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(L)

SHEREMETA M.M.
ON THE GROWTH OF A COMPOSITION OF ENTIRE FUNCTIONS

Let 1y be a positive continuous on [0, +c0) function increasing to +c0 and f and g be arbitrary
entire functions of positive lower order and finite order.
In order to

Inln M
i I My (7)
r—+o Inln Mf(exp{’y(r)})

= +oo, My(r) = max{|f(z)|: |z| =1},

it is necessary and sufficient (In y(r))/(In r) — 0 as r — +oco. This statement is an answer to the
question posed by A.P. Singh and M.S. Baloria in 1991.

Also in order to
Inln Mg(r)

VHTOO Inln Mf(eXP{')’(r)}) a

it is necessary and sufficient (In y(r))/(In r) — o0 as r — 0.
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INTRODUCTION

For an entire function f # const we put M (r) = max{|f(z)| : |z| = r}. The quantities

olf = Tim PINMA) g gy IR M)

r——+oo Inr r—+oo Inr

1)

are called [7, p. 61] the order and the lower order of f accordingly.
G.D. Song and C.C. Yang [6] have proved that if f and g are transcendental entire functions,
0 < Alf] < o[f] < +ooand F(z) = f(g(z)) then

lim Inln Mp(r) oo
r—+eo Inln Mg(r) ’
A.P. Singh and M.S. Baloria [3] posed a question: how to find R = R(r) such that

lim Inln Mg(r)

I A ?

They have proved the following theorems.
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Theorem A. Let f and g be entire functions of positive lower order and of finite order, and

F(z) = f(g(z)). Then lim Inln M (r)

S+ Inln Mf(rA) = o0 for every positive constant A.

Theorem B. Let f and g be entire functions of finite order with ¢[g] < o[f] and F(z) = f(g(z)).

Then lim Intn Me(r) = 0.
r—+o Inln My (exp{rel/1})

The aim of proposed article is research of the above mentioned problem from [4].

1 MAIN RESULTS

Next theorem gives an answer to the question of A.P. Singh and M.S. Baloria.

Theorem 1. Let y be a positive continuous on [0, +o0) function increasing to +oc. Let f and g
be arbitrary entire functions with 0 < A[f] < ¢[f] < 400 and A[g] > 0. In order to

: Inln Mg(r) B B
A i M(explr ()~ o F@ = 8@), @)
it is necessary and sufficient
lim In 7(r) =0. (3)

ro+c Invr

Proof. G.Polya [2] has proved that if f and g are entire functions, |g(0)| = 0and F(z) = f(g(z))
then there exists a constant ¢ € (0, 1) independent of f and g such that forall 7 > 0

ME(r) > My <cMg (%)) and 4)
ME(r) < My(Mg(r)). (5)
J. Clunie [1] defines more precisely inequality (4). He proved that
1
Me(r) = My (Mg (5) = 1s0)). ©

We assume that the function -y satisfies (3), that is In y(r) = o(Inr) as r — 4o0. If the
lower orders A[f] and A[g] are positive then for A € (0, min{A[f], A[g]}) and all ¥ > ry(A) the
inequalities In In M¢(r) > Aln r and In In Mg(r) > Aln r are true. Therefore, in view of (6)

InIn Mg (r) > In In M; <%Mg (%) - |g(0)|> > Aln <%Mg (%) - Ig(0)|>
;

On the other hand, if ¢[f] < +oo then Inln M (exp{y(r)}) < oy(r) for ¢ > ¢[f] and all
r > ro(0). Therefore, in view of (7)

(7)

— A(140(1))In M, ( ) > (1+0(1)A27, 7 — +oo.

Inln Mg(r) o A r)‘
Intn My(expr@D =~ TG 70

because AlIn r —1In y(r) = (1+0(1))AIn r — 400 asr — +o0. The sufficiency of (3) is proved.

— +00, 1 — 400, (8)
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To prove the necessity of (3) we assume that (3) does not hold. Then Iny(r,) > d1In r, for
some 6 > 0 and an increasing to +oo sequence (r,,). We choose f(z) = e* and g(z) = E,(z)
with ¢ < 6, where E, is the Mittag-Leffler function. Then M(r) = ¢" and [7, p. 115]

Mg, (r) = Eq(r) = (1 +0(1))oe”, r— 4oo. 9)
Therefore,
InIn Mp(r) =In Mg(r) =r®+1Ing+o0(1), r— +oo. (10)
Thus,
, Inln Mg(r) , Inln Mg(ry)
Lim < lim
LI e M(exp{r(1)]) = wiee Inln M (exp {7 (ra)}) o
Q 4
= lim — < lim =0,

n—+oo Y rn) n——+oo 1y

that is, if (3) does not hold then there exist entire functions f and g with A[f] = o[f] = 1 and
Alg] = o0[g] = 0 € (0, +0), for which (2) is false. Theorem 1 is proved. O

The following theorem complements Theorem 1.

Theorem 2. Let y be a positive continuous on [0, +o0) function increasing to +oc. Let f and g
be arbitrary entire functions with 0 < A[g] < o[g] < +oc0 and A[f] > 0. In order to

lim Inln Mg(r) _
r=teo Inln Mg (exp{7(r)})

it is necessary and sufficient that (3) holds.

Proof. As in the proof of Theorem 1 we obtain (7) and for the function g we have
Inln Mg(exp{y(r)}) < oIn y(r) for every ¢ > o¢[g] and all » > r9(0). Therefore, estimate
(8) is true with ¢[g] instead o[f] and the sufficiency of (3) is proved.

If there exists a sequence (1) such that Iny(r,) > dIn r,, 6 > 0, then again we choose f
and g as in the proof of Theorem 1. Then (9) holds and

Intn My(exp{7(r)}) = Inln ((1+0(1))0e?")) = gv(r) +0(1), 7 +oo.

In view of (9) as above we have

Q Q
lim Inln Mg(r) < lim 'y < lim 7’_115 -0
r—+oo InIn Mg (exp{7(r)}) = n5500 @7(rn) ~ n=veo 01
Theorem 2 is proved. 0

For the functions f(z) = €*, g(z) = Eo(z) and F(z) = f(g(z)) chose the proof of Theorems
1 and 2 the following equalities are true

lim Inln Mg(r) ~ lim Inln Mg(r) _0
A nIn M (exp (1)) ot Intn My(exp{r (0]

The following question arises: what is condition on y providing existence of the limit

im Inln Mg(r) ( im Inln Mg(r) > _0
r=+oo Inln My (exp{y(r)}) \r=+eInln Mg(exp{y(r)}) ’

The following theorem gives an answer to this question.
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Theorem 3. Let y be a positive continuous on [0, +o0) function increasing to +oc. Let f and g
be arbitrary entire functions with 0 < A[f] < o[f] < 400 and ¢[g] < +co. In order to

, Inln Mg(r) B B
rgrfoo Inln Mg(exp{y(r)}) 0, F@) =flg@), (12)
it is necessary and sufficient that
lim 200) (13)

r—+oo Inr
Proof. We assume that the function <y satisfies (13), that is In» = o(In ¢(r)) as r — +oo. If
the orders ¢[f] and g[g] are finite then In In M¢(r) < ¢In r and In In M,(r) < ¢In r for ¢ >
max{ol[f], o[g]} and all ¥ > (o). Therefore, in view of (5)

InIn Mp(r) <Inln Mg(Mg(r)) < oln Mg(r) < or®, r>ro(0).
On the other hand, for A < A[f] and all ¥ > rp(A) In In Mf(eV(’)) > 1vy(r). Therefore,
Inln Mg(r) < or?
Inln My (exp{7(r)}) ~ Ay(r)
because olnr —In y(r) = (1 +o0(1))In y(r) — —o0 as r — +oo. The sufficiency of (13) is
proved.
Now we assume that (13) does not hold, that is for some § < 4-co and an increasing to +oo
sequence () the inequality Iny(r,) < d1n ry is true. We choose f(z) = ¢* and g(z) = E,(z)
with ¢ > 4. Then in view of (10)

—0, r— +oo,

m Inln Mg(r) > Tm Inln Mp(ry,)
r+eo Inln Mg(exp{y(r)}) = n—+eo Inln Ms(exp{y(rn)}) (14)
" T
= lim > lim — = +oo,
n—teo y(rn) ~ nSteo Iy
that is equality (12) does not hold. Theorem 3 is proved. O

The following theorem is proved similarly.
Theorem 4. Let y be a positive continuous on [0, +o0) function increasing to +oc. Let f and g

be arbitrary entire functions with 0 < A[g] < o[g] < +c0 and ¢[f] < +oo. In order to

, Inln Mg(r) B 2 — .
A nn Mg (exp{y(r)}) =0, Fz) =fgE)

it is necessary and sufficient that (13) holds.

Remark 1.1. From the proofs of Theorems 1 and 3 one can see that equality (3) is true provided,
7 is an arbitrary slowly increasing function, and (12) holds if 7y increase rapidly than power
functions.

Remark 1.2. If we choose f and g as in the proofs of Theorem 1 and 2 and «(r) = ar?, then

there exists the limit
lim Inln Mg(r) _ lim e 1
r—+eo Inln My(exp{a(r)}) —r—+eoa(r) a’

that is for each K € (0, +o0) there exist entire functions of a finite order and a positive lower
order and a positive continuous on [0, +c0) function 7y such that

. Inln Mg(r

fim £(r)

AT i M (ep(r ()
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2 OTHER RESULTS

In [5] the following analogue of Theorem A is proved.

Theorem C. Let f, g, h be entire functions of positive lower order and of finite order and
F(z) = f(3(2)), B(z) = f(h(z)). IFolh] < Alg] then for every A € (0, Alg]/o[h])

Inln Mg(r)

r%lrfoo Inln MH(T’A) = toe

We will complement this theorem by two next statements.

Proposition 2.1. Let vy be a positive continuous on [0, +o0) function increasing to +oc. Let f,
¢ and h be arbitrary entire functions with 0 < A[f] < ¢o[f] < +0c0, A[g] > 0 and ¢[h] < +o0. In
order to

Inln Mp(r) B _
A Mg~ T F@) =f(=), ) = fh(z), (15)
it is necessary and sufficient that
() _
rgrfoo Inr 0 (16)

Proof. In view of (5) for arbitrary ¢ > max{o[f], o[k]} and all r > ry(0) we have

Inln Mg (")) < oln M;,(e77)) < 0227,

A LA
Therefore, in view of (7) Intn Me(r) > (1+ 0(1))12_1’_ — 400, 1 — 400, because
Inln Mg (e7() o e0r(r)
l
by the condition (16) % =exp{AInr —oy(r)} — +ocoasr — +oo. The sufficiency of (16)
e

is proved.

Now we assume that (16) does not hold, that is for some § < 400 and an increasing to
+oco sequence () the inequality y(r,) > d1ln r, is true. We choose f(z) = h(z) = ¢* and
8(z) = Ey(z) with ¢ < 4. Then Inln Mg (r) = r and in view of (10)

Inln Mg(ry)

m
n—-+oo Inln Mé(exp{’)/(r?l)})

: rﬁ T
= lim ——— < lim — =0,
nto0 XP{Y(1)} = St 79,

lim Inln Mg(r)

A Ma(exp{r (D) =

(17)

that is there exist entire functions f, ¢ and h for which (13) is false. Proposition 1 is proved. [

Proposition 2.2. Let 7y be a positive continuous on [0, +o0) function increasing to +oo. Let f,
¢ and h be arbitrary entire functions with 0 < I[f] < o[f] < 400, 0[¢] < +co and A[h] > 0. In
order to

. Inln Mg(r) B B B
S e el = ) = f8(), @) = fiz) (18)
it is necessary and sufficient that
lim M = +4o0. (19)
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Proof. We assume that the function vy satisfies (19), that is In r = o(y(r)) as r — +oo. If the
orders o[f] and ¢[g] are finite then for ¢ > max{o|[f], ¢[g]} and all ¥ > ry(0) in view of (5) we
have In In Mp(r) < or?forr > ry(0). On the other hand, using (6) for 0 < A < min{A[f], A[f]}
and r > r9(A) we obtain

In In Mg (e?")) > In In My <1Mg ( ) 1g(0 )\) > (1+0(1))A274eM0), 1 — oo,

Inln Mg(r)

Inln Mg (exp{7(r)})
(19) is proved.

Now we assume that (19) does not hold, that is for some § < 400 and an increasing to
+oco sequence () the inequality y(r,) < d1ln r, is true. We choose f(z) = h(z) = €* and
8(z) = Ey(z) with ¢ > 4. Then in view of (10)

(1 + 0(1>>Aeg In r—Ay(r) 0
2* ’

Therefore, < r — +o0. The sufficiency of

m Inln Mg(r) > Tm Inln Mg(ry)
r—+co Inln Mg (exp{7y(r)}) ~ n=>+c Inln Mg (exp{y(ra)}) 20)
— o o
= lim —2—— > lim &2 = oo,
n=teo exp{Y(rn)} ~ noteo 1y
that is (18) does not hold. Proposition 2 is proved. O

Finally, we will prove a result on the growth of a composition of entire functions in the
terms of generalized orders. By L we denote a class of all positive continuous on (—oo, +0)
functions a such that a(x) = a(xg) for —oo < x < xp and a(x) T +coas xg < x — +o0.

Fora € Land B € L the generalized order g,5(f] and a lower generalized order A,g[f] of
an entire function f are defined [3] by the formulas

— a(ln M(r)) ~ lim a(ln My (r))
r%+00 B(nr) Lo plf] _YL—JFOO B(nr)

Oq, /BV]

Proposition2.3. Leta € L, € L, B(x +O(1)) = (1 +0(1)B(x) as x — +o0 and f, g be entire
functions with 0 < A g[f] < Qaplf] < +00and 0 < I, g[g] < 0apl8] < +oo. In order to

a(In Mg(r))

rgr—bl}oo 0((11’1 Mf(i’)) = oo F(Z> - f(g(Z)), (21)
it is necessary and sufficient that
. Bx) _
x1—1>r—ir-100 oc(x) = oo (22)

Proof. 1f (22) holds then from (6) and the definition of the lower generalized order it follows
that for each 0 < A < Ay < min{A,g[f], A plg]} and ¥ > 7(A)

r

a(In Mp(r)) > a (m My <1Mg< )~ 18(0 )1)) > Mg (In My 2) +0(1))

A1+ 0(1))B (In My <E)) = M(1+0(1))B (a” ( (1n Mg (%))))
> A (1+o0(1)B(a (A (1+0(1))B(In 1)) > AB(a™ ' (AB(In 1))).
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On the other hand, for ¢ > g, 4[f] and all ¥ > r¢(¢) we have a(In M¢(r)) < oB(In r). Therefore,
a(In ME(r)) AB(a”'(AB(Inr))) _ P2 (x)

lim > lim = — lim —< = +oo,
A a(n Mp(r) ~ AR oB(inr) ¢ M ()
that is (21) is true. If (22) does not hold, thatis lim B(x)/a(x) < +oo then in view of (5) for
X— 400
A < Agplf], @ > max{osg(f], 0uplf]} and all » enough large
-1
im A Me() op(In Mg(r)) Jim of(a " (a(ln Mg(r))))
G M) S AR AR Am AB(nr)
- oBa”M(ef(Inr))) _ @ . B(x)
< lim == lim Y% < +o0o,
T ot 1B(In r) I xSeo ()
that is (21) is false. Proposition 3 is proved. O
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Hexait y — AoaaTHa, HerepepsHa Ha [0, +00) i 3pocTaroua A0 +o00 PYHKIIS, a f 1 § — AOBiABHI
1inl pyHKIIT AOAATHOTO HVMXKHBOTO TIOPSIAKY i CKIHUEHHOTO IOPSIAKY.
Anst Toro, mob
lim Inln Mg (r)
r—+eo Inln Mg (exp{y(r)})

= oo, My(r) = max{|f(z)|: |z] = 1},

HeobxiaHO 1 pocuth, o6 (In y(r))/(Inr) — 0 mpur — +oo. Lle TBEpAXKEHHS € BIATIOBIAAIO Ha
mTaHHs1, nocTaBAeHe A. CikxoMm i M. Baaopia y 1991 p.
TaxoX AASI TOro, o6

) Inln ME(r) —
Am Mg(exp{y(r)}) "

HeobXiaHO 1 aocTaTHBO, 1106 (In (7)) /(In r) — co mpm r — +oo.

Kntouosi cosa i ppasu: 1ira pYHKIIIST, KOMIO3MIIisS (pyHKIIIN, y3araAbHEHMI IIOPSIAOK.



