Carpathian Math. Publ. 2017, **9** (1), 22–27 doi:10.15330/cmp.9.1.22-27

Vasylyshyn T.V.

TOPOLOGY ON THE SPECTRUM OF THE ALGEBRA OF ENTIRE SYMMETRIC FUNCTIONS OF BOUNDED TYPE ON THE COMPLEX L_{∞}

It is known that the so-called elementary symmetric polynomials $R_n(x) = \int_{[0,1]} (x(t))^n dt$ form an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Banach space L_{∞} , which is dense in the Fréchet algebra $H_{bs}(L_{\infty})$ of all entire symmetric functions of bounded type on L_{∞} . Consequently, every continuous homomorphism $\varphi: H_{bs}(L_{\infty}) \to \mathbb{C}$ is uniquely determined by the sequence $\{\varphi(R_n)\}_{n=1}^{\infty}$. By the continuity of the homomorphism φ , the sequence $\{\sqrt[n]{|\varphi(R_n)|}\}_{n=1}^{\infty}$ is bounded. On the other hand, for every sequence $\{\xi_n\}_{n=1}^{\infty} \subset \mathbb{C}$, such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^{\infty}$ is bounded, there exists $x_{\xi} \in L_{\infty}$ such that $R_n(x_{\xi}) = \xi_n$ for every $n \in \mathbb{N}$. Therefore, for the point-evaluation functional $\delta_{x_{\xi}}$ we have $\delta_{x_{\xi}}(R_n) = \xi_n$ for every $n \in \mathbb{N}$. Thus, every continuous complex-valued homomorphism of $H_{bs}(L_{\infty})$ is a point-evaluation functional at some point of L_{∞} . Note that such a point is not unique. We can consider an equivalence relation on L_{∞} , defined by $x \sim y \Leftrightarrow \delta_x = \delta_y$. The spectrum (the set of all continuous complex-valued homomorphisms) M_{bs} of the algebra $H_{bs}(L_{\infty})$ is one-to-one with the quotient set $L_{\infty}/_{\sim}$. Consequently, M_{bs} can be endowed with the quotient topology. On the other hand, it is naturally to identify M_{bs} with the set of all sequences $\{\xi_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^{\infty}$ is bounded.

We show that the quotient topology is Hausdorff and that M_{bs} with the operation of coordinatewise addition of sequences forms an abelian topological group.

Key words and phrases: symmetric function, topology on the spectrum.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: taras.v.vasylyshyn@gmail.com(Vasylyshyn T.V.)

Introduction

Algebras of symmetric functions on the spaces of Lebesgue-measurable functions were studied by a number of authors [1], [4], [5], [6], [7] (see also a survey [2]). In [3] the spectrum of the algebra $H_{bs}(L_{\infty})$ of entire symmetric functions of bounded type on L_{∞} (see definition below) is described. In this paper the topology on the spectrum of $H_{bs}(L_{\infty})$ is investigated.

Let L_{∞} be the complex Banach space of all Lebesgue measurable essentially bounded complex-valued functions x on [0,1] with norm

$$||x||_{\infty} = \operatorname{ess\,sup}_{t \in [0,1]} |x(t)|.$$

Let Ξ be the set of all measurable bijections of [0,1] that preserve the measure. A function $f: L_{\infty} \to \mathbb{C}$ is called symmetric if for every $x \in L_{\infty}$ and for every $\sigma \in \Xi$

$$f(x \circ \sigma) = f(x).$$

УДК 517.98

2010 Mathematics Subject Classification: 46J20, 46E15.

Let $H_{bs}(L_{\infty})$ be the Fréchet algebra of all entire symmetric functions $f:L_{\infty}\to\mathbb{C}$ which are bounded on bounded sets endowed with the topology of uniform convergence on bounded sets. By [3, Theorem 4.3], polynomials $R_n:L_{\infty}\to\mathbb{C}$, $R_n(x)=\int_{[0,1]}(x(t))^n\,dt$ for $n\in\mathbb{N}$, form an algebraic basis in the algebra of all symmetric continuous polynomials on L_{∞} . Since every $f\in H_{bs}(L_{\infty})$ can be described by its Taylor series of continuous symmetric homogeneous polynomials, it follows that f can be uniquely represented as

$$f(x) = f(0) + \sum_{n=1}^{\infty} \sum_{k_1 + 2k_2 + \dots + nk_n = n} \alpha_{k_1, \dots, k_n} R_1^{k_1}(x) \cdots R_n^{k_n}(x).$$

Consequently, for every non-trivial continuous homomorphism $\varphi: H_{bs} \to \mathbb{C}$, taking into account $\varphi(1) = 1$, we have

$$\varphi(f) = f(0) + \sum_{n=1}^{\infty} \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n} \varphi(R_1)^{k_1} \cdots \varphi(R_n)^{k_n}.$$

Therefore φ is completely determined by the sequence of its values on R_n :

$$(\varphi(R_1), \varphi(R_2), \ldots).$$

By the continuity of φ , the sequence $\{\sqrt[n]{|\varphi(R_n)|}\}_{n=1}^{\infty}$ is bounded. On the other hand we have following statement.

Theorem 1 ([3]). For every sequence $\xi = \{\xi_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sup_{n \in \mathbb{N}} \sqrt[n]{|\xi_n|} < +\infty$, there exists $x_{\xi} \in L_{\infty}$ such that $R_n(x_{\xi}) = \xi_n$ for every $n \in \mathbb{N}$ and $\|x_{\xi}\|_{\infty} \leq \frac{2}{M} \sup_{n \in \mathbb{N}} \sqrt[n]{|\xi_n|}$, where

$$M = \prod_{n=1}^{\infty} \cos\left(\frac{\pi}{2} \frac{1}{n+1}\right). \tag{1}$$

Hence, for every sequence $\xi = \{\xi_n\}_{n=1}^{\infty}$ such that $\sup_{n \in \mathbb{N}} \sqrt[n]{|\xi_n|} < +\infty$, there exists the point-evaluation functional $\varphi = \delta_{x_{\xi}}$ such that $\varphi(R_n) = \xi_n$ for every $n \in \mathbb{N}$. Since every such a functional is a continuous homomorphism, it follows that the spectrum (the set of all continuous complex-valued homomorphisms) of the algebra $H_{bs}(L_{\infty})$, which we denote by M_{bs} , can be identified with the set of all sequences $\xi = \{\xi_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\{\sqrt[n]{|\xi_n|}\}_{n=1}^{\infty}$ is bounded.

There are different approaches to the topologization of the spectra of algebras. The most common approach is to endow the spectrum by the so-called Gelfand topology (the weakest topology, in which all the functions $\hat{f}: M_{bs} \to \mathbb{C}$, $\hat{f}(\varphi) = \varphi(f)$, where $f \in H_{bs}(L_{\infty})$, are continuous). We consider another natural topology on M_{bs} . Let $\nu: L_{\infty} \to M_{bs}$ be defined by

$$\nu(x) = (R_1(x), R_2(x), \ldots).$$

Let τ_{∞} be the topology on L_{∞} , generated by $\|\cdot\|_{\infty}$. Let us define an equivalence relation on L_{∞} by $x \sim y \Leftrightarrow \nu(x) = \nu(y)$. Let τ be the quotient topology on M_{bs} :

$$\tau = \{ \nu(V) : V \in \tau_{\infty} \}.$$

Note that ν is a continuous open mapping. Therefore, τ contains the Gelfand topology.

In this work we show that $(M_{bs}, +, \tau)$ is an abelian topological group, where "+" is the operation of coordinate-wise addition.

1 THE MAIN RESULT

Let us denote B(x, r) the open ball with center at $x \in L_{\infty}$ and radius r > 0 in L_{∞} .

Theorem 2. (M_{bs}, τ) is a Hausdorff topological space.

Proof. Let $a=(a_1,a_2,\ldots)$, $b=(b_1,b_2,\ldots)\in M_{bs}$ such that $a\neq b$. Let $m=\min\{j\in\mathbb{N}:a_j\neq b_j\}$. By Theorem 1, there exist $x_a,x_b\in L_\infty$ such that $\nu(x_a)=a$ and $\nu(x_b)=b$. Let

$$\varepsilon = \min \left\{ 1, \frac{|a_m - b_m|}{3m} \min \left\{ \frac{1}{(\|x_a\|_{\infty} + 1)^{m-1}}, \frac{1}{(\|x_b\|_{\infty} + 1)^{m-1}} \right\} \right\}.$$

Note that $V_1 = \nu(B(x_a, \varepsilon))$ and $V_2 = \nu(B(x_b, \varepsilon))$ are neighborhoods of a and b respectively. Let us prove that V_1 and V_2 are disjoint. Let $y \in B(x_a, \varepsilon)$ and $z \in B(x_b, \varepsilon)$. Let us show that $R_m(y) \neq R_m(z)$. Note that

$$|a_m - b_m| = |R_m(x_a) - R_m(x_b)| \le |R_m(x_a) - R_m(y)| + |R_m(y) - R_m(z)| + |R_m(z) - R_m(x_b)|.$$
 (2)

Since $||y - x_a||_{\infty} < \varepsilon$,

$$|R_{m}(x_{a}) - R_{m}(y)| \leq \int_{[0,1]} |(x_{a}(t))^{m} - (y(t))^{m}| dt$$

$$= \int_{[0,1]} |x_{a}(t) - y(t)| |(x_{a}(t))^{m-1} + (x_{a}(t))^{m-2}(y(t)) + \dots + (x_{a}(t))(y(t))^{m-2} + (y(t))^{m-1}| dt$$

$$\leq \varepsilon \int_{[0,1]} (|x_{a}(t)|^{m-1} + |x_{a}(t)|^{m-2}|y(t)| + \dots + |x_{a}(t)||y(t)||^{m-2} + |y(t)|^{m-1}) dt$$

$$\leq \varepsilon \int_{[0,1]} (||x_{a}||_{\infty}^{m-1} + ||x_{a}||_{\infty}^{m-2}||y||_{\infty} + \dots + ||x_{a}||_{\infty}||y||_{\infty}^{m-2} + ||y||_{\infty}^{m-1}) dt$$

$$\leq \varepsilon \int_{[0,1]} (||x_{a}||_{\infty}^{m-1} + ||x_{a}||_{\infty}^{m-2}(||x_{a}||_{\infty} + \varepsilon) + \dots + ||x_{a}||_{\infty}(||x_{a}||_{\infty} + \varepsilon)^{m-2} + (||x_{a}||_{\infty} + \varepsilon)^{m-1}) dt$$

$$\leq \varepsilon m(||x_{a}||_{\infty} + \varepsilon)^{m-1} \leq \varepsilon m(||x_{a}||_{\infty} + 1)^{m-1}.$$

Since $\varepsilon \leq \frac{|a_m - b_m|}{3m(\|x_a\|_{\infty} + 1)^{m-1}}$, it follows that $|R_m(x_a) - R_m(y)| \leq \frac{1}{3}|a_m - b_m|$. Analogously, we obtain $|R_m(z) - R_m(x_b)| \leq \frac{1}{3}|a_m - b_m|$. Therefore, by (2),

$$|a_m - b_m| \le \frac{2}{3}|a_m - b_m| + |R_m(y) - R_m(z)|.$$

Hence,

$$|R_m(y) - R_m(z)| \ge \frac{1}{3}|a_m - b_m| > 0.$$

Therefore, $R_m(y) \neq R_m(z)$, and, consequently, $v(y) \neq v(z)$. Hence, V_1 and V_2 are disjoint. \square

The operation of coordinate-wise addition $+: M_{bs}^2 \to M_{bs}$ is defined by

$$a + b = (a_1 + b_1, a_2 + b_2, \ldots)$$

for $a = (a_1, a_2, ...), b = (b_1, b_2, ...) \in M_{bs}$. Note that $(M_{bs}, +)$ is an abelian group.

Theorem 3. The operation of coordinate-wise addition $+: M_{bs}^2 \to M_{bs}$ is continuous with respect to the topology τ .

Proof. Let $a, b \in M_{bs}$. Let us show that for every neighborhood U of the point a + b there exist neighborhoods V_a and V_b of points a and b respectively, such that $a' + b' \in U$ for every $a' \in V_a$ and $b' \in V_b$.

By Theorem 1, there exist functions $x_{4a}, x_{4b} \in L_{\infty}$ such that $\nu(x_{4a}) = (4a_1, 4a_2, \ldots)$ and $\nu(x_{4b}) = (4b_1, 4b_2, \ldots)$. Let

$$x_a(t) = \begin{cases} x_{4a}(4t), & \text{if } t \in [0, \frac{1}{4}], \\ 0, & \text{if } t \in (\frac{1}{4}, 1] \end{cases}$$

and

$$x_b(t) = \begin{cases} x_{4b}(4t-2), & \text{if } t \in \left[\frac{1}{2}, \frac{3}{4}\right], \\ 0, & \text{if } t \in \left[0, \frac{1}{2}\right) \cup \left(\frac{3}{4}, 1\right]. \end{cases}$$

Then $\nu(x_a) = a$ and $\nu(x_b) = b$. Note that $\nu(x_a + x_b) = \nu(x_a) + \nu(x_b)$. Hence, $\nu(x_a + x_b) = a + b$. Therefore, $x_a + x_b \in \nu^{-1}(U)$. Since the set $\nu^{-1}(U)$ is open in L_{∞} , it follows that there exists $\varepsilon > 0$ such that $B(x_a + x_b, \varepsilon) \subset \nu^{-1}(U)$. Let

$$r = \frac{\varepsilon}{2} \frac{M}{M + 8},$$

where M is defined by (1). Let $V_a = \nu(B(x_a, r))$ and $V_b = \nu(B(x_b, r))$. Let us show that $a' + b' \in U$ for every $a' \in V_a$ and $b' \in V_b$. Let $y \in B(x_a, r)$ and $z \in B(x_b, r)$ such that $\nu(y) = a'$ and $\nu(z) = b'$. Let

$$y_1(t) = \begin{cases} y(t), & \text{if } t \in [0, \frac{1}{4}], \\ 0, & \text{if } t \in (\frac{1}{4}, 1], \end{cases} \qquad y_2(t) = \begin{cases} 0, & \text{if } t \in [0, \frac{1}{4}], \\ y(t), & \text{if } t \in (\frac{1}{4}, 1], \end{cases}$$

$$z_1(t) = \begin{cases} z(t), & \text{if } t \in \left[\frac{1}{2}, \frac{3}{4}\right], \\ 0, & \text{if } t \in \left[0, \frac{1}{2}\right) \cup \left(\frac{3}{4}, 1\right], \end{cases} \quad z_2(t) = \begin{cases} 0, & \text{if } t \in \left[\frac{1}{2}, \frac{3}{4}\right], \\ z(t), & \text{if } t \in \left[0, \frac{1}{2}\right) \cup \left(\frac{3}{4}, 1\right]. \end{cases}$$

Since $x_a(t) = 0$ for $t \in (\frac{1}{2}, 1]$ and $x_b(t) = 0$ for $t \in [0, \frac{1}{2}) \cup (\frac{3}{4}, 1]$, it follows that

$$||y - x_a||_{\infty} = \max\{||y_1 - x_a||_{\infty}, ||y_2||_{\infty}\}$$
 and $||z - x_b||_{\infty} = \max\{||z_1 - x_b||_{\infty}, ||z_2||_{\infty}\}.$

Since $y \in B(x_a, r)$ and $z \in B(x_b, r)$, it follows that $||y - x_a||_{\infty} < r$ and $||z - x_b||_{\infty} < r$. Consequently,

$$||y_1 - x_a||_{\infty} < r$$
, $||y_2||_{\infty} < r$, $||z_1 - x_b||_{\infty} < r$ and $||z_2||_{\infty} < r$.

By Theorem 1, for sequences $\xi=4\nu(y_2)$ and $\eta=4\nu(z_2)$ there exist functions $u_\xi,v_\eta\in L_\infty$ such that $\nu(u_\xi)=\xi, \nu(u_\eta)=\eta, \|u_\xi\|_\infty\leq \frac{2c}{M}$ and $\|v_\eta\|_\infty\leq \frac{2d}{M}$, where $c=\sup_{n\in\mathbb{N}}\sqrt[n]{|\xi_n|}$ and $d=\sup_{n\in\mathbb{N}}\sqrt[n]{|\eta_n|}$. Note that

$$|\xi_n| = |4R_n(y_2)| \le 4\|y_2\|_{\infty}^n < 4r^n$$
 and $|\eta_n| = |4R_n(z_2)| \le 4\|z_2\|_{\infty}^n < 4r^n$.

Therefore, $c, d \leq \sup_{n \in \mathbb{N}} \sqrt[n]{4r} \leq 4r$. Consequently, $||u_{\xi}||_{\infty} < \frac{8r}{M}$ and $||v_{\eta}||_{\infty} < \frac{8r}{M}$. Let

$$\widetilde{u}(t) = \left\{ \begin{array}{ll} 0, & \text{if } t \in [0, \frac{1}{4}] \cup [\frac{1}{2}, 1], \\ u_{\mathcal{E}}(4t - 1), & \text{if } t \in (\frac{1}{4}, \frac{1}{2}) \end{array} \right.$$

and

$$\widetilde{v}(t) = \begin{cases} 0, & \text{if } t \in [0, \frac{3}{4}], \\ v_{\eta}(4t - 3), & \text{if } t \in (\frac{3}{4}, 1]. \end{cases}$$

Then

$$\nu(\widetilde{u}) = \nu(y_2)$$
 and $\nu(\widetilde{v}) = \nu(z_2)$. (3)

Note that $\|\widetilde{u}\|_{\infty} = \|u_{\xi}\|_{\infty}$ and $\|\widetilde{v}\|_{\infty} = \|v_{\eta}\|_{\infty}$. Let $\widetilde{y} = y_1 + \widetilde{u}$ and $\widetilde{z} = z_1 + \widetilde{v}$. Note that

$$\|\widetilde{y} - x_a\|_{\infty} = \max\{\|y_1 - x_a\|_{\infty}, \|\widetilde{u}\|_{\infty}\} \le \|y_1 - x_a\|_{\infty} + \|\widetilde{u}\|_{\infty} < r + \frac{8r}{M} = r\frac{M+8}{M} = \frac{\varepsilon}{2}.$$

Analogously, $\|\widetilde{z} - x_b\|_{\infty} < \frac{\varepsilon}{2}$. Therefore,

$$\|\widetilde{y} + \widetilde{z} - (x_a + x_b)\|_{\infty} \le \|\widetilde{y} - x_a\|_{\infty} + \|\widetilde{z} - x_b\|_{\infty} < \varepsilon.$$

Hence, $\widetilde{y} + \widetilde{z} \in B(x_a + x_b, \varepsilon)$. Therefore, $\nu(\widetilde{y} + \widetilde{z}) \in U$. Note that

$$\nu(\widetilde{y} + \widetilde{z}) = \nu(\widetilde{y}) + \nu(\widetilde{z}).$$

By (3),

$$\nu(\tilde{y}) = \nu(y_1) + \nu(\tilde{u}) = \nu(y_1) + \nu(y_2) = \nu(y) = a'$$

and

$$\nu(\tilde{z}) = \nu(z_1) + \nu(\tilde{v}) = \nu(z_1) + \nu(z_2) = \nu(z) = b'.$$

Therefore, $\nu(\widetilde{y} + \widetilde{z}) = a' + b'$. Hence, $a' + b' \in U$.

Theorem 4. The group's inverse operation $\xi \mapsto -\xi$ on $(M_{bs}, +)$ is continuous with respect to the topology τ .

Proof. Let us prove that the inverse operation is continuous at the identity element $(0,0,\ldots)$ of M_{bs} . Let U be a neighborhood of $(0,0,\ldots)$. Then $v^{-1}(U)$ contains $0 \in L_{\infty}$. Since $v^{-1}(U)$ is open, it follows that there exists $\varepsilon > 0$ such that $B(0,\varepsilon) \subset v^{-1}(U)$. Let $0 < r < \frac{1}{2}M\varepsilon$, where M is defined by (1), and $V = \nu(B(0,r))$. Note that V is a neighborhood of $(0,0,\ldots)$. Let us show that $-\xi \in U$ for every $\xi \in V$. Let $\xi = (\xi_1, \xi_2, \ldots) \in V$. Then there exists $y_{\xi} \in B(0,r)$ such that $\nu(y_{\xi}) = \xi$. Note that

$$|\xi_n| = |R_n(y_{\xi})| \le ||y_{\xi}||_{\infty} < r^n$$

for every $n \in \mathbb{N}$. Therefore,

$$\sup_{n\in\mathbb{N}}\sqrt[n]{|\xi_n|}\leq r.$$

By Theorem 1, there exists $x_{-\xi} \in L_{\infty}$ such that $v(x_{-\xi}) = -\xi$ and

$$||x_{-\xi}||_{\infty} < \frac{2}{M} \sup_{n \in \mathbb{N}} \sqrt[n]{|-\xi_n|}.$$

Since

$$\sup_{n\in\mathbb{N}} \sqrt[n]{|-\xi_n|} = \sup_{n\in\mathbb{N}} \sqrt[n]{|\xi_n|} \le r$$

and $r < \frac{1}{2}M\varepsilon$, it follows that $||x_{-\xi}||_{\infty} < \varepsilon$, i.e. $x_{-\xi} \in B(0,\varepsilon)$. Therefore, $x_{-\xi} \in \nu^{-1}(U)$ and, consequently, $\nu(x_{-\xi}) \in U$, i.e. $-\xi \in U$. Hence, for every neighborhood U of $(0,0,\ldots)$ there exists neighborhood V of $(0,0,\ldots)$ such that $-\xi \in U$ for every $\xi \in V$. In other words, the inverse operation is continuous at $(0,0,\ldots)$.

For $\eta \in M_{bs}$ let $f_{\eta}: M_{bs} \to M_{bs}$ be defined by $f_{\eta}: \xi \mapsto \xi + \eta$. By Theorem 3, f_{η} is a continuous function for every $\eta \in M_{bs}$. Let ζ be an arbitrary element of M_{bs} . By the continuity of the inverse operation at $(0,0,\ldots)$ and by the continuity of functions $f_{-\zeta}$ and f_{ζ} at ζ and $(0,0,\ldots)$ respectively, the inverse operation is continuous at ζ as a composition of continuous functions. Hence, the inverse operation is continuous at every point of M_{bs} .

Corollary 1. $(M_{bs}, +, \tau)$ is an abelian topological group.

REFERENCES

- [1] Aron R., Galindo P., Pinasco D., Zalduendo I. *Group-symmetric holomorphic functions on a Banach space*. Bull. London Math. Soc. 2016, **48** (5), 779–796. doi:10.1112/blms/bdw043
- [2] Chernega I. Symmetric Polynomials and Holomorphic Functions on infinite dimensional spaces. Journal of Vasyl Stefanyk Precarpathian National University 2015, 2 (1), 75–83. doi:10.15330/jpnu.2.4.23-49
- [3] Galindo P., Vasylyshyn T., Zagorodnyuk A. *The algebra of symmetric analytic functions on* L_{∞} . Proceedings of the Royal Society of Edinburgh: Section A Mathematics 2017, **147A**, 1–19. doi:10.1017/S0308210516000287
- [4] González M., Gonzalo R., Jaramillo J.A. *Symmetric polynomials on rearrangement invariant function spaces*. J. London Math. Soc. 1999, **59** (2), 681–697. doi:10.1112/S0024610799007164
- [5] Nemirovskii A.S., Semenov S.M. *On polynomial approximation of functions on Hilbert space*. Mat. USSR Sbornik 1973, **21** (2), 255–277. doi:10.1070/SM1973v021n02ABEH002016
- [6] Vasylyshyn T. Continuous block-symmetric polynomials of degree at most two on the space $(L_{\infty})^2$. Carpathian Math. Publ. 2016, **8** (1), 38–43. doi:10.15330/cmp.8.1.38-43
- [7] Vasylyshyn T. *Symmetric continuous linear functionals on complex space* L_{∞} . Carpathian Math. Publ. 2014, **6** (1), 8–10. doi:10.15330/cmp.6.1.8-10

Received 01.03.2017

Revised 23.06.2017

Василишин Т.В. Топологія на спектрі алгебри цілих симетричних функцій обмеженого типу на комплексному просторі L_{∞} // Карпатські матем. публ. — 2017. — Т.9, №1. — С. 22–27.

Відомо, що так звані елементарні симетричні поліноми $R_n(x) = \int_{[0,1]} (x(t))^n dt$ утворюють алгебраїчний базис алгебри усіх симетричних неперервних поліномів на комплексному банаховому просторі L_{∞} , яка є скрізь шільною в алгебрі Фреше $H_{bs}(L_{\infty})$ усіх цілих симетричних функцій обмеженого типу на L_{∞} . Як наслідок, кожен неперервний гомоморфізм φ : $H_{bs}(L_{\infty}) \to \mathbb{C}$ однозначно визначається послідовністю $\{\varphi(R_n)\}_{n=1}^{\infty}$. За неперервністю гомоморфізму φ , послідовність $\{\sqrt[n]{|\varphi(R_n)|}\}_{n=1}^\infty$ є обмеженою. З іншого боку, для кожної послідовності $\{\xi_n\}_{n=1}^\infty\subset\mathbb{C}$, такої, що послідовність $\{\sqrt[n]{|\xi_n|}\}_{n=1}^\infty$ є обмеженою, існує $x_{\xi}\in L_\infty$ така, що $R_n(x_{\xi}) = \xi_n$ для кожного $n \in \mathbb{N}$. Тому для функціонала обчислення значення в точці $\delta_{x_{\xi}}$ буде $\delta_{x_r}(R_n)=\xi_n$ для кожного $n\in\mathbb{N}.$ Отже, кожен неперервний комплекснозначний гомоморфізм алгебри $H_{bs}(L_{\infty})$ збігається із функціоналом обчислення значення в деякій точці простору L_{∞} . Зауважимо, що така точка не ϵ єдиною. Розглянемо відношення еквівалентності на L_{∞} , визначене правилом $x \sim y \Leftrightarrow \delta_x = \delta_y$. Тоді спектр (множина усіх неперервних комплекснозначних гомоморфізмів) M_{bs} алгебри $H_{bs}(L_{\infty})$ є у взаємно однозначній відповідності із фактор-множиною $L_{\infty}/_{\sim}$. Відповідно, на M_{bs} можна розглянути фактор-топологію. З іншого боку, природно ототожнити M_{bs} із множиною усіх послідовностей $\{\xi_n\}_{n=1}^\infty\subset\mathbb{C}$ таких, що послідовність $\{\sqrt[n]{|\xi_n|}\}_{n=1}^{\infty}$ є обмеженою.

У роботі показано, що фактор-топологія є гаусдорфовою і що M_{bs} з операцією покоординатного додавання послідовностей утворює абелеву топологічну групу.

Ключові слова і фрази: симетрична функція, топологія на спектрі.