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ON THE GROWTH OF A KLASSS OF DIRICHLET SERIES ABSOLUTELY

CONVERGENT IN HALF-PLANE

In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series

F(s) =
∞

∑
n=1

an exp{sλn} with the abscissa of asolute convergence A ∈ (−∞,+∞) and the growth of

Dirichlet series Fj(s) =
∞

∑
n=1

an,j exp{sλn}, 1 ≤ j ≤ 2, with the same abscissa of absolute convergence

if the coefficients an are connected with the coefficients an,j by correlation

β

(

λn

ln
(

|an|eAλn
)

)

= (1 + o(1))
m

∏
j=1

β

(

λn

ln
(

|an,j|eAλn
)

)ω j

, n → ∞,

where ωj > 0, 1 ≤ j ≤ m,
m

∑
j=1

ωj = 1.
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INTRODUCTION

For an entire function f (z) =
∞

∑
n=0

anzn let ̺[ f ] be its order and σ[ f ] be its type. Using

Hadamard’s formulas for the finding of these characteristics, E.G. Calys [1] proved the follow-

ing theorems.

Theorem A. Suppose that entire functions f1(z) =
∞

∑
n=0

an,1zn and f2(z) =
∞

∑
n=0

an,2zn have finite

orders and regular growth (in sence of the equality of order ̺[ f ] and lower order λ[ f ]) and the

sequences (|an,1/an+1,1|) and (|an,2/an+1,2|) are nondecreasing for n ≥ n0. If

ln (1/|an |) = (1 + o(1))
√

ln (1/|an,1|) ln (1/|an,2|)

as n → ∞, then the function f has regular growth and ̺[ f ] =
√

̺[ f1]̺[ f2 ].

Theorem B. Suppose that functions f1 and f2 from Theorem A have the same order ̺[ f1] =

̺[ f2] = ̺ ∈ (0,+∞) and the types σ[ f1] = σ1, σ[ f2] = σ2. Also suppose that an,1 6= 0 and

|an,2| ≥ |an,1|/l(1/|an,1 |) for all n ≥ n0, where l is slowly varying function. If

|an| = (1 + o(1))
√

|an,1||an,2|

as n → ∞, then the function f has the order ̺[ f ] = ̺ and the type σ[ f ] ≤ √
σ1σ1.
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In [2] Theorems A and B are generalized on the case of entire Dirichlet series of finite

generalized orders by Sheremeta, moreover instead two functions f1 and f2 were considered

n ≥ 2 entire Dirichlet series.

Here we will obtain analogues results for Dirichlet series absolutely convergent in a half-

plane.

Let Λ = (λn) be an increasing to +∞ sequence of nonnegative numbers and S(Λ, A) be a

class of Dirichlet series

F(s) =
∞

∑
n=1

an exp{sln}, s = σ + it (1)

with a given sequence (λn) of exponents and an abscissa of absolutely convergence

σa = A ∈ (−∞, +∞) and M(σ, F) = sup{|F(σ + it)| : t ∈ R} for σ ∈ (−∞, A).

By L we denote a class of positive continuous functions α on (−∞, +∞) such that

α(x) = α(x0) for x ≤ x0 and 0 < α(x) ↑ +∞ as x0 ≤ x ↑ +∞. We say that α ∈ L0 if

α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L and

α(cx) = (1 + o(1))α(x) as x → +∞ for each c ∈ (0, +∞), i. e. α is slowly increasing function.

Clearly, Lsi ⊂ L0.

For α ∈ L and β ∈ L the values

̺A
α,β[F] = lim

σ↑A

α(ln M(σ, F))

β(1/(A − σ))
, λA

α,β[F] = lim
σ↑A

α(ln M(σ, F))

β(1/(A − σ))

are called [3] generalized order and lower order correspondly of Dirichlet series (1) from the

class S(Λ, A).

1 ANALOGUES OF THEOREM A.

We need the following lemmas from [3].

Lemma 1.1. Let α ∈ Lsi, β ∈ Lsi and

x

β−1(cα(x))
↑ +∞, α

(

x

β−1(cα(x))

)

= (1 + o(1))α(x) (2)

as x0 ≤ x → +∞ for each c ∈ (0,+∞).

If α(λn) = o (β (λn/ ln n)) as n → ∞, then

̺A
α,β[F] = kA

α,β[F] =: lim
n→∞

α(λn)

β (λn/ ln (|an|eAλn))
,

and if, moreover, α(λn+1) = (1+ o(1))α(λn) and
ln |an+1| − ln |an|

λn+1 − λn
ր A as n0 ≤ n → ∞, then

λA
α,β[F] = κ

A
α,β[F] =: lim

n→∞

α(λn)

β (λn/ ln (|an|eAλn))
.

Remark 1.1 ([3]). In order that λA
α,β[F] ≥ κ

A
α,β[F], it is sufficient that α(λn+1) = (1+ o(1))α(λn)

as n → ∞.
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Lemma 1.2. Let α ∈ Lsi, β ∈ Lsi and

x

α−1(cβ(x))
↑ +∞, β

(

x

α−1(cα(x))

)

= (1 + o(1))β(x) (3)

as x0 ≤ x → +∞ for each c ∈ (0,+∞).

If α(ln n) = o(β(λn)) as n → ∞, then

̺A
α,β[F] = kA∗

α,β[F] =: lim
n→∞

α
(

ln
(

|an|eAλn
))

β(λn)
,

and if, moreover, β(λn+1) = (1 + o(1))β(λn) and
ln |an+1| − ln |an|

λn+1 − λn
ր A as n0 ≤ n → ∞,

then

λA
α,β[F] = κ

A∗
α,β[F] =: lim

n→∞

α
(

ln
(

|an|eAλn
))

β(λn)
.

Remark 1.2 ([3]). In order that λA
α,β[F] ≥ κ

A∗
α,β[F], it is sufficient that β(λn+1) = (1+ o(1))β(λn)

as n → ∞.

Suppose that Fj ∈ S(Λ, A), 1 ≤ j ≤ m, and

Fj(s) =
∞

∑
n=1

an,j exp{sλn}. (4)

Using Lemma 1.1, at first we prove the following analog of Theorem A.

Theorem 1. Let functions α ∈ Lsi and β ∈ Lsi satisfy conditions (2), α(λn) = o (β (λn/ ln n))

and α(λn+1) = (1 + o(1))α(λn) as n → ∞. Suppose that all functions (4) have regular

αβ-growth (i.e. λA
α,β[Fj] = ̺A

α,β[Fj] < +∞) and
ln |an+1,j| − ln |an,j |

λn+1 − λn
ր A as n0 ≤ n → ∞.

If ωj > 0, 1 ≤ j ≤ m,
m

∑
j=1

ωj = 1 and

β

(

λn

ln (|an|eAλn)

)

= (1 + o(1))
m

∏
j=1

β

(

λn

ln
(

|an,j|eAλn
)

)ωj

, n → ∞, (5)

then function (1) has regular αβ-growth and ̺A
α,β[F] =

m

∏
j=1

(̺A
α,β[Fj])

ωj .

Proof. Since λA
α,β[Fj] = ̺A

α,β[Fj] = ̺j < +∞, by Lemma 1.1 we have

lim
n→∞

α(λn)

β
(

λn/ ln
(

|an,j |eAλn
)) = ̺j.

Therefore, from (5) we obtain

lim
n→∞

1

α(λn)
β

(

λn

ln (|an|eAλn)

)

= lim
n→∞

1

α(λn)

m

∏
j=1

β

(

λn

ln
(

|an,j|eAλn
)

)ωj

= lim
n→∞

m

∏
j=1

(

1

α(λn)
β

(

λn

ln
(

|an,j |eAλn
)

))ωj

=
m

∏
j=1

lim
n→∞

(

1

α(λn)
β

(

λn

ln
(

|an,j|eAλn
)

))ωj

=
m

∏
j=1

(

1/̺j

)ωj ,
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that is,

lim
n→∞

α(λn)

β (λn/ ln (|an|eAλn))
=

m

∏
j=1

̺
ωj

j .

Using Lemma 1.1 and the Remark 1.1, hence we get
m

∏
j=1

̺
ωj

j ≤ λA
α,β[F] ≤ ̺A

α,β[F] =
m

∏
j=1

̺
ωj

j , that

is the function F has regular αβ-growth and ̺A
α,β[F] =

m

∏
j=1

(̺A
α,β[F])

ωj . Theorem 1 is proved.

From (2) it follows that the function α increases less rapidly than the function β. It is easy to

verify that the functions α(x) = ln ln x and β(x) = ln x for x ≥ x0 satisfy (2) and the condition

α(λn) = o (β (λn/ ln n)) holds as n → ∞, provided lim
n→∞

(ln ln n)/ ln λn < 1. Therefore,

Theorem 1 implies the following statement.

Corollary 1.1. Let lim
n→∞

(ln ln n)/ ln λn < 1, ln ln λn+1 = (1 + o(1)) ln ln λn as n → ∞. Sup-

pose that lim
σ↑A

ln ln ln M(σ, Fj))

ln (1/(A − σ))
= ̺j and

ln |an+1,j| − ln |an,j|
λn+1 − λn

ր A as n0 ≤ n → ∞ for all

1 ≤ j ≤ m. If

ln

(

λn

ln (|an|eAλn)

)

= (1 + o(1))
m

∏
j=1

lnωj

(

λn

ln
(

|an,j|eAλn
)

)

,
m

∑
j=1

ωj = 1,

as n → ∞ then lim
σ↑A

ln ln ln M(σ, F))

ln (1/(A − σ))
=

m

∏
j=1

̺
ωj

j .

For the proof of the following theorem we will use Lemma 1.2.

Theorem 2. Let the functions α ∈ Lsi and β ∈ Lsi satisfy the condition (3), α(ln n) = o(β(λn))

and β(λn+1) = (1 + o(1))β(λn) as n → ∞. Suppose that all functions (4) have regular αβ-

growth and
ln |an+1,j| − ln |an,j|

λn+1 − λn
ր A as n0 ≤ n → ∞.

If ωj > 0, 1 ≤ j ≤ m,
m

∑
j=1

ωj = 1 and

α
(

ln
(

|an|eAλn

))

= (1 + o(1))
m

∏
j=1

αωj

(

ln
(

|an,j|eAλn

))

, n → ∞, (6)

then function (1) has regular αβ-growth and ̺A
α,β[F] =

m

∏
j=1

(̺A
α,β[Fj])

ωj .

Proof. Since λA
α,β[Fj] = ̺A

α,β[Fj] = ̺j < +∞, by Lemma 1.2 we have

lim
n→∞

α
(

ln
(

|an,j |eAλn
))

β(λn)
= ̺j.

Therefore, from (6), as in the proof of Theorem 1,

lim
n→∞

α
(

ln
(

|an|eAλn
))

β(λn)
=

m

∏
j=1

lim
n→∞

(

α
(

ln
(

|an,j |eAλn
))

β(λn)

)ωj

=
m

∏
j=1

̺
ωj

j ,

whence, as above, we obtain the regular αβ-growth of the function f and the equality ̺A
α,β[F] =

m

∏
j=1

(̺A
α,β[F])

ωj . Theorem 2 is proved.
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From (3) it follows that the function β increases less rapidly than the function β. It is easy

to verify that the functions α(x) = ln x and β(x) = ln ln x for x ≥ x0 satisfy (3). Therefore,

Theorem 2 implies the following statement.

Corollary 1.2. Let ln ln n = o(ln ln λn)) and ln ln λn+1 = (1 + o(1)) ln ln λn as n → ∞.

Suppose that lim
σ↑A

ln ln M(σ, Fj))

ln ln (1/(A − σ))
= ̺j and

ln |an+1,j| − ln |an,j |
λn+1 − λn

ր A as n0 ≤ n → ∞ for all

1 ≤ j ≤ m. If

ln ln
(

|an|eAλn

)

= (1 + o(1))
m

∏
j=1

lnωj ln
(

|an,j|eAλn

)

,
m

∑
j=1

ωj = 1,

as n → ∞ then lim
σ↑A

ln ln M(σ, F))

ln ln (1/(A − σ))
=

m

∏
j=1

̺
ωj

j .

2 ANALOGUES OF THEOREM B.

Suppose, as above, that α ∈ Lsi and β ∈ Lsi. In order to get the analogues of Theorem B,

except the generalized order ̺A
α,β[F] ∈ (0,+∞), it is needed to enter a (generalized) type. A

definition of the type depends on what from the functions α or β grows slower.

Suppose at first that the function β increases less rapidly than the function α and define a

type by the formula

TA∗
α,β [F] = lim

σ↑A

ln M(σ, F)

α−1(̺A
α,β[F]β(1/(A − σ)))

.

Since TA∗
α,β [F] = ̺A

α1 ,β1
[F], where α1(x) = x 6∈ Lsi and β1(x) = α−1(̺A

α,β[F]β(x)) for x ≥ x0, we

can apply none from the lemmas indicated above. However the following statement is true [3].

Lemma 2.1. Let α1(x) = x for x ≥ x0, β1 ∈ Lsi and

x

β1(x)
↑ +∞, β1

(

x

β1(x)

)

= (1 + o(1))β1(x), x0 ≤ x → +∞.

If ln n = o(β1(λn)) as n → ∞ then ̺A
α1 ,β1

[F] = lim
n→∞

ln
(

|an|eAλn
)

β1(λn)
.

Since β1(x) = α−1(̺A
α,β[F]β(x)) for x ≥ x0 then Lemma 2.1 implies the following statement.

Lemma 2.2. Let α ∈ Lsi and β ∈ Lsi be such that α−1(cβ(x)) ∈ Lsi for each c ∈ (0, +∞) and

x

α−1(cβ(x))
↑ +∞, α−1

(

cβ

(

x

α−1(cβ(x)

))

= (1 + o(1))α−1(cβ(x)) (7)

as x0 ≤ x → +∞ for each c ∈ (0, +∞). If ln n = o(α−1(cβ(λn)) as n → ∞ for each c ∈
(0, +∞), then

TA∗
α,β [F] = lim

n→∞

ln
(

|an|eAλn
)

α−1(̺A
α,β[F]β(λn))

.

The following theorem generalizes Theorem B.
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Theorem 3. Let β ∈ Lsi, α(ex) ∈ L0, α−1(cβ(x)) ∈ Lsi, conditions (7) hold and ln n =

o(α−1(cβ(λn))) as n → ∞ for each c ∈ (0, +∞). Suppose that all Dirichlet series (4) have

the same generalised order ̺A
α,β[Fj] = ̺ ∈ (0,+∞) and the types TA∗

α,β [Fj] ∈ (0,+∞). Suppose

also that an,1 6= 0 for all n ≥ n0 and for all 2 ≤ j ≤ m

ln ln
(

|an,j|eAλn

)

≥ (1 + o(1)) ln ln
(

|an,1|eAλn

)

, n → ∞. (8)

If ωj > 0, 1 ≤ j ≤ m,
m

∑
j=1

ωj = 1 and

ln
(

|an|eAλn

)

= (1 + o(1))
m

∏
j=1

(

ln
(

|an,j|eAλn

))ωj
, n → ∞, (9)

then Dirichlet series (1) has the generalized order ̺A
α,β[F] = ̺ and the type

TA∗
α,β [F] ≤

m

∏
j=1

TA∗
α,β [Fj]

ωj .

Proof. Since α(ex) ∈ L0, then for each c ∈ (0, +∞) we have

α(cx) = α(eln x+ln c) = α(e(1+o(1)) ln x) = (1 + o(1))α(eln x) = (1 + o(1))α(x)

as x → +∞, that is α ∈ Lsi. Hence it follows that α−1((1 − η)x) = o(α−1(x)) as x → +∞

for each η ∈ (0, 1), because if α−1((1 − η)xk) ≥ hα−1(xk)) for some number h > 0 and an

increasing to +∞ sequence (xk) then (1 − η)xk ≥ α(hα−1(xk)) = (1 + o(1))xk as k → ∞, that

is impossible.

Therefore, conditions (7) imply the conditions (3). Indeed, if for some c ∈ (0, +∞),

η ∈ (0, 1) and an increasing to +∞ sequence (xk) the inequality

β
(

xk/α−1(cβ(xk))
)

≤ (1 − η)β(xk)

is true then α−1
(

cβ
(

xk/α−1(cβ(xk)
))

≤ α−1 (c(1 − η)β(xk)) = o(α−1 (cβ(xk)) as k → ∞, that

is impossible in view of (7).

Finally, from the condition ln n = o(α−1(cβ(λn)) as n → ∞ for each c ∈ (0, +∞) we have

ln n ≤ α−1(cβ(λn)) for n ≥ n0 and each c ∈ (0, +∞), that is α(ln n) ≤ cβ(λn) and in view of

the arbitrariness of c we obtain α(ln n) = o(β(λn)) as n → ∞.

Thus, from the conditions on the functions α and β and the sequence (λn) in Theorem 3 the

conditions of Lemma 1.2 follows.

Since all Dirichlet series (4) have the same generalized order ̺A
α,β[Fj] = ̺ ∈ (0,+∞), then

by Lemma 1.2 for every ̺1 > ̺ and all n ≥ n0(̺1) we have ln
(

|an,j|eAλn
)

≤ α−1(̺1β(λn)).

Therefore, from (9) we obtain

̺A
α,β[F] = lim

n→∞

α
(

ln
(

|an|eAλn
))

β(λn)
= lim

n→∞

1

β(λn)
α

(

m

∏
j=1

(

ln
(

|an,j |eAλn

))ωj

)

= lim
n→∞

1

β(λn)
α

(

exp

{

m

∑
j=1

ωj ln ln
(

|an,j|eAλn

)

})

≤ lim
n→∞

1

β(λn)
α

(

exp

{

m

∑
j=1

ωj ln α−1(̺1β(λn))

})

= ̺1,
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that is in view of the arbitrariness of ̺1 we obtain the inequality ̺A
α,β[F] ≤ ̺.

On the other hand, in view of the conditions (8) and α(ex) ∈ L0 we have

̺A
α,β[F] = lim

n→∞

1

β(λn)
α

(

exp

{

m

∑
j=1

ωj ln ln
(

|an,j |eAλn

)

})

= lim
n→∞

1

β(λn)
α

(

exp

{

ω1 ln ln
(

|an,1|eAλn

)

+
m

∑
j=2

ωj ln ln
(

|an,j|eAλn

)

})

≥ lim
n→∞

1

β(λn)
α

(

exp

{

ω1 ln ln
(

|an,1|eAλn

)

+
m

∑
j=2

ωj(1 + o(1)) ln ln
(

|an,1|eAλn

)

})

= lim
n→∞

1

β(λn)
α

(

exp

{

(1 + o(1))
m

∑
j=1

ωj ln ln
(

|an,1|eAλn

)

})

= lim
n→∞

(1 + o(1))

β(λn)
α

(

exp

{

m

∑
j=1

ωj ln ln
(

|an,1|eAλn

)

})

= lim
n→∞

α
(

ln
(

|an,1|eAλn
))

β(λn)
= ̺.

Thus, ̺A
α,β[F] = ̺ and for TA∗

α,β [F] by Lemma 2.2 from (9) we obtain

TA∗
α,β [F] = lim

n→∞

ln
(

|an|eAλn
)

α−1(̺A
α,β[F]β(λn))

= lim
n→∞

1

α−1(̺A
α,β[F]β(λn))

m

∏
j=1

(

ln
(

|an,j|eAλn

))ωj

= lim
n→∞

m

∏
j=1

(

ln
(

|an,j |eAλn
)

α−1(̺A
α,β[F]β(λn))

)ωj

≤
m

∏
j=1

lim
n→∞

(

ln
(

|an,j|eAλn
)

α−1(̺A
α,β[F]β(λn))

)ωj

=
m

∏
j=1

TA∗
α,β [Fj]

ωj .

The proof of Theorem 3 is complete.

It is easy to verify that the functions α(x) = ln x and β(x) = ln ln x for x ≥ x0 satisfy the

conditions of Theorem 3. Therefore, the following statement is true.

Corollary 2.1. Let Diriclet series (4) be such that for all 1 ≤ j ≤ m

lim
σ↑A

ln ln M(σ, Fj)

ln ln (1/(A − σ))
= ̺, lim

σ↑A

ln M(σ, Fj))

ln̺ (1/(A − σ))
= Tj,

and ln n = O(ln ln λn) as n → ∞. Then the conditions (8) and (9) imply

lim
σ↑A

ln ln M(σ, F)

ln ln (1/(A − σ))
= ̺, lim

σ↑A

ln M(σ, F)

ln̺ (1/(A − σ))
≤

m

∏
j=1

T
ωj

j .

Since ̺A
α,β[F] = lim

σ↑A

ln exp{α(ln M(σ, F)}
ln exp{β(1/(A − σ)} , we define the type also by the formula

TA
α,β[F] = lim

σ↑A

exp{α(ln M(σ, F)}
exp{̺A

α,β[F]β(1/(A − σ)} ,

and for the finding by the coefficients we use Lemma 1.1. We obtain the following statement.
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Lemma 2.3. Suppose that the function eα(x) and eβ(x) belongs to Lsi and

x

β−1(ln c + α(x))
↑ +∞, exp

{

α

(

x

β−1(ln c + α(x))

)}

= (1 + o(1))eα(x) (10)

as x → +∞ for each c ∈ (0,+∞). If exp{α(λn)} = o (exp {β (λn/ ln n)}) as n → ∞ then

TA
α,β[F] = lim

n→∞

exp{α(λn)}

exp

{

̺A
α,β[F]β

(

λn

ln (|an|eAλn)

)} .

Theorem 4. Let the function eα(x) and eβ(x) belongs to Lsi, the conditions (2) and (10) hold

and α(λn) = o (β (λn/ ln n)) as n → ∞. Suppose that all Dirichlet series (4) have the same

generalized order ̺A
α,β[Fj] = ̺ ∈ (0,+∞) and the types TA

α,β[Fj] ∈ (0,+∞). Suppose also that

an,1 6= 0 for all n ≥ n0 and for all 2 ≤ j ≤ m

β

(

λn

ln
(

|an,j |eAλn
)

)

≤ (1 + o(1))β

(

λn

ln (|an,1|eAλn)

)

, n → ∞. (11)

If ωj > 0, 1 ≤ j ≤ m,
m

∑
j=1

ωj = 1 and

exp

{

β

(

λn

ln (|an|eAλn)

)}

= (1 + o(1))
m

∏
j=1

exp

{

ωjβ

(

λn

ln
(

|an,j |eAλn
)

)}

(12)

as n → ∞ then Dirichlet series (1) has the generalized order ̺A
α,β[F] = ̺ and type

TA
α,β[F] ≤

m

∏
j=1

TA
α,β[Fj]

ωj .

Proof. From (12) we have

β

(

λn

ln (|an|eAλn)

)

=
m

∑
j=1

ωjβ

(

λn

ln
(

|an,j|eAλn
)

)

+ o(1) (13)

as n → ∞. Therefore, by Lemma 1.1

1

̺A
α,β[F]

= lim
n→∞

1

α(λn)
β

(

λn

ln (|an|eAλn)

)

≥
m

∑
j=1

lim
n→∞

ωj

α(ωn)
β

(

λn

ln
(

|an,j|eAλn
)

)

=
1

̺
.

On the other hand, in view of (11) from (13) we obtain

1

̺A
α,β[F]

≤ lim
n→∞

m

∑
j=1

ωj

α(λn)
β

(

λn

ln (|an,1|eAλn)

)

=
1

̺
,

that is ̺A
α,β[F] = ̺. From (12) and Lemma 2.3 also it follows that

1

TA
α,β[F]

= lim
n→∞

1

exp{α(λn)}
exp

{

̺β

(

λn

ln (|an|eAλn)

)}

= lim
n→∞

1

exp{α(λn)}
m

∏
j=1

exp

{

̺ωjβ

(

λn

ln
(

|an,j |eAλn
)

)}

≥
m

∏
j=1

lim
n→∞













exp

{

̺β

(

λn

ln
(

|an,j |eAλn
)

)}

exp{α(λn)}













ωj

=
m

∏
j=1

(

1

TA
α,β[Fj]

)ωj

.
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Theorem 4 is proved.

It is easy to verify that the functions α(x) = ln ln x and β(x) = ln ln x for x ≥ x0 satisfy

the conditions (2) and (10). The condition α(λn) = o (β (λn/ ln n)) as n → ∞ holds, provided

lim
n→∞

(ln ln n)/ ln λn < 1. Therefore, Theorem 4 implies the following statement.

Corollary 2.2. Let lim
n→∞

(ln ln n)/ ln λn < 1 and for all 1 ≤ j ≤ m

lim
σ↑A

ln ln ln ln M(σ, Fj))

ln ln (1/(A − σ))
= ̺, lim

σ↑A

ln ln ln M(σ, Fj))

ln̺ (1/(A − σ))
= Tj ∈ (0,+∞).

Suppose that an,1 6= 0 for all n ≥ n0 and for all 2 ≤ j ≤ m

ln ln
λn

ln
(

|an,j |eAλn
) ≤ (1 + o(1)) ln ln

λn

ln (|an,1|eAλn)
, n → ∞.

If ωj > 0, 1 ≤ j ≤ m,
m

∑
j=1

ωj = 1 and

ln
λn

ln (|an|eAλn)
= (1 + o(1))

m

∏
j=1

(

ln
λn

ln
(

|an,j|eAλn
)

)ωj

as n → ∞ then

lim
σ↑A

ln ln ln ln M(σ, F)

ln ln (1/(A − σ))
= ̺, lim

σ↑A

ln ln ln M(σ, F)

ln̺ (1/(A − σ))
≤

m

∏
j=1

T
ωj

j .

REFERENCES

[1] Calys E.G. A note on the order and type of integral functions. Riv. Mat. Univer. Parma 1964, 5 (2), 133–137.

[2] Kulyavec’ L.V., Mulyava O.M. On the growth of a class of entire Dirichlet series. Carpathian Math. Publ. 2014, 6

(2), 300–309. doi:10.15330/cmp.6.2.300-309 (in Ukrainian)

[3] Gal’ Yu.M. On the growth of analytic functions, represented by Dirichlet series absolutely convergent in half-

plane. Drohobych, 1980. (in Russian)

Received 17.04.2015

Revised 01.06.2017

Кулявець Л.В., Мулява О.М. Про зростання одного класу абсолютно збiжних у пiвплощинi рядiв

Дiрiхле // Карпатськi матем. публ. — 2017. — Т.9, №1. — C. 63–71.

У термiнах узагальнених порядкiв дослiджено зв’язок мiж зростанням ряду Дiрiхле F(s) =
∞

∑
n=1

an exp{sλn} з абсцисою абсолютної збiжностi A ∈ (−∞,+∞) i зростанням рядiв Дiрiхле

Fj(s) =
∞

∑
n=1

an,j exp{sλn}, 1 ≤ j ≤ 2, з такою ж абсцисою абсолютної збiжностi, якщо, напри-

клад, коефiцiєнти an повязанi з коефiцiєнтами an,j спiввiдношеням

β

(

λn

ln
(

|an|eAλn
)

)

= (1 + o(1))
m

∏
j=1

β

(

λn

ln
(

|an,j|eAλn
)

)ω j

, n → ∞,

де ωj > 0, 1 ≤ j ≤ m,
m

∑
j=1

ωj = 1.

Ключовi слова i фрази: ряд Дiрiхле, узагальнений порядок.


