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POINTS OF NARROWNESS AND UNIFORMLY NARROW OPERATORS

It is known that the sum of every two narrow operators on L is narrow, however the same is false
for L, with 1 < p < co. The present paper continues numerous investigations of the kind. Firstly,
we study narrowness of a linear and orthogonally additive operators on Kéthe function spaces and
Riesz spaces at a fixed point. Theorem 1 asserts that, for every Ksthe Banach space E on a finite
atomless measure space there exist continuous linear operators S,T : E — E which are narrow
at some fixed point but the sum S 4 T is not narrow at the same point. Secondly, we introduce
and study uniformly narrow pairs of operators S,T : E — X, that is, for every e € E and every
e > 0 there exists a decomposition ¢ = ¢’ + ¢” to disjoint elements such that [|S(e’) — S(e”)|| < e
and [|T(e') — T(e"”)|| < e. The standard tool in the literature to prove the narrowness of the sum
of two narrow operators S 4 T is to show that the pair S, T is uniformly narrow. We study the
question of whether every pair of narrow operators with narrow sum is uniformly narrow. Having
no counterexample, we prove several theorems showing that the answer is affirmative for some
partial cases.
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INTRODUCTION

The class of narrow operators includes some other classes of “small” operators defined
on atomless function spaces and Riesz spaces, such as weakly compact, Dunford-Pettis, abso-
lutely summing etc. It was introduced and studied in [11] for function spaces and in [7] for
Riesz spaces, however some results on these operators appeared in 80-th years of XXth cen-
tury. The importance of narrow operators is explained by different geometric implications of
their properties, see survey [13] and textbook [14]. Then the notion was naturally generalized
to (nonlinear) orthogonally additive operators in [12]. An operator (linear or, more general,
orthogonally additive) T : E — X from an atomless function space or atomless Riesz space
E to a topological vector space X is said to be narrow if for every e € E and every neighbor-
hood V of zero in X there exists a decomposition to disjoint summands ¢ = ¢’ + ¢” such that
T(¢e') — T(e") € V. Although it would be natural to consider narrowness at a fixed pointe € E,
no investigation before [12] (2014) took this point into account. However in [12] the authors
considered narrowness of an operator T at a fixed point ¢ € E only for technical reasons to
prove the main result.
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One of the most interesting facts concerning narrow operators is that, for some pairs of
spaces (E,F) the sum S + T of every two narrow operators S, T : E — X is narrow, but for
other pairs the same is not true. For instance, the sum of every two narrow operators on L;
is narrow, however every operator on L, with 1 < p < oo is a sum of two narrow operators.
A number of published papers of different authors devoted to the questions of narrowness of
a sum of two narrow operators (see, e.g. [2, 7, 8, 11]). A very different situation appears for
narrowness at a fixed point. Theorem 1 asserts that for every Kothe Banach space E on a finite
atomless measure space there exist continuous linear operators S, T : E — E which are narrow
at some fixed point but the sum S + T is not narrow at the same point.

A very natural proof that the sum S + T of two narrow operators S, T : E — X is narrow
is reduced to the proof that, for every e € E and every ¢ > 0 there exists a partition e =
¢’ Ue’ (common for both S and T) such that ||Se’ — Se”’|| < ¢/2 and ||Te’ — Te”|| < e/2. This
naturally leads us to a new notion of uniformly narrow pair of operators and to the question
of whether every pair of narrow operators with narrow sum is uniformly narrow. Having no
counterexample, in Section 2 we prove several theorems showing that the answer is affirmative
for some partial cases.

Now we give a brief preliminaries on the notions used below. An F-space is a complete
metric linear space X over a scalar field K € {R,C} with an invariant metric p (i.e., p(x,y) =
p(x 4+ z,y+ z) for each x,y,z € X). We set ||x|| = p(x,0), and so, p(x,y) = ||x — y|| and call
the defined map || - || : X X X — [0, +o0) the F-norm of the F-space X. A very important class
of F-spaces is the class of Banach spaces. Let ((), X, ) be a finite measure space. An F-space
E of equivalence classes of measurable functions on (2 is called a Kéthe F-space if the following
conditions hold: (K;) if y € E and |x| < |y| then x € E and ||x|| < |ly|l; (Ki;) 1o € E. If,
moreover, E is a Banach space and (Kj;;) E C Li(u) then E is called a Kothe Banach space.

By £(X,Y) we denote the set of all continuous linear operators acting from X to Y.

Let E be a Riesz space (in particular, a Kothe F-space) and X a vector space. Amap T : E —
X is called an orthogonally additive operator if T(x +vy) = T(x) + T(y) forall x,y € E with x Ly
(for Kothe F-space it means that x and y have disjoint supports). If, moreover, X is a Riesz space
then an order bounded orthogonally additive operator T : E — X is called an abstract Uryson
operator. We refer the reader to [4, 5, 6, 10] and the bibliography therein for examples and some
usual facts on orthogonally additive operators. An element y of a Riesz space E is called a
fragment (in another terminology, a component) of an element x € E, provided y_L (x —y). The
notation y T x means that y is a fragment of x. A net (x4),en in E order converges to an element
x € E (notation x, — x) if there exists a net (i1 )uca in E such that u, | 0 and lxg — x| < ug
for all B € A. The equality x = | [_; x; means that x = }3'; x; and x; Lx; if i # j. Note that
in this case one has that x; C x for all i. If E is a Riesz space and e € ET then by §. we denote
the set of all fragments of e. We say that a net (x4 )yea in E up-laterally converges to an element

x € E (notation x, ﬁ> x) if x, 2y xand x, C xgasa < B. A function f : E — F between
Riesz spaces is said to be up-laterally continuous if for every net (x4 )4ea in E and every x € E
the condition x, M x implies f(xy) A, f(x)inF.

An element e of a Riesz space E is called a projection element if the band B, generated by
e is a projection band. A Riesz space E is said to have the principal projection property if every

element of E is a projection element. For instance, every Dedekind o-complete Riesz space
has the principal projection property. An element u # 0 of a Riesz space E is called an atom
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whenever 0 < x < |u|, 0 <y < |u| and x A y = 0 imply that either x = 0 or y = 0. Evidently, if
u € Eisan atom then §, = {0, u}. A Riesz space without a nonzero atom is said to be atomless.

1 TPOINTS OF NARROWNESS

Below we give main definitions of narrow operators adapted to the idea to consider nar-
rowness at a fixed point.

Definition 1.1 (of a narrow map). Let E be a Riesz space and X be a topological vector space.
A function f : E — X is said to be:

e narrow at a point e € E if for every neighborhood of zero U in X there exists a decom-
position e = ey Ll e, such that f(e;) — f(e2) € U. The set of all points of E at which f is
narrow is denoted by N (f);

e narrow if N'(f) = E.

Observe that, for linear maps the definition is equivalent to the following one. A linear
operator T : E — X is said to be narrow at a point e € E if for every neighborhood of zero U in
X there exists f € E such that |f| = |e|] and Tf € U.

Definition 1.2 (of a strictly narrow map). Let E be a Riesz space and X be a set. A function
f+ E — X issaid to be

e strictly narrow at a point e € E if there exists a decomposition e = e; Ll e such that
f(e1) = f(e2). The set of all points of E at which f is strictly narrow is denoted by N*(f);

e strictly narrow if N*(f) = E.

Likewise, if X is a linear space, a linear operator T : E — X is strictly narrow at a point
e € E if and only if there exists f € E such that |f| = |e| and Tf = 0.

Definition 1.3 (of an order narrow map). Let E, X be Riesz spaces. A function f : E — X is
said to be:

e order narrow at a pointe € E if there is a net of decompositionse = ¢, Le/, A € A such
that (f(¢}) — f(e})) — 0in X. The set of all points of E at which f is order narrow is
denoted by N°(f);

e order narrow if N°(f) = E.

Similarly, a linear operator T : E — X is order narrow at a point e € E if and only if there
exists a net f, € E with |f,| = |e| for all indices a such that Tf, — 0.

Observe that a narrow (in any sense) function sends any atom to zero. So, to avoid triviality
one may consider atomless Kothe F-spaces and atomless Riesz spaces to be the domain spaces
of narrow maps. Another simple observation is that 0 is a point of narrowness of any map in
any sense of narrowness.

Obviously, if X is a topological vector space then every strictly narrow (at a point, on a set)
function is narrow. So, N*(f) C N (f) for any map f : E — X. Similarly, if X is a Riesz space
then every strictly narrow (at a point, on a set) function is order narrow. So, N*(f) C N°(f)
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for any map f : E — X. If one considers a compact linear operator T with zero kernel acting
from a Kothe F-space E to an F-space X then N°(T) = {0}, however N (T) = E, because
every compact operator is narrow [14, Proposition 2.1]. If, moreover, X is an order continuous
Banach lattice then N°(T) = E as well, because in this case every narrow operator is order
narrow [14, Proposition 10.9].

The connections between narrowness and order narrowness of a map is not so obvious,
however it can be easily deduced from the arguments of [7]. Recall that a Banach lattice E is
said to be order continuous if for each net (x,) in E the condition x, | 0 implies that ||x,| — O.
Note that in this case the weaker condition x, —- 0 also implies that ||x,| — 0.

Proposition 1.1. Let E be a Riesz space and X a Banach lattice. Then
(1) every narrow at a pointe € E map f : E — X is order narrow ate;

(2) if, moreover, X is order continuous then every order narrow at a pointe € E map f :
E — X is narrow ate;

(3) there exists an order narrow positive operator T € L(L« ) that is not narrow.

Proof. (1) For each n € IN we choose a decomposition e = ¢}, L e]l with || f(e],) — f(x)))|| < 27"
and set u, = Y >, [f(e;) — f(x})| (the series obviously satisfies Cauchy’s condition and hence
converges). To show that (f(e},) — f(e!)) — 01is a standard technical exercise.

(2) Let f be order narrow at e. We choose a net of decompositions e = ¢} Ue}, A € A

such that (f(e}) — f(e})) — 0. By the definition of an order continuous Banach lattice,
£ (ey) — f(e)) || = 0, and thus, f is narrow ate.
(3) See Example 3.3 of [7]. O

The following two propositions are simple exercises.
Proposition 1.2. Let E be a Riesz space and X a topological vector space.
1. For a linear operator T : E — X the following assertions are equivalent:
(i) T is narrow;
(if) ET C N(T).
2. For an orthogonally additive operator T : E — X the following are equivalent:
(i) T is narrow;
(if) EYUE~ C N(T).
Similar statements are true for strictly narrow and order narrow operators.

Remark that the condition E* C N/(T) for an orthogonally additive operator T does not
imply that T is narrow, as the following simple example shows: Tx = x~ forall x € E.

Proposition 1.3. Let E be a Riesz space and X a topological vector space.
1. Assume T : E — X is a linear operator.

(a) Ife,f € E,e € N(T) and |f| = |e| then f € N(T).
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(b) Ife;,ep € N(T),e1 L exanda,b € R then ae; + be, € N (T).

2. Assume T : E — X is an orthogonally additive operator. If e1,e; € N(T) and e; L e
then e, + e, € N(T).

Similar statements are true for strictly narrow and order narrow operators.

Proposition 1.4. Let E be a Kothe F-space on a finite atomless measure space (), %, 1), X a
topological vector space, T : E — X a uniformly continuous orthogonally additive operator.
Then the set of narrowness N (T) is closed in E.

Proof. Let e belong to the F-norm closure of A/(T). We show that T is narrow at e. Let V be any
neighborhood of zero in X. Choose a neighborhood of zero V; in X sothat Vi +V; +V; C V
and 6 > 0 so thatif x,y € E with ||x — y|| < 6 then T(x) — T(y) € V;. Now choose e; € N (T)
so that ||e; — e|| < ¢ and choose a decomposition e; = ¢} Ll ¢{ so that T(e]) — T(ef) € V. Set
QO =suppe], ' =Q\Q, ¢ =e-1gand e’ = e-1q.. Thene = ¢/ Ue”. We show that
Te' — Te"” € V. Indeed, observe that

e’ —eill = He-IQ/ —el-IQ/H <l|le—e] <6
and analogously |l¢” —e{|| < . Then Te’ — Te} € V; and Te” — Te{ € V;. Hence,
Te' — Te" = (Te' — Te}) + (Tey — Tef) + (Tef —Te") e Vi + V1 +V; C V. ]

Next we provide an example of a linear operator the set of narrowness of which coincides
with the set of all functions with constant modulus.

Example 1. Let (), %, u) be an atomless probability space (that is, a measure space with
Q) =1),1 < p < oo Let ) = AU B be any partition to measurable sets A, B. Then for
the operator T € L(L,(p)) given by

Tx:x—</0rxdy)r, wherer =14 —1p, x € Ly(n)

one has N*(T) = N(T) = {e € E: |e(w)] = A a.e.on ), A € R}

Proof. The inclusion {¢ € E : |e(w)] = Aae.on, A € R} C N°(T) follows from the
observation that T(Ar) = 0 and |Ar| = |e| for any element e € E with |e(w)| = A a.e. on Q). To
show that T is not narrow at each point e € E with |e| # Ar, A € R, consider any element of
the form x = e-1¢c — e - 1p, where Q = CU D (i.e., an arbitrary element x € E with |x| = |e|).
SetFF =ANC, KL =AND,Fs=BNCandFE;, = BND. Then

def
= d:/d_/d—/d du,
o /ery Fley er;/l F3e U+ F4e]/t

which implies |a| < fQ le| du = ”e”Ll(y)-
Hence,

1Tl = [l —arl] = |[x[| = lecl 7]l = Nell = lac] = llellr,, ) = Nell, o)- 1)

If we assume that T is narrow at e then by (1), [le[| () — llel|1, (4) = O which yields that |e|
is a constant. U
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The following theorem provides an example of narrow at a fixed point operators on an
arbitrary Kothe Banach space with nonnarrow sum at the same point.

Theorem 1. Let E be a Koéthe Banach space on a finite atomless measure space (0, %, u). Then
there are continuous linear operators Ty, T, € L(E) each of which is strictly narrow at the point
1 = 1, however the sum T, + T, is not narrow at 1.

Proof. Assume for simplicity of the notation that #(Q)) = 1 and ||1|] = 1. Decompose Q) =
AU Ay U Az U Ay with measure u(A;) = 1/4 each. Setry = 14, +14, — 14, — 14, and
ry =14, — 14, + 14, — 14,. Define operators Ty, T, € L(E) by setting

Tix:x—</ rixdy)ri, xeE i=1,2
0

It is immediately that T; are strictly narrow at 1, because T;r; = 0,1 = 1,2. We show that
T; + T, is not narrow at 1. Let r € E be any element of the form r = 14 — 15, where A,B € &
with ) = AU B. Weset D, = AN Ay and F, = BN Ay fork = 1,2,3,4. Then set

A= /eridy, i=1,2.
Taking into account that u(Dy) + u(F;) = 1/4 for all k, we obtain

A = u(D1) + u(D2) — u(D3) — u(Dy) — p(Fr) — p(F2) + u(F3) + p(Fy)
= 2u(D1) + 2u(D2) — 2u(D3) — 2u(Dy)

and analogously

(2)

Az = 2p(Dy) — 2u(D3) + 2(D3) — 2u(Ds). 3)
Since |A;] <1 fori = 1,2 and E is a Kéthe Banach space,
I(Ty+ To) r[| = [|12r — Mr1 = Aara| = [[(2 = A1 = A2)1p, + (2 — A1+ A2)1p,
+(2+ A1 —A2)1p, + (2+ Ay +A2)1p, + (=2 — A1 — A2)1p
+ (=2 =AM+ A1 + (=2 + A1 — A)1g + (=24 A1+ A2) 15|

> max{ (2 = M = 22)[[1p, |, (2 = A1+ A2) [T, |, (24 A1 = A2) [ 1,
(2+ M+ A2)[1p, [, 2+ A1+ A2) 1R [, (24 A1 — A2) |15 ||,
(2= M +22) 18], (2= A1 = A2)l[1g 1}

Since 1= 1p, +1p, + 1p, + 1p, + 15 + 15, + 1f, + 1f,, one of the summands has norm at
least 1/8. Of course, it is a matter of similar cases, which one. Say, ||1p, || > 1/8. Then

(i + T2)r[| = (2= A1 = A2)[[1p, [| = (2 — A1 — A2) /8.
Fix any € > 0 and assume that r is chosen so that || (T} 4+ T») r|| < e. Then by the above,
2 A — Ay < 8e. 4)

We claim that A; > 1 —8efori =1,2. Indeed,if A; <1—8ethen2— A1 — Ay >1— A1 > 8¢,
which contradicts (4). Analogously, A, > 1 — 8e. Then by (2),

#(D1) + u(D2) — u(D3) —u(Dy) = - > 5 —4e (5)
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and by (3),
A 1
#(D1) — u(D2) + u(D3) — u(Dy) = 72 > 5 —de (6)
Averaging (5) and (6), one gets 1 > u(D;) > u(D;) — u(Ds) > 1 — 4e, which implies
e > 1/16. Thus, Ty 4+ T; is not narrow at 1. O

The following statement characterizes the set of strict narrowness of linear maps.

Proposition 1.5. Let E be a Riesz space, X a linear space and T : E — X a linear operator. Then
N3(T) = {x €E: (JeckerT)|x| = |e|}.

Proof. Let x € N5(T). Choose a decomposition x = x’ LI x” so that T(x') = T(x"). Then for
e = x' — x” one has that |e| = |x| and e € ker T.
Assumee € ker T x € E and |x| = |e|. Then

e=(x"AeT ) U Aet)U(=(xT AeT))U(=(x" AeT)) (7)

and
x=(xtAe)U(=(x Aeh))U(xT Ae)U(=(x AeT)). (8)
Then setting x’ = (xt Aet) — (x~ Ae”) and ¥/ = —(x~ Aet) + (xT Ae), we obtain

x = x'Ux"” and by (7) and (8),
 To — T(xT Aot — Aot + Ao —Ae—) = Ty I
O0=Te=T(x"Ne")+T(x ANe")—T(x " ANe")—T(x" Ne ) =Tx"—Tx". 0

In particular, N°(T) need not be a linear subspace of E. For instance, if ker T is the set of
all constant functions then N*(T) equals the set of all functions with constant modulus.

Remark that Proposition 1.5 is not longer true for orthogonally additive operators due to the
obvious example Tx = x~ for which N*(T) = E™. To provide more examples for orthogonally
additive operators we recall some necessary information from [9]. Given any two elements x, y
of a Riesz space E, by xy we denote the greatest lower bound of the two-element set {x,y} in
E with respect to the lateral order u T v on E, if it exists. If E is a Riesz space of functions then

[ (), i x() = y(0)
Wi ={ 0 0 2o

A Riesz space is said to have the intersection property if every two-point subset {x,y}
of E has the lateral infimum xy. In particular, the principal projection property implies the
intersection property [9].

Example 2. Let E be a Riesz space with the intersection property and e € E. Then the function
T : E — E given by Tx = ex is an orthogonally additive operator with N*(T) = {0} U (E \ ).

Example 3. Let E be a Riesz space with the intersection property and e € E. Then the function
T : E — E given by Tx = x — ex is an orthogonally additive operator with N*(T) = .

The following example [7, Example 4.2] shows that, a continuous linear functional on an
atomless Banach lattice may have the only zero point of narrowness.
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Example 4. There is a continuous linear functional f € L}, for which N'(f) = N°(f) = {0}.

Proof. Denote by B the Boolean algebra of Borel subsets of [0, 1] equals up to measure null sets.
Let U be any ultrafilter on B. Then the linear functional f : E — R defined by

. 1
f(x) = lim W/AXdy

AeU Y

is obviously bounded. However it is not narrow in any sense at every nonzero point. Indeed,
for each x € Lo \ {0} of the form x = 14 — 15 where [0,1] = AU B one has f(x) = +£1
depending on whether A € U/ or B € U. O

2  UNIFORMLY NARROW PAIRS OF OPERATORS

Below we define a uniformly narrow pair of operators; even though one can consider an
arbitrary uniformly narrow set of operators.

Definition 2.1. Let E be a Riesz space and X be an F-space. We say that an orthogonally
additive operators S, T : E — X are uniformly narrow if for every e € E and every € > 0 there
exists a partitione = ¢’ L ¢” such that ||Se’ — Se’’|| < e and ||Te’ — Te"|| < e.

As was noted in the introduction, a simple argument shows that, if orthogonally additive
operators S, T : E — X are uniformly narrow then the sum S + T is narrow. The following
question naturally arises.

Problem 1. Let E be a Riesz space and X be an F-space. Are the following assertions equivalent
for every pair of narrow linear (orthogonally additive operators) S,T : E — X?

(i) S+ T is narrow;
(ii) S, T are uniformly narrow.

Although we do not know any example of spaces with negative answer to Problem 1, we
present below an affirmative solution for some partial cases. We refer the reader to [1] for
further standard terminology concerning operators on Riesz spaces.

We say that a Banach space X has the contains its square if there are a subspace Y of X and
a decomposition Y = X; @ X, onto subspaces Xj, X, isomorphic to X.

Theorem 2. Let E be a Riesz space and X be a Banach space containing its square. Let the
sum of every two narrow linear bounded operators from E to X is narrow. Then every pair
S,T : E — X of narrow linear bounded operators is uniformly narrow.

Proof. Let Y be a subspace of X, Y = Xj & X, with subspaces Xj, X, isomorphic to X. Let
T; : X — X; be isomorphisms, i = 1,2. Let S, T : E — X be narrow linear operators. Then the
linear operators S’, T" : E — Y C X defined by setting S’ = 1y oS and T’ = 1 o T are narrow
as compositions of a narrow operator from the right by a bounded operator from the left. By
the assumption, the operator A = S’ 4 T’ is narrow. Denote by P the projection of Y onto X;
parallel to X, and by Q the projection of Y onto X parallel to X;. Observe that Po A = S§’ and
QoA =T .Givenanye € E" and ¢ > 0, we choose a decomposition e = ¢’ Ll ¢” such that

€
|Ae’ — Ae"|| < —— :
I~ max{{[| P[], [| QI }
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Then
Ise' = 5" < e llz(S¢ — Se")| = [T 18"’ — |
= [THIIP(Ae" — Ae") | < [T [[[IP][| A’ — A" <.
Analogously, || Te’ — Te"|| < e. O

For example, the assumptions of Theorem 2 are valid for E = F = L (see [2] or [14, Theo-
rem 7.46] for the fact that a sum of every two narrow operators on L; is narrow).

We say that a Banach lattice X regularly contains its square if there are a subspace Y of X
and a decomposition Y = X; @ X5 onto subspaces X1, X, isomorphic to X by means of regular
isomorphisms 7; : X — X;,i =1,2.

Theorem 3. Let E be a Riesz space and X be a Banach lattice regularly containing its square.
Let the sum of every two narrow regular linear operators from E to X is narrow. Then every
pair S, T : E — X of narrow regular linear operators is uniformly narrow.

Proof. LetY be a subspace of X, Y = X; @ X, with subspaces Xj, X, isomorphic to X by means
of regular isomorphisms 7; : X — X;,i = 1,2. Let S,T : E — X be narrow regular linear
operators. Then the linear operators S, T’ : E — Y C X defined by setting S’ = 7y o S and
T' = 1 o T are narrow regular as compositions of a narrow regular operator from the right
by a bounded regular operator from the left. By the assumption, the operator A = S’ + T' is
narrow. Starting from this point, the proof is the same as that of Theorem 2. O

Corollary 2.1. Let E, F be order continuous Banach lattices with E atomless and F regularly
containing its square. Then every pair of narrow regular operator S,T : E — F is uniformly
narrow.

Proof. Accordingly to Theorem 11.8 of [7] (see also [14, Theorem 10.41]), the set of all narrow
regular linear operators is a band in the Riesz space of all regular linear operators from E to F.
In particular, the sum of every two narrow regular linear operators from E to X is narrow. By
Theorem 3, every pair of narrow regular operator S, T : E — F is uniformly narrow. O

Now we pass to orthogonally additive operators. Let E and F be Riesz spaces. An orthog-
onally additive operator T : E — F is called:

e positive provided Tx > 0 holds in F for all x € E;
e order bounded it T maps order bounded sets in E to order bounded sets in F.

Observe that if T : E — F is a positive orthogonally additive operator and x € E is such
that T(x) # 0 then T(—x) # —T(x) (otherwise both T(x) > 0 and T(—x) > 0 would imply
T(x) = 0). Thus, this positivity turns out to be more restrictive than the usual one for linear
operators because the only linear operator which is positive in the above sense is zero.

A positive orthogonally additive operator need not be order bounded. Indeed, every func-
tion T : R — R with T(0) = 0 is an orthogonally additive operator, and obviously, not each of
them is order bounded.

Banach lattices E and F are said to be Riesz isomorphic if there exists a Riesz isomorphism
7 : E — F, that is, an isomorphism between Banach spaces such that both T and 7! are order
preserving operators.
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We say that a Banach lattice X contains its Riesz square if there are a subspace Y of X and a
decomposition Y = X; @ X5 onto subspaces Xj, X, Riesz isomorphic to X and, moreover, the
corresponding projections of Y onto X; parallel to X3_; are order continuous. For example, the
Banach lattice L, [0,1] with 1 < p < oo obviously contains its Riesz square.

Theorem 4. Let E be an atomless Riesz space and F be an order continuous Banach lattice
containing its Riesz square. Let the sum of every two narrow up-laterally continuous abstract
Uryson operators from E to X is narrow. Then every pair S,T : E — X of narrow up-laterally
continuous abstract Uryson operators is uniformly narrow.

Proof. By [12, Lemma 2.7], under the assumptions on E and F, an abstract Uryson operator
B : E — F is narrow if and only if B is order narrow. Let Y be a subspace of X, Y = X; ® X»
and 7; : X — X; be Riesz isomorphisms, i = 1,2. Let S,T : E — X be narrow up-laterally
continuous abstract Uryson operators. Then the maps S’, T’ : E — Y C X defined by setting
S" =7 o0Sand T' = 1, o T are narrow up-laterally continuous abstract Uryson operators as
compositions of such an operator from the right by a bounded regular operator from the left.
By the theorem assumptions, the operator A = S’ + T’ is narrow and so, is order narrow.
Denote by P the projection of Y onto X; parallel to X, and by Q the projection of Y onto X,
parallel to X;. Observe that Po A = §’and Qo A = T'. Givenany ¢ € ET and ¢ > 0, we
choose a net of decompositions e = ¢}, Ll ¢!/ with (Ael, — Ae!’) > 0. Since the operators 7~
and P are order continuous,

Sel — Se! = 771(S'el, — §'e!!) = TTIP(Ae, — Ael') - 0.

By the order continuity of F, ||Se}, — Sel/|| — 0. Analogously, || Te, — Tel/|| — 0. We choose « so
that ||Se, — Sel/|| < e and || Te}, — Tel/|| < e. O

As a consequence of [12, Theorem 8.2], we obtain the following assertion.

Corollary 2.2. Let E be an atomless Riesz space with the principal projection property and F be
an order continuous Banach lattice containing its Riesz square. Then every pair S,T : E — X
of narrow up-laterally continuous abstract Uryson operators is uniformly narrow.

Proof. By [12, Lemma 2.7], under the assumptions on E and F, an abstract Uryson operator
B : E — F is narrow if and only if B is order narrow. So, by [12, Theorem 8.2], the sum of every
two narrow up-laterally continuous abstract Uryson operators from E to X is narrow. Then
apply Theorem 4. O

Recall that an operator T € L(E,X) from a Kothe Banach space E on a finite atomless
measure space ((), X, i) to a Banach space X is called hereditarily narrow if for every A € %,
#(A) > 0 and every atomless sub-o-algebra F of 2(A) the restriction of T to E(F) is narrow
(hereX(A) ={BeX: BC A}and E(F) = {x € E(A) : x is F — measurable}). We refer the
reader to [14, Section 11.1] for more information on hereditarily narrow operators.

Proposition 2.1. Let E be a Kéthe Banach space on [0, 1] with an absolutely continuous norm
and X be a Banach space. If S € L(E, X) is a hereditarily narrow operator and T € L(E, X) is
a narrow operator then the pair S, T is uniformly narrow.

The proof of Proposition 2.1 just repeats the proof of [14, Proposition 11.2] (see also [3]).
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Biaomo, 1m0 cyMa AOBIABHMX ABOX BY3bKMX OIlepaTOpiB Ha Lj € By3bKOIO, IIPOTe AASI IIPOCTOPIB
Ly 31 < p < co aHaroTiuHe TBepAXKeHHs X1bHe. AaHa CTATTSI MPOAOBXY€e UMCAeHHI AOCAIAKEHHS
Ha 1o TeMy. [lo-mepiire, Mu BUBYaeMO BY3bKiCTb AiHIVTHIX Ta OPTOrOHAABHO AAUTMBHIX OepaTopPiB
Ha pyHKIIOHaABHMX ITpocTopax Kere i BekTopHMX rpaTkax y dixkcopaniit Tourii. Teopema 1 cTBep-
AXYe€, IO AT KOXXHOTO 6aHaxoBoro mpocTopy Kere Ha mpocTopi 3i ckiHgeHHO0 6€3aTOMHOIO MipOO
icHyIOTb AiHiVHI HerrepepsHi onepaTopu S, T : E — E, sKi € By3bKMMU y Aesikilt dpikcoBaHilt Toui,
npore cyMma S + T He € By3bKOIO Y Lili Xe camili Touti. [To-apyre, M yBOAMMO i AOCAIAXY€EMO OAHO-
cTarHo By3bKi mapu onepatopis S, T : E — X, To6T0, AAsT KoXHOTO e € E Ta KoxHoro € > 0 icHye
poskaaa e = ¢’ + ¢ Ha an3'oHKTHI eneMerTH Takwmit, wo ||S(e’) — S(e”)|| < eTa | T(e") — T(e")| <e.
CranaapTHMIT METOA B AiTepaTypi AOBeAEHHS BY3bKOCTi CyMM ABOX BY3bKMX omepaTopis S + T mo-
AsiTa€ B TOMY, 06U TI0KasaTy, o mapa S, T € OAHOCTalfHO By3bKOM. MM BUBUAEMO IUTaHHSI, UM
KO>XKHa Tlapa BY3bKMX OIepaTOpiB 3 By3bKOKIO CYyMOIO € OAHOCTalHO By3bkol. He maroum xoaHo-
TO KOHTPIPMKAAAY, MU AOBOAMMO KiAbKa TeOpeM, siKi HAAalOTh MO3UTUBHY BiATIOBiAb AAST A@STKMX
YaCTKOBUX BUITAAKiB.

Kntouosi cnoea i ppasu: By3bKMI OIlepaToOp, OPTOrOHAABHO aAMTHBHMI OllepaTop, 6aHaxiB mpo-
ctip Kere.



