
ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2017, 9 (2), 171–180 Карпатськi матем. публ. 2017, Т.9, №2, С.171–180

doi:10.15330/cmp.9.2.171-180

SANGURLU S.M.1 , TURKOGLU D.2

SOME FIXED POINT RESULTS IN COMPLETE GENERALIZED METRIC SPACES

The Banach contraction principle is the important result, that has many applications. Some

authors were interested in this principle in various metric spaces. Branciari A. initiated the notion

of the generalized metric space as a generalization of a metric space by replacing the triangle in-

equality by more general inequality, d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all pairwise distinct

points x, y, u, v of X. As such, any metric space is a generalized metric space but the converse is not

true. He proved the Banach fixed point theorem in such a space. Some authors proved different

types of fixed point theorems by extending the Banach’s result. Wardowski D. introduced a new

contraction which generalizes the Banach contraction. Using a mapping F : R+ → R he introduced

a new type of contraction called F-contraction and proved a new fixed point theorem concerning

F-contraction.

In this paper, we have dealt with F-contraction and F-weak contraction in complete generalized

metric spaces. We prove some results for F-contraction and F-weak contraction and we establish

the existence and uniqueness of fixed point for F-contraction and F-weak contraction in complete

generalized metric spaces. Some examples are supplied in order to support the usability of our

results. The obtained result is an extension and a generalization of many existing results in the

literature.
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INTRODUCTION AND PRELIMINARIES

The Banach contraction principle is the simplest result in fixed point theory [4]. This prin-

ciple has many applications and was extended by several authors (see [5–10, 12, 14–17, 19, 20]).

Some authors gave the fundamental linear contractive conditions and the fundamental non-

linear contractive conditions by using the notion of F-contraction, and proved fixed point the-

orems which generalize Banach contraction principle.

Due to the nature of mathematics science, there have been many attempts to generalize

the metric setting by modifying some of the axioms of metric spaces. Thus, several other

types of spaces have been introduced and a lot of metric results have been extended to new

settings. One of the interesting generalizations of the notion of metric space was introduced

by Branciari A. Later, most of the authors dealing with such spaces made some additional

requirements in order to deduce their results (see [1–3]).

In this paper, we prove fixed point theorems for F-contraction and F-weak contraction in

complete generalized metric spaces. We also present uniqueness of the fixed point.
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Definition 1 ( [13]). Let X be a nonempty set and d : X × X → [0, ∞) a mapping such that for

all x, y ∈ X and all distinct points u, v ∈ X, each distinct from x and y:

(i) d(x, y) = 0 ⇔ x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (quadrilateral inequality).

Then X is called a generalized metric space.

The concepts of convergence, Cauchy sequence, completeness, and continuity on a gener-

alized metric space are defined below.

Definition 2 ([1]). Let (X, d) be a generalized metric space.

(i) A sequence {xn} is called convergent to x ∈ X if and only if d(xn, x) → 0 as n → ∞. In

this case, we use the notation xn → x.

(ii) A sequence {xn} is called Cauchy if and only if for each ε > 0, there exists a natural

number N(ε) such that d(xn, xm) < ε for all n > m > N(ε).

(iii) A generalized metric space (X, d) is called complete if every Cauchy sequence is con-

vergent in X.

(iv) A mapping T : (X, d) → (X, d) is continuous if for any sequence {xn} in X such that

d(xn, x) → 0 as n → ∞, we have d(Txn , Tx) → 0 as n → ∞.

Lemma 1 ( [11]). Let (X, d) be a generalized metric space and let {xn} be a Cauchy sequence

in X such that xm 6= xn whenever m 6= n. Then the sequence {xn} can converge to at most one

point.

Lemma 2 ( [11]). Let (X, d) be a generalized metric space and let {xn} be a sequence in X

which is both Cauchy and convergent. Then the limit x of {xn} is unique. Moreover, if z ∈ X

is arbitrary, then lim
n→∞

d(xn, z) = d(x, z).

Theorem 1 ([13]). Let (X, d) be a complete generalized metric space and suppose the mapping

f : X → X satisfies d( f (x), f (y)) ≤ kd(x, y) for all x, y ∈ X and fixed k ∈ (0, 1). Then f has a

unique fixed point x∗ and lim
n→∞

f n(x) = x∗ for each x ∈ X.

Definition 3 ([18]). Let F be the family of all functions F : (0,+∞) −→ R such that:

(F1) F is strictly increasing, that is, for all α, β ∈ (0,+∞) if α < β then F(α) < F(β);

(F2) for each sequence {αn} of positive numbers, the following holds: lim
n→∞

αn = 0 if and only

if lim
n→∞

F(αn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0.

Definition 4 ( [18]). Let (X, d) be a metric space. A map T : X → X is said to be an F-contrac-

tion on (X, d) if there exist F ∈ F and τ > 0 such that for all x, y ∈ X

from d(Tx, Ty) > 0 follows that τ + F(d(Tx, Ty)) ≤ F(d(x, y)). (1)

Theorem 2 ([18]). Let (X, d) be a complete metric space and let T : X → X be an F-contraction.

Then

(1) T has a unique fixed point x∗;

(2) for all x ∈ X the sequence {Tnx} is convergent to x∗.

Remark 1 ([18]). Let T be an F-contraction. Then d(Tx, Ty) < d(x, y) for all x, y ∈ X such that

Tx 6= Ty. Also, T is a continuous map.
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1 THE MAIN RESULTS

In this paper, we prove fixed point theorems for F-contraction and F-weak contraction in

complete generalized metric spaces. We also present uniqueness of the fixed point.

Theorem 3. Let (X, d) be a complete generalized metric space and T : X → X be an F-

contraction. If F is continuous, then

(1) T has a unique fixed point x∗ ∈ X;

(2) for all x ∈ X, the sequence {Tnx} is convergent to x∗.

Proof. Let x0 ∈ X be an arbitrary point. By induction, we easily construct a sequence {xn}

such that

xn+1 = Txn = Tn+1x0 for all n ∈ N. (2)

If there exists n ∈ N, xn = xn+1, the proof is complete. So, we assume that xn 6= xn+1 for

all n ∈ N.

Step 1. We shall prove that

lim
n→∞

d(xn, xn+1) = 0.

Substituting x = xn−1 and y = xn in (1), we obtain

τ + F(d(Txn−1, Txn)) ≤ F(d(xn−1, xn)),

i.e., F(d(Txn−1, Txn)) ≤ F(d(xn−1, xn))− τ. Repeating this process, we get

F(d(Txn−1, Txn)) ≤ F(d(xn−1, xn))− τ = F(d(Txn−2, Txn−1))− τ

≤ F(d(xn−2, xn−1))− 2τ = F(d(Txn−3, Txn−2))− 2τ

≤ F(d(xn−3, xn−2))− 3τ ≤ F(d(x0, x1))− nτ.

(3)

From (3), we obtain lim
n→∞

F(d(Txn−1, Txn)) = −∞, which together with (F2) and Definition 3

gives lim
n→∞

d(Txn−1, Txn) = 0, which implies that

lim
n→∞

d(xn, xn+1) = 0. (4)

Step 2. We will prove that lim
n→∞

d(xn, xn+2) = 0. By (1), we have

F(d(Txn−1, Txn+1)) ≤ F(d(xn−1, xn+1))− τ = F(d(Txn−2, Txn))− τ

≤ F(d(xn−2, xn))− 2τ = F(d(Txn−3, Txn−1))− 2τ

≤ F(d(xn−3, xn−1))− 3τ ≤ F(d(x0, x2))− nτ.

(5)

From (5) we obtain lim
n→∞

F(d(Txn−1, Txn+1)) = −∞, which together with (F2) and Definition 3

gives lim
n→∞

d(Txn−1, Txn+1) = 0, which implies that,

lim
n→∞

d(xn, xn+2) = 0. (6)

Step 3. We will prove that xn 6= xm for all m 6= n. We argue by contradiction. Suppose that

xn = xm for some m, n ∈ N with m 6= n. Since d(xp, xp+1) > 0, for each p ∈ N, without loss of

generality, we may assume that m > n + 1. Consider now
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F(d(xn, xn+1)) = F(d(xn , Txn)) = F(d(xm, Txm)) = F(d(Txm−1, Txm))

≤ F(d(xm−1, xm))− τ ≤ F(d(xn+1, xn))− (m − n)τ.

It is a contradiction.

Step 4. We will show that in this case {xn} is a Cauchy sequence. Suppose to the contrary.

Then, there is an ε > 0 such that for an integer k, there exist natural numbers m(k) > n(k) > k

such that

d(xn(k), xm(k)) > ε. (7)

For every integer k let m(k) be the least positive integer exceeding n(k) satisfying (7), we get

d(xn(k), xm(k)−1) ≤ ε. (8)

Now, using (7), (8) and the quadrilateral inequality, we find that

ε < d(xm(k), xn(k)) ≤ d(xm(k), xm(k)−2) + d(xm(k)−2, xm(k)−1) + d(xm(k)−1, xn(k))

≤ d(xm(k), xm(k)−2) + d(xm(k)−2, xm(k)−1) + ε.

Then, by (4) and (6), it follows that

lim
k→∞

d(xn(k), xm(k)) = ε. (9)

Applying (1) with x = xm(k)−1 and y = xn(k)−1, we have

F(d(xm(k), xn(k))) = F(d(Txm(k)−1, Txn(k)−1)) ≤ F(d(xm(k)−1, xn(k)−1))− τ.

If k → ∞ in the above inequality and using (9) we obtainF(ε) ≤ F(ε)− τ.

This contradiction shows that {xn} is a Cauchy sequence. (X, d) is complete, there exists

x∗ ∈ X such that

lim
n→∞

d(xn, x∗) = 0. (10)

Since T is continuous, we obtain from (10) that

lim
n→∞

d(xn+1, Tx∗) = lim
n→∞

d(Txn, Tx∗) = 0.

That is lim
n→∞

xn+1 = Tx∗. Taking into account Lemma 2 we conclude that Tx∗ = x∗. That is x∗

is a fixed point of T. Now, let us to show that T has at most one fixed point. Indeed if x,y ∈ X

be two distinct fixed points of T, that is, Tx = x 6= y = Ty. Therefore d(Tx, Ty) = d(x, y) > 0,

then we get

F(d(x, y)) = F(d(Tx, Ty)) < τ + F(d(Tx, Ty)) ≤ F(d(x, y)),

which is a contradiction. Therefore, the fixed point is unique.

Definition 5. Let (X, d) be a generalized metric space. A map T : X → X is said to be an

F-weak contraction on (X, d) if there exist F ∈ F and τ > 0 such that for all x, y ∈ X

d(Tx, Ty) > 0 =⇒ τ + F(d(Tx, Ty)) ≤ F(max{d(x, y), d(x, Tx), d(y, Ty)}). (11)

Remark 2. Every F-contraction is an F-weak contraction on (X, d). But the converse is not

true.
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Example 1. Let X = A ∪ B, where A = {1, 2, 3, 4}, B = [5, 6]. Define the generalized metric d

on X as follows:

d(x, y) = 0, x = y and x, y ∈ A,

d(1, 2) = d(3, 4) = 2, d(1, 3) = d(2, 3) = 1, d(1, 4) = d(2, 4) = 5,

d(x, y) = |x − y| , for x ∈ A, y ∈ B or x ∈ B, y ∈ A or x, y ∈ B.

It is easy to show that (X, d) is a complete generalized metric space, but (X, d) is not a metric

space because d does not satisfy the triangle inequality for all x, y, z ∈ X. Indeed,

5 = d(1, 4) > d(1, 3) + d(3, 4) = 1 + 2 = 3.

Let T : X → X be given by

Tx =

{

3 i f x ∈ A,

1 i f x ∈ B.

Since T is not continuous, T is not F-contraction by Remark 1. For x ∈ A and y ∈ B, we have

d(Tx, Ty) = d(3, 1) = 1 > 0

and max{d(x, y), d(x, Tx), d(y, Ty)} ≥ 4. Therefore, by choosing Fα = ln α, α ∈ (0,+∞) and

τ = ln 3, we see that T is F -weak contraction.

Theorem 4. Let (X, d) be a complete generalized metric space and T : X → X be an F-weak

contraction. If T or F is continuous, then

(1) T has a unique fixed point x∗ ∈ X;

(2) for all x ∈ X, the sequence {Tnx} is convergent to x∗.

Proof. Let x0 ∈ X be an arbitrary point. By induction, we easily construct a sequence {xn}

such that

xn+1 = Txn = Tn+1x0 for all n ∈ N.

If there exists n ∈ N, xn = xn+1, the proof is complete. So, we assume that xn 6= xn+1 for

all n ∈ N.

Step 1. We will prove that

lim
n→∞

d(xn+1, xn) = 0.

Substituting x = xn−1 and y = xn in (11), we obtain

F(d(xn+1, xn)) = F(d(Txn , Txn−1))

≤ F(max{d(xn, xn−1), d(xn, Txn), d(xn−1, Txn−1)})− τ

= F(max{d(xn, xn−1), d(xn, xn+1), d(xn−1, xn)})− τ

= F(max{d(xn, xn−1), d(xn, xn+1)})− τ.

(12)

If there exists n ∈ N such that max{d(xn , xn−1), d(xn, xn+1)} = d(xn, xn+1), from (12) becomes

F(d(xn+1, xn)) ≤ F(d(xn+1, xn))− τ < F(d(xn+1, xn)).

It is a contradiction. Therefore,

max{d(xn, xn−1), d(xn, xn+1)} = d(xn, xn−1) (13)
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for all n ∈ N. That is from (F1), (12) and (13), we get

d(xn, xn+1) < d(xn, xn−1). (14)

Thus, from (12), we have F(d(xn+1, xn)) ≤ F(d(xn, xn−1))− τ for all n ∈ N. It implies that

F(d(xn+1, xn)) ≤ F(d(x1, x0))− nτ (15)

for all n ∈ N. Taking the limit as n → ∞ in (15), we get lim
n→∞

F(d(xn+1, xn)) = −∞ that together

with (F2) gives

lim
n→∞

d(xn+1, xn) = 0. (16)

Step 2. We will prove that

lim
n→∞

d(xn, xn+2) = 0. (17)

By (11), we have

F(d(xn , xn+2)) = F(d(Txn−1, Txn+1))

≤ F(max{d(xn−1, xn+1), d(xn−1, Txn−1), d(xn+1, Txn+1)})− τ

= F(max{d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)})− τ.

(18)

By (14) and from (F2), we have

max{d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)} = max{d(xn−1, xn+1), d(xn−1, xn)}.

Take an = d(xn, xn+2) and bn = d(xn, xn+1). Thus, from (18)

F(an) = F(d(xn, xn+2)) = F(d(Txn−1, Txn+1))

≤ F(max{d(xn−1, xn+1), d(xn−1, Txn−1), d(xn+1, Txn+1)})− τ

= F(max{an−1, bn−1)})− τ.

(19)

Again, by (14) bn ≤ bn−1 ≤ max{an−1, bn−1}. Therefore max{an, bn} ≤ max{an−1, bn−1},

for all n ∈ N. Then the sequence {max{an, bn}} is monotone nonincreasing, so it converges to

some t ≥ 0. Assume that t > 0. Now, by (16)

lim
n→∞

sup an = lim
n→∞

sup max{an, bn} = lim
n→∞

max{an, bn} = t.

Taking n → ∞ in (19), since F is continuous,

F(t) = lim
n→∞

sup F(an) ≤ lim
n→∞

sup(F(max{an−1, bn−1})− τ)

≤ lim
n→∞

F(max{an−1, bn−1})− τ = F(t)− τ,

which is a contradiction, that is (17) is proved.

Step 3. We will prove that xn 6= xm for all m 6= n.

We argue by contradiction. Suppose that xn = xm for some m, n ∈ N with m 6= n. Since

d(xp, xp+1) > 0, for each p ∈ N, without loss of generality, we may assume that m > n + 1.

Consider now

F(d(xn, xn+1)) = F(d(xn , Txn)) = F(d(xm, Txm)) = F(d(Txm−1, Txm))

≤ F(max{d(xm−1, xm), d(xm−1, Txm−1), d(xm, Txm))− τ

= F(max{d(xm−1, xm), d(xm−1, xm), d(xm, xm+1)})− τ

= F(max{d(xm−1, xm), d(xm, xm+1)})− τ.

(20)
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If max{d(xm−1, xm), d(xm, xm+1)} = d(xm−1, xm), then from (20), we get

F(d(xn, xn+1)) ≤ F(d(xm−1, xm))− τ ≤ F(d(xn, xn+1))− (m − n)τ.

It is a contradiction. If max{d(xm−1, xm), d(xm, xm+1)} = d(xm, xm+1), then from (20), we

get F(d(xn , xn+1)) ≤ F(d(xm , xm+1))− τ ≤ F(d(xn , xn+1))− (m− n+ 1)τ. It is a contradiction.

Step 4. We will prove that {xn} is a Cauchy sequence, that is

lim
n→∞

d(xn, xn+p) = 0 for all p ∈ N.

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

((d(xn+1, xn))
kF(d(xn+1, xn))) = 0. (21)

By using (15) and from (21), we have

(d(xn+1, xn))
k(F(d(xn+1, xn))− F(d(x1, x0))) ≤ −(d(xn+1, xn))

knτ ≤ 0 (22)

for all n ∈ N. By using (16), (21) and taking the limit as n → ∞ in (22), we get

lim
n→∞

(n(d(xn+1, xn))
k) = 0. (23)

Then there exists n1 ∈ N such that n(d(xn+1, xn))k ≤ 1 for all n ≥ n1, that is

d(xn+1, xn) ≤
1

n
1
k

. (24)

From (16) and (17) the cases p = 1 and p = 2 are proved. Now, take p ≥ 3 arbitrary. It is

sufficient to examine two cases.

Case 1. Suppose that p = 2m + 1 where m ≥ 1. Then, by using step 3 and the quadrilateral

inequality together with (24), we get

d(xn, xn+p) = d(xn, xn+2m+1) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ···+ d(xn+2m, xn+2m+1)

≤
n+2m

∑
i=n

d(xi+1, xi) ≤
∞

∑
i=n

1

i
1
k

.
(25)

Since the series
∞

∑
n=1

1

n
1
k

is convergent, taking the limit as n → ∞ in the above inequality, we

obtain lim
n→∞

d(xn, xn+p) = 0.

Case 2. Suppose that p = 2m where m ≥ 2. Then, by using step 3 and the quadrilateral

inequality together with (24), we get

d(xn, xn+p) = d(xn, xn+2m) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ···+ d(xn+2m−1, xn+2m)

≤
n+2m−1

∑
i=n

d(xi+1, xi) ≤
∞

∑
i=n

1

i
1
k

.
(26)

Since the series
∞

∑
n=1

1

n
1
k

is convergent, taking the limit as n → ∞ in the above inequality, we

obtain lim
n→∞

d(xn, xn+p) = 0.
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This proves that {xn} is Cauchy sequence in X. Since X is complete, there exists x∗, that is

a fixed point of T by two following cases.

Case 3. T is continuous. We have d(x∗, Tx∗) = lim
n→∞

d(xn, Txn) = lim
n→∞

d(xn, xn+1) = 0. This

proves that x∗ is a fixed point of T.

Case 4. F is continuous. In this case, we consider two following subcases.

Subcase 1. For each n ∈ N, there exists in ∈ N such that xin+1
= Tx∗ and in > in−1 where

i0 = 1. Then we have

x∗ = lim
n→∞

xin+1
= lim

n→∞
Tx∗ = Tx∗.

This proves that x∗ is a fixed point of T.

Subcase 2. There exists n0 ∈ N such that xn+1 6= Tx∗ for all n ≥ n0. That is d(Txn, Tx∗) > 0

for all n ≥ n0. It follows from (11) that

τ + F(d(xn+1, Tx∗)) = τ + F(d(Txn , Tx∗)) ≤ F(max{d(xn , x∗), d(xn, Txn), d(x∗, Tx∗)})

= F(max{d(xn, x∗), d(xn, xn+1), d(x∗, Tx∗)}).
(27)

If d(x∗, Tx∗) > 0 then by the fact

lim
n→∞

d(xn, x∗) = lim
n→∞

d(x∗, xn+1) = 0,

there exists n1 ∈ N such that for all n ≥ n1, we have max{d(xn , x∗), d(xn, xn+1), d(x∗, Tx∗)} =

d(x∗, Tx∗). From (27), we get

τ + F(d(xn+1, Tx∗)) = F(d(x∗, Tx∗)), (28)

for all n ≥ max{n0, n1}. Since F is continuous, taking the limit as n → ∞ in (28), we obtain

τ + F(d(x∗ , Tx∗)) = F(d(x∗ , Tx∗)).

It is contradiction. Therefore, d(x∗, Tx∗) = 0, that is, x∗ is a fixed point of T. By two above

cases, T has a fixed point x∗. Now, we prove that the fixed point of T is unique. Let x∗1 , x∗2 be

two fixed points of T. Suppose to the contrary that x∗1 6= x∗2 . Then Tx∗1 6= Tx∗2 . It follows from

(11) that

τ + F(d(x∗1 , x∗2)) = τ + F(d(Tx∗1 , Tx∗2)) ≤ F(max{d(x∗1 , x∗2), d(x∗1 , Tx∗1), d(x∗2 , Tx∗2)})

= F(max{d(x∗1 , x∗2), d(x∗1 , x∗1), d(x∗2 , x∗2)}) = F(d(x∗1 , x∗2)).

It is a contradiction. Then d(x∗1 , x∗2) = 0, that is x∗1 = x∗2 . This proves that the fixed point of T is

unique.

It follows from the proof of Theorem 4 that lim
n→∞

Tnx = lim
n→∞

xn+1 = x∗.

Example 2. Let F be given as in Example 1. Then T is an F-weak contraction. Therefore,

Theorem 4 can be applicable to T and the unique fixed point of T is 3.

Example 3. Let X = {1
2 , 2

3 , 3
4 , 4

5}. Define the generalized metric d on X as follows:

d(x, y) = 0, x = y and x, y ∈ X,

d
(1

2
,

2

3

)

= d
(3

4
,

4

5

)

= 0, 2, d
(1

2
,

4

5

)

= d
(2

3
,

3

4

)

= 0, 3, d
(1

2
,

3

4

)

= d
(2

3
,

4

5

)

= 0, 6.
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It is easy to show that (X, d) is a complete generalized metric space, but (X, d) is not a

metric space because d does not satisfy the triangle inequality for all x, y, z ∈ X. Indeed,

0, 6 = d
(1

2
,

3

4

)

≥ d
(1

2
,

2

3

)

+ d
(2

3
,

3

4

)

= 0, 2 + 0, 3 = 0, 5.

Let T : X → X be defined as follows:

Tx =

{ 3
4 , x ∈ {1

2 , 2
3 , 3

4},
2
3 , x = 4

5 .

Let Fα = ln α, α ∈ (0,+∞) and τ = ln 3
2 . Then, for x ∈ {1

2 , 2
3 , 3

4} and y = 4
5 , we get

F(0, 45) = F
(

d
(

T
(1

2

)

, T
(4

5

)))

+ ln
3

2

≤ F
(

max
{

d
(1

2
,

4

5

)

, d
(1

2
, T

(1

2

))

, d
(4

5
, T

(4

5

))})

= F(0, 6),

F(0, 45) = F
(

d
(

T
(2

3

)

, T
(4

5

)))

+ ln
3

2

≤ F
(

max
{

d
(2

3
,

4

5

)

, d
(2

3
, T

(2

3

))

, d
(4

5
, T

(4

5

))})

= F(0, 6),

F(0, 45) = F
(

d
(

T
(3

4

)

, T
(4

5

)))

+ ln
3

2

≤ F
(

max
{

d
(3

4
,

4

5

)

, d
(3

4
, T

(3

4

))

, d
(4

5
, T

(4

5

))})

= F(0, 6).

Therefore, T is a F-weak contraction in generalized metric space. That is, Theorem 4 can be

applicable to T and the unique fixed point of T is
3

4
.
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[9] Ćirić L.B. A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 1974, 45 (2), 267–273.

doi:10.2307/2040075



180 SANGURLU S.M., TURKOGLU D.

[10] Hardy G.E., Rogers T.D.A. A generalization of a fixed point theorem of Reich. Canad. Math. Bull. 1973, 16, 201–

206. doi:10.4153/CMB-1973-036-0
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Санґурлу С.М., Тюркоґлу Д. Деякi тереми про фiксовану точку в повних узагальнених метричних

просторах // Карпатськi матем. публ. — 2017. — Т.9, №2. — C. 171–180.

Принцип стискуючих вiдображень є важливим результатом, що має багато застосувань.

Деякi автори цiкавились цим принципом в рiзних метричних просторах. Бранчiарi А. ввiв

поняття узагальненого метричного простору, замiнивши нерiвнiсть трикутника бiльш загаль-

ною нерiвнiстю d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) для всiх попарно рiзних точок x, y, u, v з

X. Таким чином, будь-який метричний простiр є узагальненим метричним простором, але

не навпаки. Вiн довiв теорему Банаха про фiксовану точку в таких просторах. Деякi автори

довели рiзнi типи теорем про фiксовану точку, розширюючи результат Банаха. Так Вардов-

ський Д. представив новий вид стискуючих вiдображень, який узагальнює поняття стискую-

чого вiдображення Банаха. Використовуючи вiдображення F : R
+ → R, вiн ввiв новий тип

стискуючих вiдображень, якi називаються F-стиском. Також вiн довiв теорему про фiксовану

точку для F-стиску.

У данiй роботi ми розглянули F-стиск та слабкий F-стиск у повних узагальнених метричних

просторах. Доведено деякi результати для F-стискiв i слабких F-стискiв i встановлено iснуван-

ня та єдинiсть фiксованої точки для F-стискуючих i слабких F-стискуючих вiдображень у пов-

них узагальних метричних просторах. Наведено деякi приклади для iлюстрацiї використання

отриманих результатiв. Данi результати є розширенням i узагальненням багатьох отриманих

у лiтературi результатiв.

Ключовi слова i фрази: F-стиск, слабкий F-стиск, узагальнений метричний простiр.


