therefore the BCF of the special form (8) is also
convergent.
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Let us write the m th approximant of (8) in the form

z =
a00

1 +
N
∑

i1=1

ai(1)

Q(m−1)
i(1)

=
a00

(1 + w)
.

From the conditions of the theorem on the fraction coefficients and inequalities (11) one can
write

|w| =

∣∣∣∣∣∣
N

∑
i1=1

ai(1)

Q(m−1)
i(1)

∣∣∣∣∣∣ ≤ ρ(1− ρ)

hm−2
= gm−1.

Putting gn = Pn/Qn, where Pn is the nth numerator and Qn is the nth denominator of the
approximant gn it is easy to find by induction that

Qn =
n

∑
i=0

ρi(1− ρ)n−i.

If Q is the value of the infinite fraction (9), and Qn > 0, n = 1, 2, . . ., then we get

gn − gn−1 =
(ρ(1− ρ))n

QnQn−1
≥ 0,

i.e., the sequence {gn} grows monotonically. Hence,|w| ≤ Q. Since Q = ρ(1− ρ) · (1− Q)−1,
and taking into account that Q = 0, if ρ = 0, the solution of this quadratic equation with
respect to Q gives Q = ρ.

Therefore, |w| ≤ ρ, and |z| ≤ ρ.

Now we obtain the boundary version of this theorem.

Theorem 5. Let ρ ∈ (0, 1/2] and N ≥ 2 be an integer. In the family of branched continued
fractions of the special form Fρ

a00

1 +
∞
D

k=1

ik−1

∑
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ai(k)

1

, (13)

where ai1i2...ik be complex numbers, i(k) = i1i2 . . . ik be multiindex 1 ≤ ik ≤ ik−1, k = 1, 2, . . . ,

i0 = N, ai(k) satisfy the conditions
∣∣∣ai(k)

∣∣∣ = ρ(1− ρ)

ik−1
, |a00| = ρ(1− ρ), the set of all possible

branched continued fractions of the special form values is the annulus Aρ, given by

ρ · 1− ρ

1 + ρ
≤ |w| ≤ ρ.

Proof. Let f0 be a possible value of the BCF of the special form (13). Then all values f with | f | =
| f0| are possible BCF of the special form values in Fρ. Hence the set of values of such fraction
must be a disk or an annulus, in both cases centered at the origin. From the Worpitzky-like
theorem (Theorem 4) follows that this disk or annulus must be contained in the disk | f | ≤ ρ.

We shall first prove that the set of all values must be contained in Aρ. Any BCF of the special
form in Fρ can be written in the form

f =
ρ(1− ρ)eiθ

1 + ω
, θ ∈ [0, 2π), ω =

N

∑
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ai(1)

1 +
∞
D
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Since
ai(1) · N

1 +
∞
D

k=1
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∑

ik+1=1

ai(k+1)

1

∈ Fρ we have, using the previous Theorem 4

∣∣∣∣∣∣ai(1) · N ·
(
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∞
D

k=1
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ai(k+1)

1

)−1
∣∣∣∣∣∣ ≤ ρ.

It means that ∣∣∣∣∣∣ai(1) ·
(

1 +
∞
D

k=1

ik
∑

ik+1=1

ai(k+1)

1

)−1
∣∣∣∣∣∣ ≤ ρ

N
,

and |ω| ≤ ρ. Since |ω| ≤ ρ it follows that for any value f of a BCF of the special form in Fρ we

have | f | ≥ ρ · 1− ρ

1 + ρ
.

That is sharp, follows from the fact that

ρ =
ρ(1− ρ)

1− ρ(1− ρ)

1−...

,

and that the right-hand side is in Fρ.
We next prove that Aρ is contained in the set of values of BCFs of the special form in Fρ

with independent variables |ω| ≤ ρ.
By the mapping ξ = 1/1 + ω the circle ω = ρ is mapped onto the circle∣∣∣∣ξ − 1

1− ρ2

∣∣∣∣ = ρ

1− ρ2 .

Then, by ξ → ρ(1− ρ)eiθξ, for all θ ∈ [0, 2π) we get all points in the annulus Aρ.
Hence, Aρ is contained in the set of BCF with independent variables values for Fρ.
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Для гiллястого ланцюгового дробу спецiального вигляду запропоновано межову множину
значень у теоремi типу Ворпiцького, коли множина елементiв гiллястого ланцюгового дробу
замiнена її межею.

Ключовi слова i фрази: множина елементiв, множина значень, гiллястий ланцюговий дрiб
спецiального вигляду.


