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APPROXIMATION OF CAPACITIES WITH ADDITIVE MEASURES

For a space of non-additive regular measures on a metric compactum with the Prokhorov-style
metric, it is shown that the problem of approximation of arbitrary measure with an additive measure
on a fixed finite subspace reduces to linear optimization problem with parameters dependent on
the values of the measure on a finite number of sets.

An algorithm for such an approximation, which is more efficient than the straighforward usage
of simplex method, is presented.
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INTRODUCTION

Capacities were introduced by Choquet [1] and found numerous applications in different
branches of mathematics. Spaces of upper semicontinuous capacities on compacta were sys-
tematically studied in [5]. In particular, in the latter paper functoriality of the construction of
a space of capacities was proved and Prokhorov-style and Kantorovich-Rubinstein-style met-
rics on the set of capacities on a metric compactum were introduced. Needs of practice require
that a capacity can be approximated with capacities of simpler structure or with some conve-
nient properties.

We follow the terminology and notation of [5] and denote by exp X the set of all non-empty
closed subsets of a compactum X. We call a function ¢ : expX U {@} — I a capacity on
a compactum X if the three following properties hold for all subsets F, G C1 X:

C

1. ¢(@) =0;
2. if F C G, then ¢(F) < ¢(G) (monotonicity);

3. if ¢(F) < a, then there is an open subset U D F such that for all G C U the inequality
¢(G) < ais valid (upper semicontinuity).

If, additionally, c¢(X) = 1 (or ¢(X) < 1) holds, then the capacity is called normalized (resp.
subnormalized). We denote by MX, MX, and MX the sets of all capacities on X, of all normal-
ized, and of all subnormalized capacities on X respectively.

It was shown in [5] that M X carries a compact Hausdorff topology with the subbase of all
sets of the form

O_(F,a) = {c € MX | ¢(F) < a}, whereF < X,a€el,
C
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and

O+(U,a) ={ce MX | c(U) > a}
= {c € MX | there is a compactum F C U, c(F) > a},where U C X,a € I.
op
The same formulae determine a subbase of a compact Hausdorff topology on MX so that
MX C MX is a subspace.
Previously we have considered the following subclasses of MX:

1) MX is the set of the so-called N-capacities (or necessity measures) with the property:
c(ANB) =min{c(A),c(B)} forall A,B C1 X.
C

2) M X is the set of the so-called U-capacities (or possibility measures) with the property:
c(AUB) = max{c(A),c(B)} forall A, B C1 X.
C

3) Class M X of capacities defined on a closed subspace Xy C X. We regard each capacity co
on Xy as a capacity on X extended with the formula ¢(F) = ¢o(F N Xp), F C1 X.
C

4) Class My ;, X of capacities that are non-expanding w.r.t. the Hausdorff metric on exp X.

Analogous subclasses are defined in MX and M X, with the obvious denotations.

It was proved in [2, 3] that the subsets M,X, M X, MpipX, and MXj are closed in MX,
hence for a compactum X they are compacta as well, similarly for the respective subsets in
MX and MX.

We consider the metric on the set M X of capacities on a metric compactum (X, d) :

d(c,c’) = inf{e > 0| c(Oc(F)) +¢& = c/(F),c’(O¢(F)) +¢& > c(F),VF G X},

here O(F) is the closed e-neighborhood of a subset F C X. The restrictions of this metric on
MX and MX are admissible [5].

For an arbitrary capacity c on a metric compactum X, explicit constructions for the closest
to ¢ point in the four above subclasses were presented in [3, 4].

Now we consider probably the most important class of additive regular measures.

Our goal is to approximate a capacity c on a metric compactum X with an additive measure
on a finite subspace of X. Such measures are dense in the space PX of all finite additive regular
measures and have nice representation as linear combinations of Dirac measures.

1 ALGORITHM FOR APPROXIMATION OF A CAPACITY WITH AN ADDITIVE MEASURE ON
A FINITE SUBSPACE

Consider a capacity ¢ on a metric compactum (X, d) and a finite subspace Xo = {x1,x2,...,
xn} C X. We are going to find the distance between ¢ € MX and the subspace PXy C MX, in
particular to find an additive measure m on X, that is (almost) the closest to ¢ with respect to
the distance d.

The inequality d(c, m) < e means that there is 0 < z < ¢ satisfying

m(A) < c(O¢ A) +z,
c(A) <m(O:A)+z
for all A C X. Obviously it is sufficient to verify the first inequality m(A) < ¢ (A) + z, where

cl
we denote ¢;7 = ¢(Og(A)), only for all A C Xp. Similarly, for the second condition we verify
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o(

B) < m(A)+zforall BC Xand A C X; such that (O, B) N Xy C A. This is equivalent to
m(A) > c

- (A) —zforall A C Xy, where

¢z (A) =c(X\ O¢(Xo\ A)) =sup{c(B) | B G X,BNO:(Xg\ A) = o}.

Obviously ¢; (A) < ¢ (A) forall A C X,.

All additive measures on Xy are of the form m = y16y, + y20x, + -+ + yuby,. Thus, to
find the least z that satisfies the above conditions for some m, we have to solve the linear
programming problem w.r.t. the variables y1,y2,..., ¥4,z = 0:

]/1/]/2r~ . ~/}/n/Z > 0/
YaealVi<ci(A)+z forall A C Xy,
YweaVi = (A) —z forall A C X,

z — min,
which we rewrite as follows:

Y1,Y2,- ., Yn, 220,
—YwealVitz>—ci(A) forall A C X,

YaeaYitz> c. (A) forall A C Xo,
Z — min.

We embed the set Exp Xy into R" by identifying each subset A C X, with the vector containing
1 at all i-th positions such that x; € A and 0 at all other positions. E.g., @ is represented by
(0,...,0),and Xy by (1,...,1). By — Exp X, we denote the set of the opposites to elements of
Exp Xo C R". Define a function ¢, : Exp Xo U (— Exp Xp) — R by the formula

c(A) = c; (A), A € Exp X,
—cf(—A), A€ (—ExpXp).

The common element @ = (0,...,0) € Exp X N (— Exp Xp) leads to no contradiction because
c; (9) =cf(2)=0.

We also denote by (A|1) the vector obtained by appending a trailing 1 to the sequence
A = (m,ay,...,a,) € ExpXoU (—Exp Xp). Then the linear optimization problem can we
written as

]/1/]/2/ .. -ryl’lrz > Or
(A1) - (y1,Y2,---,Yn, z) = ce(A) forall A € Exp Xo U (— Exp Xp),
Z — min.

It has a straightforward geometric interpretation: of all functionals of the form

Y(t1,to, . tn) =it F yato + -+ Yntn + 2

such that y(A) > c¢.(A) for all A € Exp Xy U (— Exp Xp), choose one with the minimal z,
i.e., with the least value ')/(6) Now it is clear that, due to monotonicity of the function c,
the restrictions y1,¥2,...,y» = 0 can be dropped. Observe also that the restriction z > 0 is
equivalent to

@) - (Y12, Yn,2) = ce(D),
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hence can be dropped as well.
Geometric arguments also show that the problem is solved if affinely independent

A1, Ay, ..., A1 € Exp Xo U (— Exp Xo)

are found such that 0 is in their convex hull (in the sequel we call such Ay, Ay, ..., A,41 basic
subsets), and the solutions y1, 2, . .., yu, z of the system

(A1|1) ’ (yllyZI- . -,]/n,Z) = Cg(Al),
(A2|1) : (ylryZI- . -;]/n;z) = Cg(Az),

(Ap+1l1) - (v, vz, ynz) = ce(Apyi1)
satisfy
(A1) - (y1,y2 - Y, 2) = ce(A)

for all A € Exp Xo U (— Exp Xp).

Therefore we propose the following algorithm, which essentially is equivalent to the sim-
plex algorithm, but is better suited for our needs. Choose initial basic subsets, e.g., A1 = {x1},
Ay ={x2},..., An = {xn}, Ays1 = —{x,}, then calculate y1, 2, ..., yn, z as

1,2y 2)T = (M(A1, Ag, ..., An)) " (c(Ar), c(A), ..., c(Ans1))T,

where (—)T means transposition, and

A |1
A 1

M(A]./AZ/---/AH) - 2 | 7
An+1 | 1

i.e., it is the matrix with the rows (A1|1), (A2|1), ..., (An+11).
We will permanently need the inverse matrix

A1 Az oo A
Al A oo Agpq
(M(A1, Ay, ..., Ap)) " =
)\nl AnZ oo )\n,nJrl
| H1 M2 o Myl

For any A € Exp Xy U (— Exp Xp) the column (M(Al,Az,...,An))fl(A|1)T consists of
the coefficients aq, a3, ..., 4,11 such that g +ap +--- +a,01 = 1 and a1 A1 + Ay + - +
&p+1A,11 = A (in the above sense). In particular, 1Ay + uoAs + -+ + pyy14,41 = 9, and
)\ilAl + AQAZ + -+ Ai,n+1An+1 = {xi} forall 1 < i < n.

Now, having 1,12, . .., yu, z calculated, compare the differences

ce(A) — (AD)(y1, Y2, -+, Yn, 2)

for all A € ExpXo U (—Exp Xp). If the basic subsets Ay, Ay, ..., Ay41 provide a solution,
then all the differences are not greater than 0. Otherwise find the greatest difference A =
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ce(A”) = (A1) (y1,y2, - -

is in the convex hull of A4, Ay, ...

Let (aq,a2,...,0,11)7 =
&y +1Ap+1, then
1
Aj=—A
n;
Therefore
@ = (1 — pi
_|_ PN (;’li’l+1

The coefficients in the new decompos1t10n of & should be nonnegative, hence «; > 0 is
> 0, then the latter

required, as well as either

inequality is equivalent to

that o > 0.

Now we replace A; with Al =

(M(Aq, Ay, ...,

is adjusted accordingly:

-
Hi= «
Ars
/ ki
)\ki o ’
Now look how y1, 1, ..

z = p1ce(Aq1) +
+ piv1Ce(Aipr) + -

Z' = (1 — al%)cg(Al) +o
1

LI

— Hi
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/
’ Ai*l/ A 7 Ai+1/ sy An+1'

(M(A1, A, ..., An)) " (A’]1)T, hence A

o
+ (piz1 — P‘i[x—il)Aifl + (His1

| Hi 41
A —=A.
) et

1

., Yn,z have changed. Taking into account

iy Vi—lcs(Ai—1> + Vics(Ai>
+ ,un+1An+1r

1

_I’li

(piz1 — “ifl%)ce(Aifl) + %Ce(AQ

,Yn,z), which is positive, and replace with A" a subset A; such that 0

/:061A1+062A2+"'

Xit1
A.
& ) i+1

<j <

aj < 0orpj— yz > 0forallj # i If a;
i ]/l— Hence Hi should be the least of — Hj for1l <
rx]- o; o; o;
A’, and the inverse matrix
_)‘ill )‘ilz A:l 1|
. Ay Ay )‘2 n+1
Ai, AL A, An) =L N
A%l A%z )‘:q n+1
LH Ky Mgt
_ Hi . .
y iy 1<j<n+1,j#4
1
A-—)\‘—(x‘@ 1<kj<n+1,j#i
ki — kj ] & ’ X /] X ;] .

)

i

+ (pit1 — “i+1%)CS(Ai+1) 4t (g — fxn+1%)ce(1‘1n+1)/
1 1
obtain 1 "
7 —z= j(ce(Ag) — (agce(Ar) + -+ “n+1C8(An+1))) = (x_l A
1 1
Similarly
Ay / Ay
Vi — Yk = 7<C€(Ai) — (@1ce(Ar) + - Faprice(Any))) = — - A

1 1

n + 1 such
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This simplifies calculation of z’ and all ;. We iterate the above step until A = 0. The final
value of z, which we denote z(¢), is the least z such that

m(A) < c(O A) +z,
c(A) <m(O:A) +z

for some m € PXj and all A C1 X.
C

Observe that z(¢) is non-increasing with respect to ¢, hence the distance between ¢ and PXj
is the least € such that z(¢) < e. This distance is not greater than z(0), therefore it is easy to
bisect the segment [0,z(0)] to find the distance and an approximating additive measure with
arbitrary precision.

2 CONCLUDING REMARKS

The proposed algorithm was implemented as a C program and tested on data sets with
cardinality of Xo up to 10.

However, each iteration of the presented algorithm requires previously calculated values
of a capacity for all 2cardinality of the space g;hsets, which is not appropriate even for > 40 points.
Hence, to handle subspaces of greater cardinality, we need to cut memory and time require-
ments using the metric structure and the only reliable property of a capacity, i.e., its monotonic-
ity. This requires deeper investigation combining both topological properties of non-additive
measures, e.g., their dimensional characteristics, and computational aspects.
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AAST IPOCTOPY HEaAUTUBHMX PEryASPHMX Mip Ha METPUYHOMY KOMIIAKTi 3 BIiACTAHHIO B CTMAL
ITpoxopoBsa IHoKa3aHo, IO 3aAava HabAVDKEHHS AOBIABHOI Mipy aAMTMBHOIO MipoIo Ha dpikcoBaHOMY
CKiHYeHHOMY T AIIPOCTOpPi 3BOAMTBCSI AO 3aAadvi AiHIVHOI ONTMMI3alil 3 mapaMeTpaMy, 3aAeXHIMNI
BiA 3HaueHb BMXiAHOI Mipy Ha CKiHUEHHOMY UMCAL MHOXMH.

3ampoOrOHOBAHO AaATOPUTM TaKOTO HabAVDKeHHS, e(peKTHBHIIINMIT IIOPIiBHSIHO 3 MpSIMOAIHIHIM
3aCTOCYBaHHSIM CUMIIA€KC-METOAY .

Konwouosi cnosa i ¢ppasu: merpuxa IIpoxopopa, HeaAUTMBHA Mipa, allpOKCMMAIIisl, KOMIIAKTHMI
MeTPUYHMIA ITPOCTIp.



