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APPROXIMATION OF CAPACITIES WITH ADDITIVE MEASURES

For a space of non-additive regular measures on a metric compactum with the Prokhorov-style
metric, it is shown that the problem of approximation of arbitrary measure with an additive measure
on a fixed finite subspace reduces to linear optimization problem with parameters dependent on
the values of the measure on a finite number of sets.

An algorithm for such an approximation, which is more efficient than the straighforward usage
of simplex method, is presented.
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INTRODUCTION

Capacities were introduced by Choquet [1] and found numerous applications in different
branches of mathematics. Spaces of upper semicontinuous capacities on compacta were sys-
tematically studied in [5]. In particular, in the latter paper functoriality of the construction of
a space of capacities was proved and Prokhorov-style and Kantorovich-Rubinstein-style met-
rics on the set of capacities on a metric compactum were introduced. Needs of practice require
that a capacity can be approximated with capacities of simpler structure or with some conve-
nient properties.

We follow the terminology and notation of [5] and denote by exp X the set of all non-empty
closed subsets of a compactum X. We call a function c : exp X ∪ {∅} → I a capacity on
a compactum X if the three following properties hold for all subsets F, G ⊂

cl
X:

1. c(∅) = 0;

2. if F ⊂ G, then c(F) 6 c(G) (monotonicity);

3. if c(F) < a, then there is an open subset U ⊃ F such that for all G ⊂ U the inequality
c(G) < a is valid (upper semicontinuity).

If, additionally, c(X) = 1 (or c(X) ≤ 1) holds, then the capacity is called normalized (resp.
subnormalized). We denote by MX, MX, and MX the sets of all capacities on X, of all normal-
ized, and of all subnormalized capacities on X respectively.

It was shown in [5] that MX carries a compact Hausdorff topology with the subbase of all
sets of the form

O−(F, a) = {c ∈ MX | c(F) < a}, whereF ⊂
cl

X, a ∈ I,

УДК 515.12, 517.518.11
2010 Mathematics Subject Classification: 25C15, 28E10.

c©Nykyforchyn O.R., Hlushak I.D., 2017



APPROXIMATION OF CAPACITIES WITH ADDITIVE MEASURES 93

and

O+(U, a) = {c ∈ MX | c(U) > a}

= {c ∈ MX | there is a compactum F ⊂ U, c(F) > a}, where U ⊂
op

X, a ∈ I.

The same formulae determine a subbase of a compact Hausdorff topology on MX so that
MX ⊂ MX is a subspace.

Previously we have considered the following subclasses of MX:
1) M∩X is the set of the so-called ∩-capacities (or necessity measures) with the property:

c(A ∩ B) = min{c(A), c(B)} for all A, B ⊂
cl

X.

2) M∪X is the set of the so-called ∪-capacities (or possibility measures) with the property:
c(A ∪ B) = max{c(A), c(B)} for all A, B ⊂

cl
X.

3) Class MX0 of capacities defined on a closed subspace X0 ⊂ X. We regard each capacity c0

on X0 as a capacity on X extended with the formula c(F) = c0(F ∩ X0), F ⊂
cl

X.

4) Class MLipX of capacities that are non-expanding w.r.t. the Hausdorff metric on exp X.

Analogous subclasses are defined in MX and MX, with the obvious denotations.
It was proved in [2, 3] that the subsets M∩X, M∪X, MLipX, and MX0 are closed in MX,

hence for a compactum X they are compacta as well, similarly for the respective subsets in
MX and MX.

We consider the metric on the set MX of capacities on a metric compactum (X, d) :

d̂(c, c′) = inf{ε > 0 | c(Ōε(F)) + ε > c′(F), c′(Ōε(F)) + ε > c(F), ∀F ⊂
cl

X},

here Ōε(F) is the closed ε-neighborhood of a subset F ⊂ X. The restrictions of this metric on
MX and MX are admissible [5].

For an arbitrary capacity c on a metric compactum X, explicit constructions for the closest
to c point in the four above subclasses were presented in [3, 4].

Now we consider probably the most important class of additive regular measures.
Our goal is to approximate a capacity c on a metric compactum X with an additive measure

on a finite subspace of X. Such measures are dense in the space PX of all finite additive regular
measures and have nice representation as linear combinations of Dirac measures.

1 ALGORITHM FOR APPROXIMATION OF A CAPACITY WITH AN ADDITIVE MEASURE ON

A FINITE SUBSPACE

Consider a capacity c on a metric compactum (X, d) and a finite subspace X0 = {x1, x2, . . . ,
xn} ⊂ X. We are going to find the distance between c ∈ MX and the subspace PX0 ⊂ MX, in
particular to find an additive measure m on X0 that is (almost) the closest to c with respect to
the distance d̂.

The inequality d̂(c, m) 6 ε means that there is 0 6 z 6 ε satisfying

{

m(A) 6 c(Ōε A) + z,

c(A) 6 m(Ōε A) + z

for all A ⊂
cl

X. Obviously it is sufficient to verify the first inequality m(A) 6 c+ε (A) + z, where

we denote c+ε = c(Ōε(A)), only for all A ⊂ X0. Similarly, for the second condition we verify
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c(B) 6 m(A) + z for all B ⊂ X and A ⊂ X0 such that (Ōε B) ∩ X0 ⊂ A. This is equivalent to
m(A) > c−ε (A)− z for all A ⊂ X0, where

c−ε (A) = c(X \ Ōε(X0 \ A)) = sup{c(B) | B ⊂
cl

X, B ∩ Ōε(X0 \ A) = ∅}.

Obviously c−ε (A) 6 c+ε (A) for all A ⊂ X0.
All additive measures on X0 are of the form m = y1δx1 + y2δx2 + · · · + ynδxn . Thus, to

find the least z that satisfies the above conditions for some m, we have to solve the linear
programming problem w.r.t. the variables y1, y2, . . . , yn, z > 0:























y1, y2, . . . , yn, z > 0,

∑xi∈A yi 6 c+ε (A) + z for all A ⊂ X0,

∑xi∈A yi > c−ε (A)− z for all A ⊂ X0,

z → min,

which we rewrite as follows:






















y1, y2, . . . , yn, z > 0,

− ∑xi∈A yi + z > −c+ε (A) for all A ⊂ X0,

∑xi∈A yi + z > c−ε (A) for all A ⊂ X0,

z → min .

We embed the set Exp X0 into R
n by identifying each subset A ⊂ X0 with the vector containing

1 at all i-th positions such that xi ∈ A and 0 at all other positions. E.g., ∅ is represented by
(0, . . . , 0), and X0 by (1, . . . , 1). By − Exp X0 we denote the set of the opposites to elements of
Exp X0 ⊂ R

n. Define a function cε : Exp X0 ∪ (− Exp X0) → R by the formula

cε(A) =

{

c−ε (A), A ∈ Exp X0,

−c+ε (−A), A ∈ (− Exp X0).

The common element ∅ = (0, . . . , 0) ∈ Exp X0 ∩ (− Exp X0) leads to no contradiction because
c−ε (∅) = c+ε (∅) = 0.

We also denote by (A|1) the vector obtained by appending a trailing 1 to the sequence
A = (a1, a2, . . . , an) ∈ Exp X0 ∪ (− Exp X0). Then the linear optimization problem can we
written as











y1, y2, . . . , yn, z > 0,

(A|1) · (y1, y2, . . . , yn, z) > cε(A) for all A ∈ Exp X0 ∪ (− Exp X0),

z → min .

It has a straightforward geometric interpretation: of all functionals of the form

γ(t1, t2, . . . , tn) = y1t1 + y2t2 + · · ·+ yntn + z

such that γ(A) > cε(A) for all A ∈ Exp X0 ∪ (− Exp X0), choose one with the minimal z,
i.e., with the least value γ(~0). Now it is clear that, due to monotonicity of the function cε,
the restrictions y1, y2, . . . , yn > 0 can be dropped. Observe also that the restriction z > 0 is
equivalent to

(∅|1) · (y1, y2, . . . , yn, z) > cε(∅),
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hence can be dropped as well.
Geometric arguments also show that the problem is solved if affinely independent

A1, A2, . . . , An+1 ∈ Exp X0 ∪ (− Exp X0)

are found such that~0 is in their convex hull (in the sequel we call such A1, A2, . . . , An+1 basic
subsets), and the solutions y1, y2, . . . , yn, z of the system























(A1|1) · (y1, y2, . . . , yn, z) = cε(A1),

(A2|1) · (y1, y2, . . . , yn, z) = cε(A2),

. . .

(An+1|1) · (y1, y2, . . . , yn, z) = cε(An+1)

satisfy
(A|1) · (y1, y2, . . . , yn, z) > cε(A)

for all A ∈ Exp X0 ∪ (− Exp X0).
Therefore we propose the following algorithm, which essentially is equivalent to the sim-

plex algorithm, but is better suited for our needs. Choose initial basic subsets, e.g., A1 = {x1},
A2 = {x2}, . . . , An = {xn}, An+1 = −{xn}, then calculate y1, y2, . . . , yn, z as

(y1, y2, . . . , yn, z)T =
(

M(A1, A2, . . . , An)
)−1

(c(A1), c(A2), . . . , c(An+1))
T ,

where (−)T means transposition, and

M(A1, A2, . . . , An) =









A1 | 1
A2 | 1
. . . . . .

An+1 | 1









,

i.e., it is the matrix with the rows (A1|1), (A2|1), . . . , (An+1|1).
We will permanently need the inverse matrix

(

M(A1, A2, . . . , An)
)−1

=















λ11 λ12 . . . λ1,n+1

λ21 λ22 . . . λ2,n+1

. . . . . .
. . . . . .

λn1 λn2 . . . λn,n+1

µ1 µ2 . . . µn+1















.

For any A ∈ Exp X0 ∪ (− Exp X0) the column
(

M(A1, A2, . . . , An)
)−1

(A|1)T consists of
the coefficients α1, α2, . . . , αn+1 such that α1 + α2 + · · · + αn+1 = 1 and α1 A1 + α2 A2 + · · · +
αn+1An+1 = A (in the above sense). In particular, µ1 A1 + µ2 A2 + · · · + µn+1An+1 = ∅, and
λi1 A1 + λi2 A2 + · · ·+ λi,n+1An+1 = {xi} for all 1 6 i 6 n.

Now, having y1, y2, . . . , yn, z calculated, compare the differences

cε(A)− (A|1)(y1 , y2, . . . , yn, z)

for all A ∈ Exp X0 ∪ (− Exp X0). If the basic subsets A1, A2, . . . , An+1 provide a solution,
then all the differences are not greater than 0. Otherwise find the greatest difference ∆ =
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cε(A′)− (A′|1)(y1, y2, . . . , yn, z), which is positive, and replace with A′ a subset Ai such that~0
is in the convex hull of A1, A2, . . . , Ai−1, A′, Ai+1, . . . , An+1.

Let (α1, α2, . . . , αn+1)
T =

(

M(A1, A2, . . . , An)
)−1

(A′|1)T , hence A′ = α1A1 + α2 A2 + · · · +
αn+1An+1, then

Ai =
1

αi
A′ −

α1

αi
A1 − · · · −

αi−1

αi
Ai−1 −

αi+1

αi
Ai+1 −

αn+1

αi
An+1.

Therefore

∅ =
(

µ1 − µi
α1

αi

)

A1 + · · ·+
(

µi−1 − µi
αi−1

αi

)

Ai−1 +
(

µi+1 − µi
αi+1

αi

)

Ai+1

+ · · ·+
(

µn+1 − µi
αn+1

αi

)

An+1 +
µi

αi
A′.

The coefficients in the new decomposition of ∅ should be nonnegative, hence αi > 0 is

required, as well as either αj 6 0 or µj − µi

αj

αi
> 0 for all j 6= i. If αj > 0, then the latter

inequality is equivalent to
µj

αj
>

µi

αi
. Hence

µi

αi
should be the least of

µj

αj
for 1 6 j 6 n + 1 such

that αj > 0.
Now we replace Ai with A′

i = A′, and the inverse matrix

(

M(A1, A2, . . . , Ai−1, A′
i, Ai+1, . . . , An)

)−1
=















λ′
11 λ′

12 . . . λ′
1,n+1

λ′
21 λ′

22 . . . λ′
2,n+1

. . . . . .
. . . . . .

λ′
n1 λ′

n2 . . . λ′
n,n+1

µ′
1 µ′

2 . . . µ′
n+1















is adjusted accordingly:

µ′
i =

µi

αi
, µ′

j = µj − αj
µi

αi
, 1 6 j 6 n + 1, j 6= i,

λ′
ki =

λki

αi
, λ′

kj = λkj − αj
λki

αi
, 1 6 k, j 6 n + 1, j 6= i.

Now look how y1, y2, . . . , yn, z have changed. Taking into account

z = µ1cε(A1) + · · ·+ µi−1cε(Ai−1) + µicε(Ai)

+ µi+1cε(Ai+1) + · · ·+ µn+1 An+1,

z′ =
(

µ1 − α1
µi

αi

)

cε(A1) + · · ·+
(

µi−1 − αi−1
µi

αi

)

cε(Ai−1) +
µi

αi
cε(A′

i)

+
(

µi+1 − αi+1
µi

αi

)

cε(Ai+1) + · · ·+
(

µn+1 − αn+1
µi

αi

)

cε(An+1),

obtain
z′ − z =

µi

αi

(

cε(A′
i)− (α1cε(A1) + · · ·+ αn+1cε(An+1))

)

=
µi

αi
· ∆.

Similarly

y′k − yk =
λki

αi

(

cε(A′
i)− (α1cε(A1) + · · ·+ αn+1cε(An+1))

)

=
λki

αi
· ∆.
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This simplifies calculation of z′ and all y′k. We iterate the above step until ∆ = 0. The final
value of z, which we denote z(ε), is the least z such that

{

m(A) 6 c(Ōε A) + z,

c(A) 6 m(Ōε A) + z

for some m ∈ PX0 and all A ⊂
cl

X.

Observe that z(ε) is non-increasing with respect to ε, hence the distance between c and PX0

is the least ε such that z(ε) 6 ε. This distance is not greater than z(0), therefore it is easy to
bisect the segment [0, z(0)] to find the distance and an approximating additive measure with
arbitrary precision.

2 CONCLUDING REMARKS

The proposed algorithm was implemented as a C program and tested on data sets with
cardinality of X0 up to 10.

However, each iteration of the presented algorithm requires previously calculated values
of a capacity for all 2cardinality of the space subsets, which is not appropriate even for > 40 points.
Hence, to handle subspaces of greater cardinality, we need to cut memory and time require-
ments using the metric structure and the only reliable property of a capacity, i.e., its monotonic-
ity. This requires deeper investigation combining both topological properties of non-additive
measures, e.g., their dimensional characteristics, and computational aspects.
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Никифорчин О.Р, Глушак I.Д. Апроксимацiя ємностей адитивними мiрами // Карпатськi ма-
тем. публ. — 2017. — Т.9, №1. — C. 92–97.

Для простору неадитивних регулярних мiр на метричному компактi з вiдстанню в стилi
Прохорова показано, що задача наближення довiльної мiри адитивною мiрою на фiксованому
скiнченному пiдпросторi зводиться до задачi лiнiйної оптимiзацiї з параметрами, залежними
вiд значень вихiдної мiри на скiнченному числi множин.

Запропоновано алгоритм такого наближення, ефективнiший порiвняно з прямолiнiйним
застосуванням симплекс-методу.

Ключовi слова i фрази: метрика Прохорова, неадитивна мiра, апроксимацiя, компактний
метричний простiр.


