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ON THE CONVERGENCE OF MULTIDIMENSIONAL S-FRACTIONS WITH
INDEPENDENT VARIABLES

In this paper, we investigate the convergence of multidimensional S-fractions with independent
variables, which are a multidimensional generalization of S-fractions. These branched continued
fractions are an efficient tool for the approximation of multivariable functions, which are repre-
sented by formal multiple power series. For establishing the convergence criteria, we use the con-
vergence continuation theorem to extend the convergence, already known for a small region, to a
larger region. As a result, we have shown that the intersection of the interior of the parabola and
the open disk is the domain of convergence of a multidimensional S-fraction with independent
variables. Also we have shown that the interior of the parabola is the domain of convergence of
a branched continued fraction, which is reciprocal to the multidimensional S-fraction with inde-
pendent variables. In addition, we have obtained two new convergence criteria for S-fractions as
consequences from the above mentioned results.
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1 INTRODUCTION

Establishing convergence criteria for the classes of functional branched continued fractions
with independent variables is one of the most important tasks of their studying.

A convergence criteria have been given in [1, 2, 5] for multidimensional regular C-fractions
with independent variables
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where the ai(k), i(k) € I, k > 1, are complex constants such that jk) #0,i(k) € I, k > 1,

T = {i(k) - i(k) = (i1,d2,...,0), 1 <ip <ipq, 1<p<k ig=N}, k>1,

denote the sets of multiindices, and where z = (z1,2,...,2N) € CN, in [8] for multidimen-
sional g-fractions with independent variables
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where the sy is positive constant and the Si(k), i(k) € Zy, k > 1, are real constants such that
0 < gy < Li(k) €Ly, k> 1,and z € CY, in [6] for multidimensional associated fractions
with independent variables

N b'(l)zil i (—1)‘51‘111‘2191-(2)21-121-2 i (—1)‘512/13bi(3)zi221-3
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where the bi(k), i(k) € Iy, k > 1, are complex constants such that bi(k) #0,i(k) € I,k > 1,and
5k,p is the Kronecker delta, 1 < k,p < N,z € CN, and in [7] for multidimensional J-fractions
with independent variables
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=1 + Zn =1 9i2) T2 + (21 9i3) T 23 +
where the pj ) and g;(), i(k) € Zy, k > 1, are complex constants such that p;) # 0, i(k) € Iy,
k > 1,and z € CV. In this paper, we investigate a convergence of multldlmensmnal S-fraction
with independent variables

N ci1)Zi Ci(2)Zi 2 Cii3)Zi
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where the Ci(k)/ i(k) € Iy, k > 1, are real constants such that Ci(k) > 0,z € CN,and reciprocal
to it

»—\|»—\

i (1)%i 121 Ci(2)Ziy i Ci(3)%is %)
: 12:1 1 + i3:1 1 +

We note that the multidimensional S-fraction with independent variables (1) is multidi-
mensional generalization of S-fraction

€12 €z (32
b ol 3

1 +1+ 1+ ®)
where the ¢, k > 1, are real constants such that ¢, > 0,k > 1,z € C. A convergence result for
S-fraction is as follows (see Theorem 4.58 [9, p. 136]).

Theorem 1. Let (3) be an S-fraction and let H = {z € C : |arg(z)| < 7} be the complex plane
cut along the negative real axis. Then the following statements hold.
(A) The S-fraction (3) converges to a function holomorphic in ‘H if at least one of the two
series
i C1C3 ... CZk,ll > Co2C4...CoK—2
=1 C2Cq . ..Cok =1 C1C3...Cok—1

diverges.

(B) If the S-fraction (3) converges at a single point in H, then it converges at all points in H
to a holomorphic function.

(C) A sufficient condition for an S-fraction (3) to converge to a function holomorphic in H
is that there exists a constant M > 0 such thatc, < M, k > 1.
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2 CONVERGENCE

We give two convergence criteria for multidimensional S-fraction with independent vari-
ables (1). For use in the following theorems we introduce the notation for the tails of (1):

Qfgj) (z) =1, i(n) €T, n>1, (4)
k+1 Ci(k+1)Zik i1 g Ci(k+2)Ziy 2 (= Ci(n)Ziy
( lk+1 1 + ik+2:1 1 + + in:1 1

wherei(k) € Iy, 1 <k <n—1, n > 2.1tis clear that the following recurrence relations hold

QW) =1+ Y W gy e 1 <k<n-1,n2>2 (6)
irr1=1 Qi(k+1)(z)

Let fu(z) = 1+ 211 1 5 ('1) be the nth approximant of (1), n > 1.

f<1) z
Theorem 2. A multidimensional S-fraction with independent variables (1), where the c;y),
i(k) € Iy, k > 2, satisfy the conditions

i
Y Ciggny < ik) €T, k> 1, ?)

fy1=1
where r is a positive number, converges to a function holomorphic in the domain

cos?(a)
2r

Prm = U {z € CN ¢ |zx| — Re(zre %) <

, |zl < M, 1§k§N} (8)
ae(—m/2,m/2)

for every constant M > 0. The convergence is uniform on every compact subset of P, j.

Proof. Let a be arbitrary number from the interval (—7/2, 71/2) and let n be arbitrary natural
number. Using relations (6), by induction on k for arbitrary of multiindex i(k) € Z; we show
that the following inequalities are valid

>0, )

where 1 < k < n.

It is clear that for k = n, i(n) € Z,, relations (9) hold. By induction hypothesis that (9) hold
fork=p+1,p<n-1i(p+1) € Z,41, we prove (9) for k = p, i(p) € Z,. Indeed, use of
relations (6) for arbitrary of multiindex i(p) € Z, lead to

Q) (z)eit = ot 4 Z PH Zipr® "
i(p) 1p+1 1 Q p—i—l)( )efux

In the proof of Lemma 4.41 [9] it is shown that if x > ¢ > 0 and v? < 4u +4,

, u+iv VuZ +02 —u
min Re — = — . (10)
—co<y<+oo X+ 1Y 2x
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We set u = Re(ci(pﬂ)ziﬁle*zm), v = Im(ci(pﬂ)ziﬁle*zi“), x = Re(QfZBH)(z)e’i”‘),
= Im(QEFp)H)(z)e*i“). Then for the arbitrary index i,;1, 1 < iy, 1 < ip, it follows from

(7) and (8) that

2
iy iy cos” ()
Citps)Zipne 2] — Re(cigpynyzi, e ) < 5

From this inequality it is easily shown that v? < 4u + 4.
Using (6)—(10) and induction hypothesis, we obtain

, ¢ z; | —Re(z; e 2
Re(QE(n;)(z)e*’“) > cos(a) — Y (p+1) (17| (Ziy )

ipy1=1 2Re(Q((p)+1)( Je= )

> 0.

Z‘ .
XF’: Ci(p+1) €O8(4) - cos(a)

> cos(a) — P z—

ZP+1:1
It follows from (9) that Qf(nk)) (z) # 0 for all indices. Thus, the approximants f,(z), n > 1, of

(1) form a sequence of functions holomorphic in P, y;.
Again, let « be arbitrary number from the interval (—7t/2,77/2). And, let

‘ 2
Pa,a,r,M = {Z € CN |Zk| Re(zke_zm) < U'C%r(“)’ |Zk| <oM, 1< k < N} ’ (11)
where 0 < 0 < 1. We set
c= érlrlanN Ci(1)- (12)
Using (9), (11) and (12), for the arbitrary z € Puorm, Puorm C P, we obtain for n > 1
(1|23 | 2ceM
|fu(z \<1+Z Bl iy 2M e,
1Re(Q( )( z)e— i) /=1 cos(a)

where the constant C(P, ¢, pm) depends only on the domain (11), i.e. the sequence {f,(z)} is
uniformly bounded in P, ; , .
Let K be an arbitrary compact subset of P, p1. Let us cover K with domains of form (11).
From this cover we choose the finite subcover P“jlgj,r, M, 1 <j <k Weset
C(K) = max C(Pu,0,r,m)-

1<j<k

Then for arbitrary z € K we obtain |f,(z)| < C(K), for n > 1, i.e. the sequence {f,(z)} is
uniformly bounded on each compact subset of the domain (8).
Let m = max{c,r,1/(2MN)} and let

1
;Cm:{ZGIRNI 0<Zk<m,1§k§N}

Then for the arbitrary z € L, L1 C P, M, we obtain

. 1 o
It follows from Theorem 1 [4] with g;x) = 1/2, i(k) € Iy, k > 1, that (1) converges in L,,. Hence

by Theorem 24.2 [10, pp. 108-109] (see also Theorem 2.17 [3, p. 66]), the multidimensional S-
fraction with independent variables (1) converges uniformly on compact subsets of P, s to a
holomorphic function. O
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The following theorem can be proved in much the same way as Theorem 2 using Theo-
rem 4 [4].

Theorem 3. A multidimensional S-fraction with independent variables (1), where the c;y),
i(k) € Iy, k > 2, satisfy the conditions Ci) < T i(k) € Iy, k > 2, where r is a positive number,
converges to a function holomorphic in the domain

N ‘ 2 N
Dy pm = U {z eCN: ) <|zk| —Re(zke_zw‘)) < Coszr(oé)’ Yzl < M}

ae(—m/2,m/2) k=1 k=1
for every constant M > 0. The convergence is uniform on every compact subset of D, .

Next, we give two convergence criteria for multidimensional S-fractions with independent
variable (2). In addition to (4) and (5), for the tails of (2) we introduce the following notation:

N .oz i
©) (. — (m) (. — Ci(1)#i
Qi(O) (Z> - 1! Qi(O) (Z) =1+ Z 1 + 1'2;1

i1=1

Ci(2)Ziy 1 Ci(n)Ziy
. > 1.
A Dl e

ip=1

And, thus, the nth approximant of (2) we may write as g,(z) = 1/ Ql%gl) (z),n>1.
Now we shall prove the following result.

Theorem 4. A multidimensional S-fraction with independent variables (2), where the c;y),
i(k) € Iy, k > 1, satisfy the conditions

i1
Z Ci(k) <r, l(k) ey, k>1, (13)

ir=1
where r is a positive number, converges to a function holomorphic in the domain

cos?(«)

P, = U {z € CN: |z| — Re(ze 2™) < P

,1<k<N } : (14)
ae(—m/2,m/2)
The convergence is uniform on every compact subset of P;.

Proof. Let a be arbitrary number from the interval (—7/2, 771/2). By analogy with (9) it is easy
to prove the validity of the following inequalities

cos(a)
2

>0, (15)

wheren > 1,0 < k < n-—1,i(k) € Z, if k > 1. It follows from (15) that Qf(r’kgl)(z) % 0 for
all indices. It means that the approximants g,(z), n > 1, of (2) form a sequence of functions
holomorphic in P;.

Again, let « be arbitrary number from the interval (—7t/2, 7/2). And, let

0 cos?(a)

Puor = {z ceCN: |z¢| — Re(zke’Zi”‘) < o

,1§k§N}, (16)
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where 0 < ¢ < 1. Using (15) for the arbitrary z € Py r, Pa,o,r C Pr, we obtain for n > 1
1 2
(7)) = Re(Qz(&;l)(z)e—m) < cos(a) Puer).
where the constant C(P,,r) depends only on the domain (16), i.e. the sequence {g,(z)} is
uniformly bounded in Py s .

Let KC be an arbitrary compact subset of P,. Let us cover K with domains of form (16).
From this cover we choose the finite subcover Py, ¢,.r, Payosrr ---» Payor- We set C(K) =
max;<j<k C(Pa;0,r). Then for arbitrary z € K we obtain |gx(z)| < C(K), forn > 1, ie. the
sequence {g,(z)} is uniformly bounded on each compact subset of the domain (14).

Let £, = {z eRN: 0<z < ﬁ, 1<k< N} . Then from (13) for the arbitrary z € £,,
L, C P,, we obtain

m < 4ik_1’ l(k) € Ik, k> 1.

It follows from Theorem 2 [4], with Si(k) = 1/2,i(k) € Iy, k > 1, that (2) converges in £,. Hence
by Theorem 24.2 [10, pp. 108-109] (see also Theorem 2.17 [3, p. 66]), the multidimensional S-
fraction with independent variables (2) converges uniformly on compact subsets of P, to a

holomorphic function. O

Finally, the following theorem can be proved in much the same way as Theorem 4 using
Theorem 5 [4].

Theorem 5. A multidimensional S-fraction with independent variables (2), where the c;y),
i(k) € Iy, k > 1, satisty the conditions c;) < r, i(k) € Iy, k > 1, wherer is a positive number,
converges to a function holomorphic in the domain

N
D, = U {z ecV: Y <|zk| - Re(zke_zm)> < COS;({X) } :

ae(—m/2,71/2) k=1
The convergence is uniform on every compact subset of D;.

The following two corollaries are an immediate consequences of Theorems 2 and 4 respec-
tively.

Corollary 1. An S-fraction (3), where the ci, k > 2, satisfy the conditions ¢y < r, k > 2, where
r is a positive number, converges to a function holomorphic in the domain

1
Him = {ZEC. arg<z+5>

for every constant M > 0. The convergence is uniform on every compact subset of H, 1.

<, |z| <M}

Corollary 2. An S-fraction
1 ciz ¢z c3z
T+ 1+ 1 +1+
where the ¢y, k > 1, satisfy the conditions ¢, < r, k > 1, where r is a positive number,
converges to a function holomorphic in the domain
<},

1
H,=4z€C: |arg | z+ —
= e o (e g
The convergence is uniform on every compact subset of H,.

We note that, in view of Theorem 1, we conclude that Corollaries 1 and 2 give us two new
convergence criteria for S-fractions.

4
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AOCAiAXyeTbesT 301KHICTh 6araTOBUMipHIMX S-ApO6iB 3 HepiBHO3HAUHMMY 3MIiHHVMMY, SIKi € 6ara-
TOBUMIPHMM y3aTaAbHEHHSIM S-ApobiB. Li riansicTi AaHIIOTOBi Apo6u € epeKTMBHMM IHCTPYMEHTOM
AAST HaOAVDKeHHST (pYHKIIINA, 3aAaHMX (POPMAABHVMMY KpaTHMMI CTETIEHeBUMY psiaaMit. AAsT BCTa-
HOBAEHHSI KpUTepiiB 361KHOCTi BUKOPUCTOBYETHCSI TeOpeMa MPO IMPOAOBXEHHsI 361KHOCTI i3 yXke
BiaOMOI MaAaoi obaacTi A0 6iAbIIOL. Y pe3yAbTaTi MOKa3aHO, IO MepeTHH MapaboAiuHol i KpyroBol
obaacrTeit € 06AaCTIO 361KHOCTI 6araToBMMipHOTO S-Apoby 3 HepiBHO3HAUHMMM 3MiHHMMM, a Mapa-
boaiuHa 06AACTb € 06AACTIO 36IKHOCTI TIAASICTOTO AQHIIOTOBOTO APOGY, SIKMIT € 0bepHeHNM A0 bOa-
raTOBMMipHOTO S-Apoby 3 HepiBHO3HaUHMMM 3MiHHMMM. KpiM TOTO, OTpMMaHO ABa HOBMX KpUTepil
361>KHOCTi AAST S-ApODOiB SIK HACAIAKY 3 BUITIE 3TaAQHMX Pe3yAbTaTiB.

Kntouosi cniosa i ppasu: 361XHICTh, piBHOMIpHA 361XHICTb, S-Api6, baraToBuMipHMT S-Apib 3 He-
PiBHO3HAUHVMM 3MiHHVIMIL.



