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THE NONLOCAL PROBLEM FOR THE 2n DIFFERENTIAL EQUATIONS WITH
UNBOUNDED OPERATOR COEFFICIENTS AND THE INVOLUTION

We study a problem with periodic boundary conditions for a 2n-order differential equation
whose coefficients are non-self-adjoint operators. It is established that the operator of the prob-
lem has two invariant subspaces generated by the involution operator and two subsystems of the
system of eigenfunctions which are Riesz bases in each of the subspaces. For a differential-operator
equation of even order, we study a problem with non-self-adjoint boundary conditions which are
perturbations of periodic conditions. We study cases when the perturbed conditions are Birkhoff
regular but not strongly Birkhoff regular or nonregular. We found the eigenvalues and elements
of the system V of root functions of the operator which is complete and contains an infinite num-
ber of associated functions. Some sufficient conditions for which this system V is a Riesz basis are
obtained. Some conditions for the existence and uniqueness of the solution of the problem with
homogeneous boundary conditions are obtained.
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Riesz basis.
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1 INTRODUCTION

The theory of differential equations with an unbounded operator coefficient was initiated
by Hill and Yosida where the first theorems on the existence of the Cauchy problem solution
for a linear homogeneous differential equation with respect to a function with values in a
Banach space were obtained. Among works on this subject should be noted works of Kato T.,
Krein S.G., Mizohata S., Phillips R.S.

The boundary value problems for linear differential-operator equations are used in the
simulation of boundary value problems for differential equations with partial derivatives, in
particular, in the study of nonlocal problems. Significant results concerning the theory of
boundary value problems for differential-operator equations were obtained in the papers of
Vishik M.I.,, Boehner M., Gorbachuk V.I. and Gorbachuk M.L., Dezin O.O., Dubinsky Yu.V.,
Kochubei A.N., Lions J.-L., Mamedov K.S., Romanko V.K., Shakhmurov Veli B., Triebel Kh.,
Yakubov S., Yurchuk N.Yu.

During recent years the number of publications with the use of an involution operator in
various sections of the theory of ordinary differential equations (see [2, 8-10, 12, 13, 15, 16]),
partial differential equations (see [1,7,11, 14,17,18]) and differential equations with operator
coefficients (see [3-6]) increased significantly.

In our article we will use the following notations. Let H be a separable Hilbert space and
A : D(A) C H — H be the closed unbounded linear operator with the discrete spectrum
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0c(A) ={z € R, zx = a(k)?, a,7v >0, k=1,2,...}. Wedenoteby V(A) = {vy € H: k =
1,2,...} the system of the eigenfunctions of A which forms a Riesz basis in H, by W(A) =
{wny € H:m =1,2,...} the biorthogonal system of the functions in the sense of equalities
(v, wm; H) = 0,k # m, (vp,w;H) =1, kK, m = 1,2,..., HA®) = {h € H: Ah € H},
s > 0. Let H = Lp((0,1),H) and Dy : Hi — Hj is a strong derivative in the space Hj;
) ueeBx) =) _p g, H1H — 0, Ax — 0. Denote by Hy = {u € Hy : D¥u € Hy, A?u € Hy};

X
by [H] the algebra of the bounded linear operators B : H — H. Denote by Hy = L(0,1);
let I be the operator of the involution in the space Hp, Iy(x) = y(1 — x), and let E be the
identity transformation in Hy, p; = 3(E + (—1)/I) are the orthoprojectors in the space Hy,
Ho; = {y € Ho: y = pjy}, j = 0,1. Let us denote by W?" (0,1) = {y € Hp : y(m e Clo,1],
m=0,2n—1, y@) € Hy}, by W* the space of the continuous linear functionals on the space
W2%(0,1) and by Wi={leW*:ly=0y € Hy; NW21(0,1)}; j =0,1.
We consider the following boundary problem

Lw = (—1)" D¥'w(x) + A?"w(x)

+ i as (DZ lw(x) + D¥1w(l —x)) = f(x), x€(0,1), 1)
s=1
tw= DY 'w(0) — DY w(1) + lw = ¢, )
lyrjw = DY 2w(0) — DY “w(1) = gy, 3)
where

m;
tiw = ZO(bj,r,OD;w(o) + bj,1Diw(1)), j=12,...,n (4)

=

The function w is called the solution of the problem (1)—(4) if
|Lw—fH] =0, |ljw—g;H(A%)] =0,

Buyj=2n—2j+ ;, Bj = 2n — max(mj, 2j — 1) — %,
aj,bj,r,s €R, r=01,..., m<2n-1, s=01, j=12,...,n

The paper is arranged as follows. In Section 2 we investigate the properties of the operator of
problem with periodic conditions for the equation (—1)"y(®") = Ay. In Section 3 we study the
spectral properties of the operator of a problem with boundary conditions that are periodic
perturbations. In Sections 4 we construct a commutative group of operators that map the root
functions of the operators of perturbed boundary-value problems. In Section 5 using these
operators, systems of root functions of boundary-value problem operators are constructed and
conditions for the completeness and basis property of these systems are established. In Sec-
tion 6 some analogous results are obtained for the operators of boundary problems generated
by differential equations with an involution.

2 A SPECTRAL PROBLEM WITH PERIODIC BOUNDARY CONDITIONS FOR A
DIFFERENTIAL-OPERATOR EQUATION

Consider the partial case of the problem (1)—(4) with aj =0, b]-,r,S =0,r=01...,m,
s=0,1,j=1,2,...,n namely

(—=1)" D?{"u(x) + AZ"u(x) = f(x), x€(0,1), (5)
lou = DY 'u(0) — DY u(1) =0, 6)

loniju = DI 2u(0) — DY 2u(1) =0, j=12,...,n )
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Let Ly be the operator of the problem (5)—(7),
Lou = (—1)" D¥"u+ A*u, u€ D(Ly), D(Lo) ={u € Hy:lpju=0,j=1,2,...,2n}.
Consider the spectral problem
(—=1)" D2 u(x) + A?™u(x) = Au(x), A€C, (8)
loju= u?0) - u@V1)=0 j=12...,2n 9)

We find the solution of the spectral problem (8), (9) as the product u(x) = y(x)vg, vy € V(A),
k=1,2,....
To determine the unknown function y € W?"(0, 1) we obtain the spectral problem

(= 1)"y®)(x) + Z'y(x) = y(x), AeC, (10)
loy=y¥D0) - yF V1) =0, j=12...n (11)
lonry = yFDy(0) —y@ 1) =0, j=12,...,n (12)

Let Ly be the operator of the problem (10)—(12),
Logy = (—1)"y® + 2"y, y € D(Log), D(Lox) = {y € W?(0,1) : Iy = 0,j = T,2n}.

The roots p; of the characteristic equation (—1)" o2 = A — z%” of the differential equation
(=D)"y®(x) + 2'y(x) = Ay(x), (13)
are defined by the relations
—wip, wr = iwi = iexp (iD=
pj = wjp, w1 =1i,wj =1exp (z o ), j=23,...,n

The fundamental system of the solutions of the differential equation (13) is defined by the
formulas

—_

Yi(x,p0) = E(exp wijpx + expwjp(1 —x)) € Hyp, j=12,...,n, (14)

1 .
Yoy i(x,0) = E(exp wipx — expwip(l —x)) € Hy1, j=1,2,...,n (15)

Substituting the general solution

2n
y(x,p) = Z CsYs(x,p)
s=1

of the differential equation (13) into the boundary conditions (11), (12) we obtain the equation
for determination the eigenvalues of the operator L«

Ap) = det(1,Y})74_; = 0. (16)

By substituting the functions (14), (15) in the boundary conditions (11), (12), we obtain
lo;Ynyj = 0, lonssY; = 0, j, ¥ = 1,2,...,n. Therefore A(p) = Ao(p)A1(p) = 0, where
As(p) = det(lanstﬂ-)fj:l, s=0,1.

The operator L is self-adjoint (see [15]). Therefore the solutions of the equation (16) are
pq = 2qmi, q = 0,1,2,..., which are numbered in ascending order and lie on the half-line
Imp =0, Rep > 0.

Thus, the operator Lo has eigenvalues A, = (04)*" + 22", q = 0,1,... . We obtain the
following result.
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Lemma 2.1. The self-adjoint operator L has a point spectrum
M%H:{MeRug:@mﬁwa%q:aLm}
and a system of eigenfunctions
V (Lox) = {vq (x) €L2(0,1) 109 (x) =1, vpg(x) = V2 cos2mgx,
U1 (X) = V2sin2mgx, g =1,2,... },
which is an orthonormal basis of the space Hy.
Remark 2.1. The systems
Vo (Log) = {v2g (x) : q=0,1,...}, Vi (Log) = {v9-1(x): g=1,2,...}
form an orthonormal basis in spaces Hy g and Hy 1, respectively.

Therefore, the operator Ly has the following eigenfunctions in the space H;

V(Ly) = {vqlk(x, Lo) € H1: vgx(x, Lo) = vg(x)vx, 4 = 0,00, k = 1,00}.

A system of functions {5} ; C H is called a Riesz basis in a Hilbert space H , if {h5}2 ; is
complete in the space H, and for any orthonormal basis {es}>; C H there exists an isomor-
phismB: H —+ H, Bes =h;, s =1,2,....

The product of a system V(A) and an orthonormal system V(L ) is the Riesz basis (see [9])
in the space Hj. Thus, the following theorem is true.

Theorem 1. The operator L has a discrete spectrum

c(Ly) = {Aq,k ER: A = pé” + zi”, k= 1,00, q= O,oo},

and the system of the eigenfunctions V(L) forms the Riesz basis in the space Hj.

Let us consider the functions

yr (x,00) = 5 (14 eorpr) ™" (erer o germn1=0))

y1 (x,0q)

(17)

1
2
%(1—2x)sinpqx, r=223...,nq9=12,...,

and determine the square matrix

BO,P (xrpq) = ( %,s)z,s:l
of the order n according to the following: the row with number p is determined by the elements
of the system (17) B ; (x,04) = ys (x,04) and the other lines by the formulas ,3]0-,5 (x,0q) =

(cus)zjf1 withj #p, j,s=1,2,...,n.
We denote the determinant of the matrix By, (x, 04) by y1,5 (%, 04) -
Substituting the determinant into conditions (11), (12), we obtain

losyr,p =0, ¥ # p, lopyr,p = (o)~ th(H)W", (18)
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where the Vandermonde determinant W" is constructed by the numbers
L(w)?, . () k(@)= (=), i=v—1,r=1,...,2n, m=1,2,...,n.

Consider the functions y» , (x,04) = (h(i)W") ™! yip (%,09), p=12,...,1
From the relation (18) we obtain

losyo,p =0, 7# p, lopyop = (pq)ZP_l ,pr=12,...,n (19)

Similarly, let us consider the system of functions

— 11 _ wp\—1 ( jwrpgx _ jwrpg(1—x)
yn ’ xlp = (1 e Pq) e Pq e Pq ,
2

Ynt1 (X, 09) =5 (1 —2x)cospgx, r=23,...,n,9=1,2,...,

and a square matrix
— 1
By, (xr Pq) = (5;7,5)2,5:1

of the order n which rows are determine by following: the row with number r is determined by
the elements of the system (20) .3},5 (x,0q) = Yn+s (¥, pq) and the other lines by the equalities

5]1',5 (xqu) = (ws)zj_zr j#r, r,s=13,...,n

We denote the determinant of the matrix by y1 4, (¥, 0q) -
Substituting it into conditions (11), (12), we get

lojyinsr =0, j #n+71, lonsryrnrr = W' (PQ)zriz' (21)

Let us define the functions 2,1 (x,04) = (W™") ™ y1usr (X,00), 1 =1,2,...,1.
Taking the relation (21) for the functions y5 4+ (x, py) into account, we obtain

Y2 =12, r=12,...,n

lO,j]/Z,n+r =0, j#Fn+r1, lontrYonir = (Pq
Remark 2.2. There exist positive numbers Ky, K; such that
Ki < ly2(x,pq); Hol| < Kz <00, j=1,2,....2n,9=12,.... (22)

Here K, s € N, are positive constants.

3 NONLOCAL BOUNDARY VALUE PROBLEM

For the differential-operator equation (5) and an arbitrary fixed p € {1,2,...,n}and b € R
we consider the boundary value problem

tu= DY ) - DY u(1) =0, j#p j=12...,n (23)
lpu= DY u(0) — DY u(l) + Bu =0, (24)
O piju= DY u(0) — DY %u(l) =0, j=12,...,n, (25)
with
Cu= b(DY¥ 'u(0) + DY 'u(1)) =0, beR. (26)
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We will use following notations. Let L; be the operator of the problem (5), (23)-(26) and Liu =
(—=1)"D?"u(x) + A*™u(x), u € D(Ly), D(Ly) ={u € Hy: l;,u =0, r =1,2n}.

We find the solution of the spectral problem (8), (23)—-(26) as the product u(x) = y(x)vy,
v e V(A), k=1,2,....

To determine the unknown function y € W2"(0, 1) we consider the spectral problem

(=" y®(x) + 2"y(x) = Ay(x), AeC, (27)
tyy =y @0 -y V1) =0, j#£p j=12...,n (28)
iy = Yy U0) — y@ (1) + By =0, (29)
hury =y@72(0) - y@ 2 (1) =0, j=12...,n (30)
with
By =b (y2(0) + y@ 0 (1)) (1)

Let L1 = Ly, be the operator of the problem (27)-(31) and

Ligy = (=1)"y®) (x) + 22"y(x), y € D(Lyx), D(Lx) = {y € W?(0,1) : I jy = 0,j = 1,2n}.

Let V (L; x) be the system of root functions of the operator L1y, let R(Lix) = E + S(Ljx) be
the operator which maps the system V (L) into the system V(L ).

Theorem 2. Foranyb € R, p € {1,2,...,n}, the operator Ly j has the point spectrum o (L)
and the system of root functions V (L1 ;) forms a Riesz basis in H).

Proof. We will show that eigenvalues of the operators L and L,  coincide.

We substitute the fundamental system (14), (15) for the solutions of the differential equation
(27) into the boundary conditions (28)—(31). Using l%,ynﬂ-(x, p) =0, j,p = 1,n, we obtain the
same equations for determination the spectrum

det(l,jyr(x,0))77—1 = det(ly jy; (x,0)) 1,1 det(hns jyn+r(x,0)) 1

Let us define elements of the system V (L) .
It is easy to see that vy, (x) € D (Lix), L1xv24 (x) = Aguag (x),4=0,1,2,... . Hence

U2g (xr Ll,k) = U2g (x) ;4= 0,1,.... (32)
We define the root functions of the operator L,  as
U291 (%, L) = v2g-1(X) + cppyp (%, 04) - (33)

Substituting (33) into the boundary condition (29) and taking the equality (19) into account,
we obtain ¢, = —/2b,

02g-1 (%, Lig) = vag-1 (x) = V2by2p (x,09), 9=12,.... (34)
Thus, the operator L ; has a system of root functions (32)-(34) in the sense of equalities

Lyjv2g-1 (%, Lix) = Agxvag—1 (X, Lik) + Gpgv2q (X, Lig),
-1
gb,q = _4\/517” (Pq) " ’ Ll,kUZq (xr Ll,k) = )\q,kUZl] (xr Ll,k) ;4= 1,2,....

Given the regularity according to Birkhoff (see [15]) of boundary conditions (28)—(31) we
obtain that the system V(L ) is complete and minimal in the space Hj. O
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Let W"~! be the Vandermonde determinant constructed by elements w%, w%, ...,w%;

let Ry = E + S; be the operator which maps the system V (Lj) into the system V; and ele-
ments of this system are

v2g-11 (¥) = (1= V2 W (R(EW 1) "1b(1 — 2x))ogy1 (x),

(35)
v,1(x) = vo(x), v2g1(x) = voe(x), g=12,....

Lemma 3.1. The system V; forms a Riesz basis in Hy.

Proof. For an arbitrary function ¢ € Hy we have

¢ = @ovp (x) + Zo (@2gv24 (X) + @2g—1024—1 (x)) € Hy,
q:

lo: Holl? = lgoP + X (Jozyl*+ lgzaf) < oo,
=1
consider the function

@1 = R1¢ = 90vo1(x) + Y (@2g0241 (%) + @og-1029-1,1(x)),
q=1

|Ri@; Hol® < Kallg; Holl?,  Ka =2 (1+ [W"(W'=")~15]).
Therefore ||Ry; [Hol||? < K3 < o0, Ry = E+ S; € [Hy], R{' = E — S; € [Hy). Taking into

account the Bari Theorem (see [9]), we obtain the following statement: the system V; forms the
Riesz basis in Hj. O

Therefore, the operator L has the following system of root functions in the space H;

V(L) = {vq,k(x,Ll) =0g(x,Lix) vx € Hy: q=0,00, k= 1,00}.
Remark 3.1. The operator Ly has a system of root functions in the means of equalities

LlUqul,k (x/ Ll) = )\q/kvzqfllk (x, Ll) + ‘:b,qufq,k (x, Ll) ,
Cog = —4V2bn (0)™" ', g k=12,
L1vpg i (%, L1) = Agpvagi (x,L1), q=0,1,..., k=12,....

Theorem 3. For any fixed numbers p € {1,2,...,n}, b € R, the system V(L) is the Riesz
basis of the space H.

Proof. Let R(L1x) = E+ S(L1x) : V(Lox) — V(Lix), let pi be a projection in H, pry =
(v, wk(A); H)og, R(Ly) = k;R(Ll,k)Pk-

From the definition of the operator R(L{) = E + S(L,) it follows that R"}(L{) = E — S(L,).
Therefore the system V(L;) is complete and minimal in the space H;. Taking into ac-
count the representations of the elements of the system V(L) and Theorem 2, we obtain
IR(L1); [Ha][| < Kal|R(Lyx); [Hol|| < oo.
Taking into account the Bari Theorem (see [9]), we obtain the following statement: the
system V; forms the Riesz basis in Hj.
U
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4 TRANSFORMATION OPERATORS

Forany k € N, p € {1,2,...,n}, we define the operator By : Hy — Hpy as the operator
whose eigenvalues coincide with eigenvalues of the operator Ly, and the root functions are
defined by

25 (X, By) = 02s(x), v25-1(X, Bp) = v2g-1(x) + ¢4(Bp)y2,p(x,04), (36)

where ¢;(By) €R, s =0,1,..., g=1,2,....
The operator which maps the system V(L) into the system V' (B, ) of the root functions of
the operator B, is denoted by R(B;,) = E + S(Bp), where S(B;,) : Hoo — Ho1, S(By) : Hop — 0.
We denote by Go,(Lox) = {R(Bp)} such that the root functions of the operator B, are
defined by the equalities (36), and Go ¢ (Lox) = Go,p(Lox) N [Ho-

Remark 4.1. Using that S(B,) : Hoo — Ho1, S(Bp) : Hop — 0 we obtain S? (B,) = 0,
R7Y(B,) =E— S(By).

Consequently, the operator R(B,) has a dense domain in the space Hy and the system of
root functions is complete and minimal in Hy.

Similarly, using the root functions of an adjoint operator L], , we define the functions
wo (x, Bp) = vo (x) + co (1 —2x),
Waq (%, Bp) = v2q (x) + ¢4 (Bp) Y2,on—p—1 (%,04) , wag—1 (%, Bp) =v29—1(x), g=1,2,...,
and the set of operators Gy, (Lo ) = {R (B;‘;) =E+S <B;;) , R(By) € Gop (Lo,k)} :

Theorem 4. Forany b € R, p € {1,2,...,n}, the operator B, has the point spectrum ¢ (L)
and the system of root functions V (L, i) forms the Riesz basis in Hy if and only if the sequence
Cq (Bp) is bounded, i.e. ‘cq (Bp)} <Ks<oo,g=1,2,....

Proof. The necessity. Let the system V (B,) be the Riesz basis in Hy, i.e. R (B,) € [Hy], then
S (Bp) = E — Ry (B) € [Ho). From the definition of the operator B, we have

S (Bp) vag—1(x) = ¢4 (Bp) yaop (x,09), 9=1,2,....
Therefore, taking the estimate (22) into account, we obtain

lcq (By)| < I1S(By); [Hollly2,p(x, p); Holl ™ < Ke < oo,
Ko = K5 IS(By); [Holl, g=172,....

The sufficiency. The completeness of the system V (B,) in the space Hy follows from Remark 4.1.
Let 9 € Hy, ¢ = ¢o+ ¢1, ¢s € Hys, s = 0,1. Then we have

@ = @ovo (x) + Y (925029 (X) + @20-1029-1 (x)) € Ho,
g=1

s HolP = 9o+ X, (192" + lgag1[) < o,
q=1

¢

R (Bp) ¢ = ¢ovo (x, Bp) + ), (92q02q (%, Bp) + ¢2g-102-1 (%, Bp)) € Hy,

)
I
=

ngk

R (Bp) ¢ = @ovo (¥, Bp) + Y, (92q02g (¥) + @25-1¢4 (Bp) (v2g-1 (%, Lix) — v2g-1 (%)),

=
Il
U

IR(By)g3 Hol* < Kl Holl®, Kz =3 (1+ K2+ K2IIR(Lys); [Fol )
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Therefore, |R(By); [Ho]||* < K7 < oo.
Consider equalities R (B,) = E+ S (B,), R™' (By) = E— S(B,) . We have

R™'(By) = 2E— R (B,).

~1(By,) ; [Ho| H < Kg < oo, Kg = 8+ 2Ky. Taking into account the Bari
Theorem (see [9]), we obtam that the system V; forms the Riesz basis in Hy. O

Suppose that Qy(I) is a set of operators R = E+ S, such thatS: Hyp — Hg1, S: Hp1 — 0,

Qo,c(I) = [Ho) N Qo(I). Using that SZ(BP) =0, R(By) € Go,p(LO,k) C Qo(I) on the set Qo(I),
we can define the operation of multiplication

R1R, = (E+ 51) (E+ 52) =E+ S14+ S5, Ry, Ry € Q()(I).

In particular, (E+ S)(E— S)=E— S>=E, R=E+ S € Qo(I).

Therefore, for each operator R = E + S € Q(I) there exists a unique inverse operator
R'=E-S.

According to the definition of the operator B, and the set Gg (L) we have the inclusions

Gop(Lox) C Qo(I), Geop(Lox) C Qoe (), pe{l2...,n}.

Thus, the set Qp(I) is an Abelian group which contains the Abelian subgroups Q. (I),
Gop (Lok), Goep (Lox), p € {1,2,...,n}. Therefore, for all operators R; = E+ S; € Qo (I),
j=1,2...,d, d € N, the following equality

d d
[IR =T1(E+S) —E+ZS], deN, (37)
j=1 j=1 j=

holds.

5 NONLOCAL BOUNDARY VALUE PROBLEMS FOR A DIFFERENTIAL-OPERATOR EQUATION

5.1. For the differential-operator equation (5) and arbitrary fixed indices by,s € R, p €
{1,2,...,n},r=0,1,..., k]-, s=0,1,7=1,2,...,n, we consider the boundary problem gener-
ated by nonlocal conditions

i—1

tyw= DY 'w(0) - DY 'w(1) =0, j#p, (38)
by pw = Dipflw(O) - Dipflw(l) + lllgw =0, (39)
louijw= DY *w(0) — DY *w(1) =0, j=1,2,...,n, (40)
where
mp
tyw =Y (by,roDyw(0) + b1 Diw(1)). (41)
r=0

Assumption Pz by, = (—1)”117;%1, r=0,1,....,mp, j, p=12,...,n
Assumption P: mp <2p—1, p=1,2,...,n

Remark 5.1. Assumption P; implies thatlll7 eW/,p=12,...,n
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Let Ly = Ly, be the operator of the problem (5), (38)-(41) and
Lou = (—1)" D"u(x) + A*"u(x), u € D(Ly), D(L) ={u € Hy: Lju=0,j=1,2,...,2n}.

The solution of the spectral problem (5), (38)—(41) is defined as the product w(x) = y(x)v,
v e V(A), k=1,2,....
To determine the unknown function y € W2%(0, 1) we consider the spectral problem

(= )"y () + Z'y(x) = Ay(x), A€C, (42)
by =y 0 —y@ V) =0, j#p, (43)
lapy = yP0(0) =y V(1) + Ly =0, (44)
briy = yF20) - y¥21) =0, j=12...,n (45)

Let Ly x = Ly, be the operator of the problem (42)—(45) and

Loy = (=1)" y®(x) + 2"y (x),
y € D(Lyk), D(Lay) = {y € W' (0,1) : iy =0, j =1,2,...,2n}.
Theorem 5. Suppose that the Assumption Py holds. Then for arbitrary numbers by, s € R, s =
0,1, r=0,1,...,mp, p € {1,2,...,n}, the following statements hold
1) the eigenvalues of the operators L\ and L, coincide;
2) the system V (L, ) is complete and minimal in the space Hy ;

3) if in addition the Assumption P, holds, then the system V (L, ) is the Riesz basis of the
space Hy.

Proof. The proof of part 1 of the theorem can be made in the same way as in Theorem 2.

Let us define the elements of the system V (L, ). A direct substitution gives that the func-
tion vy, (x), g =0,1,..., satisfies the conditions (43)—(45) . Therefore, the root function of the
operator L, ; with respect to the eigenvalue A, is defined by

UZq(xr Lyy) = Uzq(X, Lox), 9=0,1,...,
v2g-1(%, Lok) = v2g-1(x) + cqpy2,p(x,04),
Cap = =Ly (02g-1(0)) (lapy2p(x,00)) "', g=1,2,....

Consequently Ly, € Qo(I). If the Assumption P, holds, then from the inequality

\1;17 p020-1| < Ko(pg)?P~2 we obtain the inequality
|l;17(02q—1(x))(ZZ,ner]/Z,p(xf PO,q))_1| < Kjp < 0. (46)
Taking Theorem 4 into account, we obtain the third statement of the theorem. O

Therefore, the operator L; has the following system of root functions in the space H;

V(L) = {vq,k(x, L) = vq(x, Lox)vg: q=0,00, k = 1,00}.
Remark 5.2. The operator L, has a system of root functions in the means of equalities

Lyvpg 1k (X, L2) = Ay o1k (X, L2) + &g,p02gk (x, L2), (47)
Cop = —4V2(09)" Yeqp, g k=12,..., (48)
LZUZq,k (x, Lz) = Aqlkvquk (x, Lz) ;4= 0,1,.. .,k =12,.... (49)
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Theorem 6. Suppose that the Assumption Py holds. Then, for arbitrary numbers by, € R,
r=0,1,...,mp, p € {1,2,...,n}, the following statements hold

1) the eigenvalues of the operators Ly and L, coincide;

2) the system V(L) is complete and minimal in the space Hy;

3) if in addition the Assumption P, holds, then the system V(L;) forms the Riesz basis of
the space Hj.

Proof. Taking Theorem 5 into account, it is possible to determine the elements of a system
W(L, ) which is biorthogonal to the system V' (L, ) in the space Hy.

Therefore, there exists W(L;) = {wq,k(x, Ly)wy: q=0,1,..., k=1,2,... .} which is the
biorthogonal system of functions to the system V(L;) in the space Hj.

Thus the second statement of the theorem is proved.

Suppose that the Assumption P, holds. Taking the inequalities (46) into account, we obtain
the estimate

IR(L2); [Hi]|] < K1 < oo.

From the Bari Theorem (see [9]) we obtain the statement: the system V; forms the Riesz basis
in Hl- [

5.2. Consider the spectral problem

(—=1)"D¥'w(x) + A¥w(x) = Aw(x), (50)
tiw= DY 'w(0) — DY 'w(1) + lw =0, (51)
loyjw = DY *w(0) — DY *w(1) =0, (52)
where
m;
tiw =Y (bjroDsw(0) + bj, 1 Diw(1)), j=1,2,...,n (53)
r=0

Let L3 be the operator of the problem (50)—(53) and
Lau = (—1)" D¥"u+ A*u, ue D(L3), D(L3)={u€ Hy:lju=0,j=1,2,... ,2n}.

We find the solution of the spectral problem (50)-(53) as the product w(x) = y(x)vg,
e V(A), k=1,2,....
To determine the unknown function y € W2%(0, 1) we obtain the spectral problem

(_1>ny(2n) + Z%n}/ = Ay, AeC, (54)
ty= y@00)+ y@ V(1) + ly =0, (55)
by =y @20 —y¥ D1y =0, j=1,2...,n (56)

Let L3 i be the operator of the problem (54)—(56);
Loy (x) = (=1)"y®) (x) + 2"

y € D(Lak); D (Lax) = {y €EWH(0,1): Ly =0, j = 1,2,...,2n};

let V (L3 ) be the system of root functions of the operator L .
We can prove that

v (x) € D (L3k), Lagvzg (x) = Agpvag (x), 9=0,1,....
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Therefore,
UZq (x/ L3,k) = UZq (X) / q = O/ 1/ e (57)
The root functions of the operator L, are determined by the equalities

n
291 (%, Lag) = v2g-1(X) + ) cugphay (X0g), 4=12,.... (58)
p=1
Substituting the expression (58) into the boundary conditions (55), (56), we obtain

mp
_ 2+4r—2
crop=—V2Y (=1 b, 0(00) ", p=12..,m9=12,.... (59

Thus, the operator L3 has the system of root functions (57)—(59) in the means of equalities
Lakvag-1 (% Lak) = Aqivzg—1 (%, Laj) + §0v2g (%, Lak)
n
2n—1
§2 =2vV2n (0g) " Z g 9=12,...,
p=1
L ook (X, L3x) = Agxoak (X, L3x), q=0,1,....
Let R (L3 ) be the operator which actsas V (Lyx) — V (L) . From the formulas (37), (58),
we obtain the relation
n n
R(Lsx) = [T R(L2kp) =E+ Y S(Layp)- (60)
p=1 p=1

Therefore, we have the inclusion R (L3 x) € Go (Lox) C Qo (I). Thus, we obtain the following
statement.

Lemma 5.1. Suppose that the Assumption Py holds. Then, for the any fixed b,,o € R, r =
0,1,...,mp,p=1,2,...,n, the system V(L3 ) is complete and minimal in the space H.

Consider the system V; of functions

002 (X) = 0o (x), vg2(x) =024 (x,), 9=12,...,
vy-12(x) = (1+ ©)(1 - 2x>)vzq 1(x),

=W'W" 1) ey, ¢ = prZp 1,0-

Let Ry, = E + S, be the operator which acts as V (Lo,k) — V5.
Using that Sy : Hy; — 0, Sy : Hop — Hy, we obtain that Ry, € Qo(I).

Lemma 5.2. Suppose that the Assumptions P, P, hold. Then the system V, forms the Riesz
basis in the space Hy.

The proof is carried out analogously in Lemma 3.1.

Remark 5.3. Suppose that the Assumptions P;, P, hold. Then the following relations hold
U2g-1(X, L3 k) = v2g-12(x) + Zc] qVi(x,pq) + (pq)’lcé(l — 2x))vzq-1(%), (61)

where
’C},q‘ < Ko, fcsf <Kp<oo, g=0,1,....

Therefore, the systems V(L3 ) and V, are squarely close in the space Hy.
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Lemma 5.3. Suppose that the Assumptions Py, P, hold. Then, for any fixed b,,0 € R, r =
0,1,...,my, p=1,2,...,n, the system V(L3 ) forms the Riesz basis in the space H.

The statement follows from Lemma 5.1, Lemma 5.2, Remark 5.4 and the Bari Theorem
(see [9]).

Theorem 7. Suppose that the Assumption P; holds. Then, for any bp,,,() eER,r=0,1,...,my,
r,p =1,2,...,n, the following assertions are true

1) the eigenvalues of the operators Ly and L3 coincide;

2) the system V(L3 ) is complete and minimal in the space Hy;

3) if in addition the Assumption P, holds, then the system V(Ls ) forms the Riesz basis of
the space Hj.

Proof. The proof of part 1 of the theorem follows from Theorem 3, the second statement follows
from Lemma 5.1 and the third statement follows from Lemma 5.3. O

Let

V(L3) = {vq,k(x, L3) = vy(x, Ly )vx € Wy : g = 0,00, k= 1,00}

forms the system of the root functions of the operator L3. Let
W(Ls) = {wq,k(x, L3) €EHy:q= O,—oo}
be the biorthogonal system of functions to the system V(L3 ) in the space Hy. Let
W(L3) = {wak(x, L3) = wy(x, Lyx)wy € Hy: g = 0,00, k = 1,—00},

be the biorthogonal system of functions to the system V(L3) in the space W; and R(L3) be the
operator which acts as V (Lg) — V (L3).

Theorem 8. Suppose that the Assumption P; holds. Then, for all numbers b,,o € R,
r=0,1,...,mp,p=1,2,...,n, the following assertions are true

1) the eigenvalues of the operators Ly and L3 coincide;

2) the system V(L3) is complete and minimal in the space Hy;

3) if in addition the Assumption P, holds, then the system V(L3) forms the Riesz basis of
the space Hj.

Proof. The proof of part 1 and 2 of the theorem follows from Theorem 7. Taking the relations
(60), (61) into account we obtain the equality

R(L3) = [ JR(Lyy) = [T (E+S(Loj)) = E+ Y S(Lay). ©2)
j=1 / =1

j=1 ]

Let Assumptions P; and P, hold. Then from the equality (62) and the assertion 3 of Theo-
rem 7 we obtain
R(L3) € [Hy], R(L3)~' = E — S(L3) € [Hy].

Therefore, the system V(L3) forms the Riesz basis of the space Hj. O

Remark 5.4. The operator L3 has the system of root functions in the means of the equalities
Lavag-1k(%, L3) = Agxv2g-1x(%, L3) + &9 020k (, L3),
n
2n-1
Cg,k = 2\/572” (Pq) " Cpqr 4= 1,2,...,
p=1

Lavpgi(x, L3) = Agxvog-1x(x,L3), q=0,1,....
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We consider the system of functions

Vs = {vq,k,;;(x) € Hy:vgp3(x) = v41(x)vx, g =0,00, k= 1,00}.

Remark 5.5. The systems V(L3) and V3 are squarely close in the space H

6 THE SPECTRAL BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL-OPERATOR EQUATION
WITH INVOLUTION

Consider the spectral problem

n
(=1)"D¥'u+ A%u+ Y as (DF 'u(x) + DFlu(l-x)) = Au, (63)
s=1
tu= DY 'u(0) — DY u(1) + lu =0, (64)
Cuju = DY ?u(0) — D 2u(1) =0, (65)
with
mj
Ciu =Y (bjroD5u(0) + bj,1Diu(1)), j=1,2,...,n (66)

r=0
Let L be the operator of the problem (63)—(66) and

n
Lu=(=1)" D¥u+ A"u+ Y a, (D?f‘lu(x) + D2 1y(1 - x)) ;
s=1
ueD(L), D(L)={ue€Hy:lju=0,j=12,...,2n}.
We can prove that

LUqul,k(xr L3) = )\q,kUqul,k(xl L3) + g{%qu,k(xl L3)r q= 1! 2/ vy
n

Cox = Ept V2R Y (1 ey (o) (<4 +2) g =12
j=1

Loggx(x, L3) = Agxvzg-14(x,L3), q=0,1,....
Consequently, V(L) = V(L3) and the following theorem is true.

Theorem 9. Suppose that the Assumption Py holds. Then for the any numbers by, a; €
R, r=0,1,...,mp, j, p=1,2,...,n we have 1) the eigenvalues of the operators Ly and L
coincide;

2) the system V(L) of the root functions of the operator L is complete and minimal in the
space Hy .

3) if in addition the Assumption P, holds, then the system V(L) forms the Riesz basis in
the space Hj.

Let

=) 2 faivg(x, L), for = (f,wqx(x,L); Hy).
k=1 :

Remark 6.1. From the definition of the Riesz basis of Hilbert space and the third statement of
Theorem 9 for any f € H; we obtain the relation

Killfi Hall> < Y Y 1foxl® < Kullfs Hal” (67)
k=14q=0
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7 THE BOUNDARY VALUE PROBLEM WITH HOMOGENEOUS CONDITIONS WITH INVOLUTION

We consider the following boundary problem

n
(~1)"D¥'w+ A¥w+ Y a; (DE'w(x) + DF (1 -x)) = f, (68)
s=1
tiw = DY 'w(0) — DY 'w(1) + Ilw =0, (69)
loyjw = DY w(0) — DY *w(1) =0, (70)
where
m;
Giw =Y (bj0Dsw(0) + bjr1Diw(1)), j=1,2,...,n. (71)
r=0

Let W(L) be a biorthogonal system of functions from V(L) in the space H;.

Theorem 10. Suppose that the Assumption Py holds. Then for arbitrary numbers by o, a; € R,
r=0,1,...,mp,jp€ {1,2,...,n}, and function f € H; there exists a unique solution of the
problem (68)—(71).

Proof. The solution of the problem (68)—(71) can be determined by the relation
w = Z Z W kg x(x, L). (72)
=149=0

Substituting the relations (67), (72) into the equation (68) we obtain

-1 -1 241 _
Wag—1k = A fog—1k Wagk = Ay foghk = AgicCuifo—1hr 9 k=12,
Therefore,

Wy 14> < Kislfog-14/% (73)
ok < Kio(| fog-1x1* + [f20k?), 4 k=1,2,.... (74)
Taking the assumption f € H; and the inequalities (67) into account we obtain that

lw; Hi|| < Ku7||f; Hall, w € H.
Consider the function h; = A%*w

[ee]

h =Y (foxvox(x, L) + Y (" A;;}fzq—l,kvzq—l,k(xi)
k=1 g=1 (75)

+ (Z%M;ﬁfzq,k - )\;13 Zi" gtli,kuq—l,k>UZq,k(xr L))).
Taking the assumption f € H; and the inequalities (67) into account we obtain that

lh1; | < Kagl|f; Hall, b € Hi.
Consider the function iy = (—1)"D3"w

hy =3 3 (05" Agpfag-1402g-1k(%, L)
=1 (76)

k=1
+ (P?"A;;}fzq,k — 207" )H;]%g;,kuq—l,wUZq,k(xr L)).

From the equalities (76) we get ||hy; H1|| < Kyo||f; H1l|, h2 € Hi.
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n
Consider the function i3 = Y_ as(DZ¥ 'w(x) — D> w(1 — x))

s=1

Z Z Z —1y1 2] YA qu, ,;;%gg,kuq—l,k)UZq—l,k(xrL)- (77)

Taking the assumption f € H; and the equalities (77) into account we obtain that

|h3; Hy|| < Koo f; Hyl|-

From the definition of the space H», inequalities (75)—(77) and Cauchy’s inequality we get

1
|w; Hy < K|l f; Hi|| < o0, Koy = 3(max(K3;, Kig, Kig))2.

Thus w € H,. O
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BuBuaeThest HeAOKaAbHA KpalfoBa 3ahava AASI AMdpepeHITiaAbHO-OIIepaTOPHOTO PiBHSHHS Tap-
HOTO MOPSIAKY, SIKMI MiCTUTh OIlepaTop iHOBOAMOLiI. AOCAIAXYEThCS 3apada 3 IePiOAVYHMMI Kpa-
JIOBMMM yMOBaMM AASI AMicpepeHITiaAbHOTO PiBHSHHSI, KOedillieHTH SIKOTO € HecaMOCIP KeHMMM OTle-
paropamu. BcraHOBAEHO, IO OnepaTop 3aAadi Mae ABa iHBapiaHTHI MiAITPOCTOPM, MOPOAXKEH] OIe-
paTopoM iHBOAIOIIIT Ta ABi MiACKCTEMM CHCTEMM BAACHUX (PYHKIIIN, siKi € 6asucamu Picca B KOXHO-
MY 3 IIAITPOCTOPiB. AAsI AMdpepeHITiaAbHO-0NepaTOPHOTO PiBHSHHS MapHOTO MOPSIAKY BUBYAEThHCSI
3ahava 3 HECAaMOCTIPSDKEHVMIY KpallOBVMMM YMOBaMH, sIKi € 36ypeHHSIMM IIepiOAMYIHMX YMOB. Bu-
BYEHO BUIIAAKM, KOAM 30ypeHi YMOBI € PeTyASPHUMM, aAe He CMABHO peryasipHuMI 3a bipkrodpom
Ta HeperyAsipaumu 3a bipkrodom. BusHaueHO BAacHi 3HaUeHHs i eAeMEHTM CUCTEMM KOPeHeBIX
dyuK1Iii V onmepaTopa 3apadi, SIKa € IOBHOIO Ta MiCTUTD HeCKiHUeHHe UMCAO TIPMEAHAHMX (PYHKITIN.
OTpuMaHO AOCTaTHI YMOBY, IIpU SIKMX cucTeMa V e 6asucom Picca. BusHaueHO yMOBYM iCHYBaHHS Ta
€AVHOCTi pO3B’sI3KY 3aAadi 3 OAHOPIAHVMMIM KPafOBVMMM yMOBaMH, SIKMIL IIO6YAOBAHO Y BUTASIAL PSIAY
3a cucremoro V.

Kontouosi cnosa i ppasu: omeparop iHBOATOII, AMdpepeHITiaAbHO-OIIepaTOpHe PiBHSHHS, BAACHI
dyukuii, 6asuc Picca.



