
ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2016, 8 (2), 295–304 Карпатськi матем. публ. 2016, Т.8, №2, С.295–304

doi:10.15330/cmp.8.2.295-304

PREVYSOKOVA N.V.

FAMILY OF WAVELET FUNCTIONS ON THE GALOIS FUNCTION BASE

We construct a family of wavelet systems on the Galois function base. We research and prove
properties of systems of the built family.
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INTRODUCTION

The main methods of solving problems of a digital signal processing are spectral analy-
sis, synthesis, filtering, coding and compressing based on discrete orthogonal transforms and
wavelet transforms [1–5]. The signal is presented in the form of a function of time. Wavelet
transforms may be considered as time-frequency representations or decompositions of a sig-
nal. A signal decomposition can be done by the basis built from a single wavelet function using
wavelet scale changes and shifts [1–4, 6]. Each function of the basis describes some frequency
of the signal and its location in the time domain.

An important step of a wavelet analysis is the choice of transform basis which depends
on the processing tasks and on the signal. The problem of choice of a basis and the wavelet
transform based on it is rather relevant and it is being researched subject.

The paper [4] systematizes basises of wavelet functions and wavelet transforms, but the
problem of choice of a wavelet is solved only partially [1–4, 6]. For descrete analysis the
wavelets of Daubechies, Haar, Meyer, Coifman, symlets, biorthogonal wavelets and wavelet-
packet Walsh functions are used [1–4, 6].

To solve practical problems orthogonal or symmetric wavelets with compact carrier that
ensure efficient transform algorithm can be chosen. But wavelets that simultaneously satisfy
all of this properties are unknown. The only symmetric orthogonal wavelets with compact
support are Haar wavelets but they do not satisfy the given processing qualities in many prob-
lems. To ensure symmetry multivalued biorthogonal wavelets are used. Daubechies wavelets
are much smoother than Haar wavelets but they are multivalued and do not have analytical
expression that complicates the process of their forming and calculation transforming.

From the recursively ordered Walsh system the Galois functions are generated [5], the latter
take only two values (±1) and the sequence of values is in full correlation. These features can
provide simple algorithms for information processing in the basis based on Galois functions
[5], but the researches of the Galois functions properties in various spaces and the possibility
of its application for wavelet transform have not been done yet.
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Thus performing of a time-frequency analysis and processing of a broad class of one-
dimensional signals with finite and limited energy, mathematical models of which are func-
tions in space L2 ([0, T)), necessitated the construction of wavelet basis on the base of Galois
functions in this space and research their properties.

The goal of this article is the construction of a family of wavelet systems based on mother
or generating Galois functions and proving properties of the constructed systems to create
basises for discrete wavelet transform in the space L2 ([0, T)).

The article provides the results of building of wavelet systems based on Galois functions,
of synthesed scaling functions for built wavelets systems and proves the required properties
of wavelets basises in the space L2 ([0, T)).

1 DEFINING WAVELET SYSTEM ON GALOIS FUNCTIONS BASE

For the purpose of constructing of a system of wavelet functions for discrete transforms of
signals presented by functions f ∈ L2 ([0, T)) as a mother wavelet the first function Galn,0(θ)

of a recursively ordered Galois system, which is defined in [5] is used.
The Galois functions system [5, p. 46] with the recursive ordering [5, p. 36] {Galn,i(θ)},

θ ∈ [0, M) is defined according to the generating vector of Galois field GF(2n) from a recursive
sequence or a recursive orderly system of Walsh functions [5, p. 36], where M = 2n, M ≤ T,
n = 1, 2, 3, . . . is a degree of irreducible polynomial Galois fields GF(2n); i = 0, 1, . . . 2n − 1.
Examples of creating recursive sequences are shown in the following text.

Example 1. Vector of coefficients (p0, p1, p2) = (1, 1, 1) corresponds to irreducible polynomial
x2 + x + 1, which generates Galois field GF(22). Non-zero elements of vector determine the
rule pi+2 = pi ⊕ pi+1 for the formation of a recursive sequence. Initial vector with unitary
elements (v0, v1) = (1, 1) is chosen as a primary vector. From the primary vector according
to this rule vi+2 = vi ⊕ vi+1 there are defined the elements of a recursive sequence wich are
repeated with period 2n− 1. Fragment of n− 1 zero elements of the sequence is supplemented
by one zero. Elements of supplemented sequence are denoted as gi:

{0, vi+2, vi, vi+1} = {g0, g1, g2, g3} = {0, 0, 1, 1},

where ⊕ denotes the addition modulo two.

Example 2. Vector of coefficients (p0, p1, p2, p3) = (1, 1, 0, 1) corresponds to irreducible poly-
nomial x3 + x2 + 1, which generates Galois field GF(23). This vector also determines the
rule pi+3 = pi ⊕ pi+1 for the formation of a recursive sequence. From the initial vector
(v0, v1, v2) = (1, 1, 1) according to the rule vi+3 = vi ⊕ vi+1 there are defined the elements
of a recursive sequence, supplemented by zero and submitted the following fragment:

{0, vi+3, vi+4, vi+5, vi+6, vi, vi+1, vi+2} = {g0, g1, g2, . . . , g7} = {0, 0, 0, 1, 0, 1, 1, 1}.

Example 3. Vector of coefficients (p0, p1) = (1, 1) corresponds to irreducible polynomial x + 1,
which generates Galois field GF(21). This vector also determines the rule pi+1 = pi for the
formation of a recursive sequence. From the initial vector (v0) = (1) according to this rule
vi+1 = vi ⊕ 1 there are defined the elements of a recursive sequence, supplemented by zero
and submitted the following fragment: {0, vi} = {g0, g1} = {0, 1}.
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Elements of the fragment of a recursive sequence supplemented by zero are signed as
{g0, g1, g2, . . . , g2n−1}.

The value of the first function Galn,0(θ) of a recursively ordered Galois system {Galn,i(θ)}
of order n at the points θ = θj = j in the interval θ ∈ [0, M) is obtained from an element of a
recursive sequences fragment via transform

Galn,0(θj) = 1− 2gj, (1)

where j = 0, 1, . . . 2n − 1, gj — elements of a fragment of a recursive sequence.
In the intervals θ ∈ [j, j + 1) functions Galn,0(θ) are continuous constants and take values

Galn,0(θ) = Galn,0(θj). (2)

Since gj = 1 or gj = 0, therefore according to (1) and (2) functions Galn,0(θ) = ±1.
Each next function of Galois system {Galn,i(θ)} is received from the previous unit cyclic

shift either left or right by θ = 1 [5], so the first function can create two different systems. For
each irreducible polynomial of Galois field GF(2n) or generating vector several systems Galois
functions can be built.

These functions Galn,0(θ) are defined as mother wavelets for systems of order n

Galn(θ) = Galn,0(θ).

Mother wavelet Galn(θ) is defined in the interval [0, M), outside this interval the function
Galn(θ) = 0.

The norm of function Galn(θ) equals ‖Galn(θ)‖ = (
M∫
0

Gal2
n(θ) dθ)

1
2 . Wavelet-functions must

have unitary norm ‖Galn(θ)‖ = 1, that is why function values are Galn(θ) = ±
√

1
2n .

The graphics mother Galois wavelets Gal1(θ), Gal2(θ), Gal3(θ), Gal4(θ) are shown in
fig. 1 — fig. 4 accordingly.

Figure 1: Galois wavelet, n = 1. Figure 2: Galois wavelet, n = 2.
On the basis of each mother function Galn(θ) with the help of scale and parralel shift a

system of wavelet-function is formed and defined as

Galn,m,k(t) = 2
m−1

2 Galn(2m−1t− Nk), (3)

where t = N
M θ; N = 2p is the quantity of functions in the system; p = 1, 2, 3, . . .;

m = 0, 1, . . . , log2 N + 1; k = 0, 1, . . . , N · 2−m.
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Figure 3: Galois wavelet, n = 3. Figure 4: Galois wavelet, n = 4.

Non-normalized functions are Galn,m,k(t) = ±1 for t ∈ [0, T), T = N and Galn,m,k(t) = 0
for other t.

Normalized functions Galn,m,k(t) = ±
√

2m−1

N are piecewise constants in intervals

t ∈
[

q
l , q+1

l

)
, where q = 0, 1, . . . , lN − 1; l = 2n−1.

The graphics of eight wavelet functions {Gal2,m,k(t)} built by the formula (3) from mother
Galois wavelet Gal2(θ) are shown in fig. 5.

Figure 5: Graphics of wavelet functions of two-order system with mother Galois wavelet.
The graphics of eight wavelet functions {Gal3,m,k(t)}, built by the formula (3) from mother

Galois wavelet Gal3(θ) are shown in fig. 6.
The set {Galn,m,k(t)} of systems, based on mother wavelets for different values of n =

1, 2, 3, . . . forms a family of wavelet functions on the Galois functions basis.
From the result of construction of wavelet functions according (1) — (2) and fig. 1 — fig. 2

we can conclude that mother wavelets Gal1(θ) i Gal2(θ) of systems by orders n = 1 and n = 2
are Haar wavelets and the system wavelet functions built on their basis (fig. 5) is an orthogonal
Haar system.

It is known that Haar system or Haar wavelet functions is the orthonormal basis [1–6] in
the space L2 ([0, T)), that is why in this paper proving properties and synthesis of scaling
functions will be done for cases n ≥ 3.
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Figure 6: Graphics of wavelet functions of third-order system with mother Galois wavelet,
n = 3.

2 SYNTHESIS OF SCALING FUNCTION

To execute the multiresolution decomposition [6, p. 86] or multiresolution analysis and to
record wavelet transform in the filter form the scaling functions are used.

Scaling functions must form the basis, in which mother wavelet decomposes [1, 3, 4, 6].
To build scaling functions for Galois wavelets a well known method of construction of

scaling functions for Haar systems [3, 6] is used.
For mother wavelet Galn(θ) the scaling function ϕ(θ) is defined as

ϕ(θ) =

{
1, θ ∈ [0, 1),
0, θ ∈ [1, M).

In the space L2(R) there is build the system of functions ϕ0,b(θ), b ∈ Z, received from ϕ(θ)

by shifts on integer number b
ϕ0,b(θ) = ϕ(θ − b).

Space in L2(R), being generated by linear combinations of shift functions, is a closure of
linear span of system ϕ0,b(θ), signed V0. Obviously, the system ϕ0,b(θ) forms an orthonormal
basis of space V0.

On the next step a system of functions ϕ1,b(θ) is created by scaling and shifting of function
ϕ0,b(θ)

ϕ1,b(θ) =
√

2ϕ(2θ − b).

System ϕ1,b(θ) creates an orthonormal basis in space V1, which is the closure of the linear
span of the system ϕ1,b(θ).

Function ϕ(θ) ∈ V0 is a linear combination of elements of space V1

ϕ(θ) = ϕ(2θ) + ϕ(2θ − 1),

ϕ(θ) =
1√
2

ϕ1,0(2θ) +
1√
2

ϕ1,1(2θ − 1).
(4)
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On the next step there is built a space V2, generated by functions

ϕ2,b(θ) = 2ϕ(22θ − b).

For constructed spaces V0, V1, V0 insertion V0 ⊂ V1 ⊂ V2 is right. The procedure of con-
struction of functions system is extended for any k ∈ Z. It results in a constructed orthonormal
functions system

ϕk,b(θ) =
√

2k ϕ(2kθ − b).

There are the following inclusion of spaces V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vk.
According to the definition [6, p. 76] the function ϕ(θ) ∈ L2(R) is called a scaling function

if it can be presented in the following form

ϕ(θ) =
√

2 ∑
s∈Z

hs ϕ(2θ − s),

where numbers hs satisfy the condition ∑
s∈Z
|hs|2 < ∞.

Decomposition (4) proves performing of the scaling function definition for ϕ(θ).
Mother wavelet Galn(θ) is decomposed into the functions system {ϕ(2θ)}

Galn(θ) =
√

2
2n+1−1

∑
s=0

hs ϕ(2θ − s),

where the coefficients hs are called filters.

Example 4. Non-normalized wavelet function Gal3(θ) is decomposed in the system of scaling
functions ϕ(2θ) by the following way

Gal3(θ) = 1 · ϕ(2θ) + 1 · ϕ(2θ − 1) + 1 · ϕ(2θ − 2) + 1 · ϕ(2θ − 3) + 1 · ϕ(2θ − 4)
+ 1 · ϕ(2θ − 5) + (−1) · ϕ(2θ − 6) + (−1) · ϕ(2θ − 7) + 1 · ϕ(2θ − 8) + 1 · ϕ(2θ − 9)
+ (−1) · ϕ(2θ − 10) + (−1) · ϕ(2θ − 11) + (−1) · ϕ(2θ − 12) + (−1) · ϕ(2θ − 13)
+ (−1) · ϕ(2θ − 14) + (−1) · ϕ(2θ − 15).

The corresponding filters are h0 = 1, h1 = 1, h2 = 1, h3 = 1, h4 = 1, h5 = 1, h6 = −1, h7 =

−1, h8 = 1, h9 = 1, h10 = −1, h11 = −1, h12 = −1, h13 = −1, h14 = −1, h15 = −1.

3 PROPERTIES OF WAVELET SYSTEMS BASED ON GALOIS FUNCTIONS IN L2 ([0, T))

The wavelets system (3) based on Galois functions may be used as a basis for wavelet trans-
forms if the following properties of wavelet basises are performed [3, 4, 6]:

1) it has a compact carrier (a finite time interval);

2) it has at least one zero moment;

3) a basis is orthogonal or it is a Riesz basis.
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These properties for systems of wavelets with mother Galois functions are proved by the
following propositions.

1) The existence of a compact carrier of a wavelet.
It is known that the function f (t) has a compact carrier if f (t) = 0 for t < a or t > b, where

−∞ < a < b < ∞ [3, p. 15]. Wavelets with a compact carrier have a finite number of nonzero
coefficients of expansion.

Proposition 1. Mother wavelet Galn(θ) of Galois wavelet system has a compact carrier.

Proof. According to the definition (1)—(2) function Galn(θ) in interval [0, M) is piecewise con-

stant, it has non-zero values Galn(θ) = ±
√

1
2n and outside the interval its value equals zero,

therefore it has a compact carrier.

2) The existence of one zero moment.
According to the definition [6, p. 129], function f (t) ∈ L2(R) has L zero moment if equality

is satisfied
∞∫
−∞

tr f (t) dt = 0 (5)

for all integers r = 0, 1, . . . , L− 1. If the mother-wavelet has successive moments equal to zero
the wavelet coefficients decrease quickly.

Proposition 2. The mother wavelet Galn(θ) of the Galois wavelet system has one zero moment

∞∫
−∞

Galn(θ) dθ = 0.

Proof. According to the property of Galois function [5] it is

M∫
0

Galn(θ) dθ = 0,

and outside the interval [0, M) value of function is zero.

Sums of lengths the intervals where Galn(θ) =
√

1
2n and Galn(θ) = −

√
1

2n are equal. There-
fore, according to the definition (5) functions Galn(θ) have a zero moment and satisfy the basic
requirements for wavelet functions. However, there is only one zero moment because the di-
rect checking shows that

∞∫
−∞

θGaln(θ) dθ 6= 0.

3) Orthogonality of system or Riesz basis. Built systems {Gal1,m,k(t)} and {Gal2,m,k(t)}
coincide with the orthogonal Haar system. Built systems {Galn,m,k(t)} for n = 3, 4, . . . are
nonorthogonal. We know that the demand for orthogonality of wavelets system may be weak-
ened, but it is necessary for the system to form the Riesz basis [2–4, 6].
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According to the definition [6, p. 111] system ϕv(t) in Hilbert space H called Riesz basis if
there are such positive constants A i B that for any element f (t) ∈ H the following inequality
is performed

A‖ f (t)‖2 6
∞

∑
v=1
|〈 f (t), ϕv(t)〉|2 6 B‖ f (t)‖2. (6)

Proposition 3. System {Galn,m,k(t)} is the Riesz basis in space L2 ([0, T)).

Proof. To prove that the properties (6) of wavelet systems with mother Galois functions form
Riesz basis, it must be established that there are such constants A i B, 0 < A ≤ B < ∞ for
which the inequality is performed

A‖ f (t)‖2 6
N

∑
v=1
|〈 f (t), Galv(t)〉|2 6 B‖ f (t)‖2, (7)

where ‖ f (t)‖2 =
N∫
0

f 2(t) dt, v = 1, 2, . . . , N is serial number of the wavelet in the system

{Galn,m,k(t)}.
Numbers m and k in the system {Galn,m,k(t)} with the triple numeration are connected

with the serial number v of the wavelet by the formula v = 2m−1 + k + 1.
Since the number of functions in the proposed system is finite and equals N, the sum in the

middle of inequality (7) contains a finite number of components

N

∑
v=1
|〈 f (t), Galv(t)〉|2 =

N

∑
v=1

∣∣∣∣∣∣
T∫

0

f (t) · Galv(t) dt

∣∣∣∣∣∣
2

.

With Bunyakovsky inequality

(
b∫

a
x(t) · y(t) dt

)2

≤
b∫

a
x2(t) dt

b∫
a

y2(t) dt for any x(t), y(t)

an assessment of the latter expression and following transforms there are performed

N

∑
v=1

 T∫
0

f (t) · Galv(t) dt

2

≤
N

∑
v=1

 T∫
0

f 2(t) dt ·
T∫

0

Gal2
v(t) dt


= ‖ f (t)‖2 ·

N

∑
v=1
‖Galv(t)‖2 .

Functions {Galv(t)} are normalized and the norm is ‖Galv(t)‖ = 1. Selection of the first
and the last expressions in latest inequality sets the ratio

N

∑
v=1
|〈 f (t), Galv(t)〉|2 ≤ ‖ f (t)‖2 ·

N

∑
v=1
‖Galv(t)‖2 = ‖ f (t)‖2 · N.

So there exists the constant N > 0 and the right side of inequality (7) is proved. On the other
hand, we must prove that there exists a constant A > 0 and there performs the inequality

A‖ f (t)‖2 ≤
N

∑
v=1
|〈 f (t), Galv(t)〉|2 or (8)
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A ≤

N
∑

v=1
|〈 f (t), Galv(t)〉|2

‖ f (t)‖2 . (9)

Since function f (t) is bounded and it is designated as p ≤ f (t) ≤ P, then the following

inequalities are executed
q+1∫
q

f (t) dt ≥
q+1∫
q

p dt and
q+1∫
q
(− f (t)) dt ≥

q+1∫
q
(−P) dt.

Since normalized functions Galv(t) = ±
√

2m−1

N are piecewise constants in intervals

t ∈
[

q
l , q+1

l

)
, q = 0, 1, . . . , lN − 1 and each function Galv(t) = Galn,m,k(t) 6= 0 is not zero-

value in the interval t ∈
[

k
2m−log2N−1 , k+1

2m−log2N−1

)
, then

N

∑
v=1
|〈 f (t), Galv(t)〉|2 =

N

∑
v=1

∣∣∣∣∣∣
T∫

0

f (t)Galv(t) dt

∣∣∣∣∣∣
2

=
N

∑
v=1

∣∣∣∣∣∣∣∣
k+1

2m−log2N−1∫
k

2m−log2N−1

f (t)Galn,m,k(t) dt

∣∣∣∣∣∣∣∣
2

.

Assume designation I1 = ∪
[

qs
l , qs+1

l

)
— for combining intervals, where values of func-

tions are Galv(t) =
√

2m−1

N , and I2 = ∪
[

qr
l , qr+1

l

)
— for combining intervals, where values of

functions are Galv(t) = −
√

2m−1

N , s = 0, 1, . . . , lN − 1, r = 0, 1, . . . , lN − 1.

N

∑
v=1

∣∣∣∣∣∣∣∣
k+1

2m−log2N−1∫
k

2m−log2N−1

f (t)Galn,m,k(t) dt

∣∣∣∣∣∣∣∣
2

=
N

∑
v=1

∣∣∣∣∣∣
∫
I1

√
2m−1

N
f (t) dt +

∫
I2

√
2m−1

N
(− f (t)) dt

∣∣∣∣∣∣
2

=
N

∑
v=1

2m−1

N

∣∣∣∣∣∣
∫

I1

f (t) dt +
∫
I2

(− f (t)) dt

∣∣∣∣∣∣
2

≥
N

∑
v=1

2m−1

N

∣∣∣∣∣∣
∫

I1

p dt +
∫
I2

(−P) dt

∣∣∣∣∣∣
2

=
N

∑
v=1

2m−1

N

∣∣∣∣∣∣
p

∫
I1

dt + (−P)
∫
I2

dt

∣∣∣∣∣∣
2

=
N

∑
v=1

2m−1

N

∣∣∣∣(p
N
2m + (−P)

N
2m

)∣∣∣∣2

=
N

∑
v=1

2m−1N2

N22m (p− P)2 = 2−m−1N2(p− P)2.

The function f 2(t) is bounded. It is assumed that f 2(t) ≤ S, S ∈ R, then the inequality is
executed

T∫
0

f 2(t) dt ≤
T∫

0

S dt = S · N.

Substituting the last result in (9) allows to reach the following conclusion: when choosing
A ≤ N(p−P)2

2m+1S inequalities (8) i (7) are performed. The statement is proved.

According to proven propositions 1 — 3 mother Galois wavelet functions have a compact
carrier, one vanishing zero moment, wavelet function systems Galn,m,k(t) for different n form
Riesz basises, that satisfy the necessary conditions for wavelet basises in space L2 ([0, T)).
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4 CONCLUSIONS

Thus, it was proved that the first functions of recursively ordered Galois systems are mother
or generating wavelets. There was synthesized the orthogonal scaling functions system in
which mother wavelets decompose.

On the basis of mother wavelets of different orders n there were built wavelet functions
systems. The set of built systems is a family of wavelet functions that are generated by Galois
functions.

The article also proves necessary conditions (properties) of wavelet system for the built sys-
tem. It is proved that each system of family is the Riesz basis. The proved conditions enable
using wavelet systems with generating functions Galois as basises of discrete wavelet trans-
forms in the space L2 ([0, T)). A significant advantage of implementation of these transforms
compared to others is that all the basic functions are piecewise constant and take only two
values.

Transforms in built basises can be used for analysis and processing of one-dimensional
signals with finite energy.
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