ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp
Carpathian Math. Publ. 2018, 10 (1), 114-132 KapmnaTcpki maTem. my6a. 2018, T.10, Nel, C.114-132
do0i:10.15330/cmp.10.1.114-132

(L)

KACHANOVSKY N.A.

ON WICK CALCULUS ON SPACES OF NONREGULAR GENERALIZED FUNCTIONS
OF LEVY WHITE NOISE ANALYSIS

Development of a theory of test and generalized functions depending on infinitely many vari-
ables is an important and actual problem, which is stipulated by requirements of physics and math-
ematics. One of successful approaches to building of such a theory consists in introduction of spaces
of the above-mentioned functions in such a way that the dual pairing between test and generalized
functions is generated by integration with respect to some probability measure. First it was the
Gaussian measure, then it were realized numerous generalizations. In particular, important results
can be obtained if one uses the Lévy white noise measure, the corresponding theory is called the
Lévy white noise analysis.

In the Gaussian case one can construct spaces of test and generalized functions and introduce
some important operators (e.g., stochastic integrals and derivatives) on these spaces by means of a
so-called chaotic representation property (CRP): roughly speaking, any square integrable random vari-
able can be decomposed in a series of repeated Itd’s stochastic integrals from nonrandom functions.
In the Lévy analysis there is no the CRP, but there are different generalizations of this property.

In this paper we deal with one of the most useful and challenging generalizations of the CRP in
the Lévy analysis, which is proposed by E. W. Lytvynov, and with corresponding spaces of nonreg-
ular generalized functions. The goal of the paper is to introduce a natural product (a Wick product)
on these spaces, and to study some related topics. Main results are theorems about properties of the
Wick product and of Wick versions of holomorphic functions. In particular, we prove that an oper-
ator of stochastic differentiation satisfies the Leibniz rule with respect to the Wick multiplication. In
addition we show that the Wick products and the Wick versions of holomorphic functions, defined
on the spaces of regular and nonregular generalized functions, constructed by means of Lytvynov’s
generalization of the CRP, coincide on intersections of these spaces.

Our research is a contribution in a further development of the Lévy white noise analysis.
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INTRODUCTION

Development of a theory of test and generalized functions depending on infinitely many
variables (i.e., with arguments belonging to infinite-dimensional spaces) is an important and
actual problem, which is stipulated by requirements of physics and mathematics (in particular,
of the quantum field theory, of the mathematical physics, of the theory of random processes).
A successful (but, of course, not the only) approach to building of such a theory consists in
introduction of spaces of the above-mentioned functions in such a way that the dual pairing
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between test and generalized functions is generated by integration with respect to some prob-
ability measure. First it was the Gaussian measure, the corresponding theory is called the
Gaussian white noise analysis (e.g., [7,19,33,35,37]), then it were realized numerous generaliza-
tions. In particular, important results can be obtained if one uses the Lévy white noise measure
(e.g., [10,11,38]), the corresponding theory is called the Lévy white noise analysis.

In the Gaussian white noise analysis one can construct spaces of test and generalized func-
tions and introduce some important operators (e.g., stochastic integrals and derivatives) on
these spaces by means of a so-called chaotic representation property (CRP). This property consists,
roughly speaking, in the following: any square integrable random variable can be decomposed
in a series of repeated It6’s stochastic integrals from nonrandom functions (see, e.g., [39] for
a detailed presentation). In the Lévy white noise analysis there is no the CRP (more exactly,
the only Lévy processes with the CRP are Wiener and Poisson processes) [44]; but there are
different generalizations of this property: It6’s generalization [21], Nualart-Schoutens’ gener-
alization [40, 41], Lytvynov’s generalization [38], Oksendal’s generalization [10, 11], etc. The
interconnections between these generalizations are described in, e.g., [4, 10, 11, 29, 38, 43, 45].
Now, depending on problems under consideration, one can select a most suitable generaliza-
tion of the CRP and construct corresponding spaces of test and generalized functions.

In this paper we deal with one of the most useful and challenging generalizations of the
CRP in the Lévy analysis, which is proposed by E. W. Lytvynov [38] (see also [9]). The idea
of this generalization is to decompose square integrable with respect to the Lévy white noise
measure random variables in series of special orthogonal functions (see Subsection 1.2), by
analogy with decompositions of square integrable random variables by Hermite polynomials
in the Gaussian analysis (remind that the last decompositions are equivalent to decompositions
by repeated stochastic integrals). In a sense, the most natural spaces that can be constructed
using Lytvynov’s generalization of the CRP, are spaces of reqular test and generalized func-
tions [25]. In a moment these spaces are well studied. In particular, the extended stochastic
integral and the Hida stochastic derivative on them are introduced and studied in [14, 25],
operators of stochastic differentiation — in [12, 13, 16], some elements of a Wick calculus —
in [15]. But, as in the Gaussian analysis, in connection with some problems of the mathe-
matical physics and of the stochastic analysis (in particular, of the theory of stochastic equa-
tions with Wick-type nonlinearities), it is necessary to introduce into consideration so-called
spaces of nonregular test and generalized functions in terms of Lytvynov’s generalization of the
CRP [25], and to study operators and operations on these spaces. Note that, as distinct from
the Gaussian analysis, now the spaces of regular generalized functions are not embedded into
the spaces of nonregular generalized functions, and, accordingly, the spaces of nonregular
test functions are not embedded into the spaces of regular test functions. Moreover, one can
widen the extended stochastic integral from the space of square integrable random variables to
the spaces of nonregular generalized functions, and, accordingly, to restrict the Hida stochas-
tic derivative and the operators of stochastic differentiation to the spaces of nonregular test
functions; but the extended stochastic integral cannot be naturally restricted to the spaces of
nonregular test functions, and, accordingly, it is impossible to widen in a natural way the Hida
stochastic derivative and the operators of stochastic differentiation to the spaces of nonregular
generalized functions. Therefore it is necessary to introduce and to study natural analogs of
the above-mentioned operators on the corresponding spaces. The stochastic integrals, deriva-
tives, operators of stochastic differentiation, and their analogs on the spaces of nonregular test



116 KACHANOVSKY NL.A.

and generalized functions are studied in detail in [25,30, 31]. The goal of the present paper is
to make the next natural step — to introduce a natural product (a Wick product) on the spaces
of nonregular generalized functions, by analogy with the Gaussian analysis [34] and with the
Lévy analysis on the spaces of regular generalized functions [15], and to study some related
topics (Wick versions of holomorphic functions, an interconnection between the Wick calculus
and the operators of stochastic differentiation). Main results of the paper are theorems about
properties of the Wick product and of the Wick versions of holomorphic functions. In partic-
ular, we prove that, as in the regular case, the operator of stochastic differentiation is a differ-
entiation (satisfies the Leibniz rule) with respect to the Wick multiplication. In addition we
show that the Wick products and the Wick versions of holomorphic functions, defined on the
spaces of regular and nonregular generalized functions, constructed by means of Lytvynov’s
generalization of the CRP, coincide on intersections of these spaces.

Note that some results of the paper can be transferred to weighted symmetric Fock spaces,
by analogy with [32]. This gives an opportunity to extend an area of possible applications
of these results. In particular, one can transfer them to any spaces isomorphic to the above-
mentioned Fock spaces.

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a probability triplet connected with L, convenient for our consider-
ations; then we describe Lytvynov’s generalization of the CRP; and construct a nonregular
rigging of the space of square integrable random variables (the positive and negative spaces
of this rigging are the spaces of nonregular test and generalized functions respectively). The
second section is devoted to the Wick calculus: in the first subsection we introduce and study
the Wick product and the Wick versions of holomorphic functions on the spaces of nonregular
generalized functions; in the second subsection we consider a question about an interconnec-
tion between Wick calculuses in the regular and nonregular cases; in the third subsection we
study an interconnection between the Wick calculus and the operator of stochastic differentia-
tion.

1 PRELIMINARIES

In this paper we denote by || - ||y or | - |y the norm in a space H; by (-,-)y the real, i.e.,
bilinear scalar product in a space H; and by (-, -) iy or ((-, -)) y the dual pairing generated by the
scalar product in a space H.

1.1 A Lévy process and its probability space

Denote R, := [0, +00). In this paper we deal with a real-valued locally square integrable
Lévy process L = (Ly),eRr, (a random process on R ; with stationary independent increments
and such that Ly = 0) without Gaussian part and drift. As is well known (e.g., [11]), the
characteristic function of L is

E[e®l1] = exp [u /]R(eiex -1- i0x)v(dx)] , (1)

where v is the Lévy measure of L, which is a measure on (R, B(R)), here and below B de-
notes the Borel c-algebra; E denotes the expectation. We assume that v is a Radon measure
whose support contains an infinite number of points, v({0}) = 0, there exists ¢ > 0 such that
Jg X2 lu(dx) < oo, and [ x?v(dx) = 1.
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Let us define a measure of the white noise of L. Let D denote the set of all real-valued
infinite-differentiable functions on R with compact supports. As is well known, D can be
endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [8];
see also Subsection 1.3). Let D’ be the set of linear continuous functionals on D. For w € D’
and ¢ € D denote w(¢) by (w, ¢); note that actually (-,-) is the dual pairing generated by
the scalar product in the space L?(IR.) of (classes of) square integrable with respect to the
Lebesgue measure real-valued functions on R [8]. The notation (-, -) will be preserved for
dual pairings in tensor powers of the complexification of a rigging D’ D L?>(R;) D D.

Definition 1. A probability measure u on (D’,C(D’)), where C denotes the cylindrical o-
algebra, with the Fourier transform

{09 (o) = / ip(u)x _q _j duv(d €D 2
L) =exp [ [ ipx)duv(dx)], €D, @
is called the measure of a Lévy white noise.

The existence of y follows from the Bochner-Minlos theorem (e.g., [20]), see [38]. Below we
assume that the o-algebra C(D’) is completed with respect to .

Denote by (L?) := L2(D’,C(D'),u) the space of (classes of) complex-valued square in-
tegrable with respect to y functions on D’ (in what follows, this notation will be used very
often). Let f € L?(R;) and a sequence (¢, € D)ren converge to f in L2(R;) as k — oo
(as is well known (e.g., [8]), D is a dense set in L?(IR.)). One can show [10, 11,29, 38] that
(o, f) := (L?) — kli_{go(o, @) is well-defined as an element of (L?).

Denote by 1, the indicator of a set A. Put 1)) = 0 and consider (o, 1g,)) € (L?), u € Ry.
It follows from (1) and (2) that ((o, 1[0,u)>)u cr, Can be identified with a Lévy process on the

probability space (triplet) (D', C(D’), u) (see [10,11]). So, one can write L, = (o, 1j,)) € (L?).

Remark 1. The derivative in the sense of generalized functions (e.g., [17]) of a Lévy process (a
Lévy white noise) is L (w) = (w,.) = w(-), where § is the Dirac delta-function. Therefore L'
is a generalized random process (in the sense of [17]) with trajectories from D', and y is the
measure of L in the classical sense of this notion [18].

Remark 2. A Lévy process L without Gaussian part and drift is a Poisson process if its Lévy
measure v is a point mass at 1, i.e., if for each A € B(R) v(A) = 61(A). This measure does not
satisfy the conditions accepted above (the support of §1 does not contain an infinite number of
points); nevertheless, all results of the present paper have natural (and often strong) analogs
in the Poissonian analysis. The reader can find more information about peculiarities of the
Poissonian case in [29], Subsection 1.2.

1.2 Lytvynov’s generalization of the CRP

Denote by & the symmetric tensor multiplication, by a subscript C — complexifications of
spaces. Set Z, := INU {0}. Denote by P the set of complex-valued polynomials on D’ that
consists of zero and elements of the form

Ny -
flw) =Y (@, f"), weD, feDg", Nyez,, fN) 0,
n=0
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here Ny is called the power of a polynomial f; (w®0, fO)y .= f0) ¢ Dgo := C. The measure y
of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (2) and
properties of the measure v, see also [38]), then P is a dense set in (LZ) [42]. Denote by Py,
n € Z., the set of polynomials of power smaller or equal to 1, by P, the closure of P, in (L?).
Letforn e NP, := P, S P,_1 (the orthogonal difference in (LZ)) Py := Py. Itis clear that

(L%) = & P, .
n=0
Let f") € DE", n € Z,. Denote by : (0™, f()) the orthogonal projection of a monomial
<o®n,f(n)> onto Py,. Let us define real, i.e., bilinear scalar products (-, ).yt on DE", n € Z, by
setting for ("), ¢(") ¢ D%n

(F, 8wt = [ (@, f0) 0, g00) (). @
' Jpr
The proof of the well-posedness of this definition coincides up to obvious modifications with
the proof of the corresponding statement in [38].

By | - |ext we denote the norms corresponding to scalar products (4), i.e.,

|f(n) lext := (f(n)zfm)ext-

Denote by ngz , n € Z, the completions of Dg)” with respect to the norms | - |ext. For

F e %" define a Wick monomial : (0®n, F(M) def (Lz)—klim :<o®”,fk(")> :, where Dg” >
—00

ext

fk” — FM as k — oo in ngt) (the well-posedness of this definition can be proved by the
method of "mixed sequences"). One can show that : (020, F(0)): = (o®0 F(0)) = F(0) and
(0, FMY: = (o, FD) (cf. [38]). .

Since, as is easy to see, for each n € Z the set {: (o®", f()):|f(n) ¢ D¢"} is dense in Py,
the next statement from (3) follows.

Theorem 1. (Lytvynov’s generalization of the CRP, cf. [38]) A random variable F € (L?) if and

only if there exists a unique sequence of kernels F") ¢ ngt) such that

o]

=Y (o F). (5)

n=0

(the series converges in (L?)) and ||FH%L = [ |F(w)|?u(dw) = E|F]> = £ g nt|FM) 2

|ext

< 00,

Remark 3. In order to consider many problems of the Lévy white noise analysis, in terms of
Lytvynov’s generalization of the CRP it is necessary to know an explicit formula for the scalar
products (-, -)xt. Such a formula is calculated in [38]; in another record form (more convenient
for some calculations) it is given in, e.g., [13, 15, 16].

Denote H := L?(R.), then H¢ = L?(R4 )¢ (in what follows, this notation will be used very

often). It follows from the explicit formula for (-, -)ext that H gxl Hc, and for n € IN\{1} one
(n)

can identify 7-[®” with the proper subspace of H,.; that consists of "vanishing on diagonals"
elements (roughly speaking, such that F (n )(ul, .., uy) = 0if thereexistk,j € {1,...,n}: k #j,
but u; = u;). In this sense the space HﬁZ} is an extension of H%“ (this explains why we use the
subscript "ext" in our designations).
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1.3 A nonregular rigging of (L?)

Denote by T the set of indexes T = (13, T2), where 71 € N, 17 is an infinite differentiable
function on R such that for all u € Ry 1(u) > 1. Let H be the real Sobolev space on R of
order 71 weighted by the function 1, i.e., H+ is the completion of D with respect to the norm
generated by the scalar product

(o9 = (9900 + L o004 w) ia)i

here ¢l¥l and y!¥l are derivatives of order k of functions ¢ and 1 respectively. It is well known

(e.g., [8]) that D = pr lim H, (moreover, for any n € N D®" = prlim HY", see, e.g., [6] for
TeT TeT
details), and for each T € T H- is densely and continuously embedded into # = L?(R.).

Therefore one can consider the chain
D'OH DHDH:DD,
where H_, T € T, are the spaces dual of H. with respect to . Note that by the Schwartz

theorem [8] D’ = ind lTim H_+ (it is convenient for us to consider D’ as a topological space
TE

with the inductive limit topology). By analogy with [28] one can easily show that the measure
u of a Lévy white noise is concentrated on H_z with some T € T, i.e., u(H_z) = 1. Excepting
from T the indexes T such that y is not Concentrated on H_,, we will assume, in what follows,
that foreacht € T u(H--) = 1.

Denote the norms in H, ¢ and its tensor powers by | - |, i.e., for f(”) € H?g, neZ.,
f] = \/(f("),]T),H@n (note that ’H®% = Cand |[fO|, = |[fO)).

The next statement easily follows from results of [25].

Lemma 1. There exists T € T such that for eachn € Z the space ”HT, c Is densely and con-
") Moreover, for all f(n) HS}? 2, < nle| f2,,

ext”

tinuously embedded into the space H,.
where ¢ > 0 is some constant.

ext

It follows from this lemma that if for some T € T the space H is continuously embedded
into the space H, then for each n € Z the space ’H%g is densely and continuously embedded

into the space #") and there exists ¢(t) > 0 such that for all f(") € H?E

ext’
o < mle(0)" | f[3 (6)

In what follows, it will be convenient to assume that the indexes T such that H is not contin-
uously embedded into Hs, are removed from T.

Accept on default ¢ € Z4 and T € T. Denote Py := {f = ZHNLO :(o®n, f)y . f(n) ¢
DE", Ny € Zy } C (L?). Define real scalar products (-, )7,y on Py by setting for

Ng

Fm Lo ) = B 67h): P
n=0
min(Ng,Ng)
(fr8)ea:= 3, (m)?27(f, ") :,. (7)

n=0 wC
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Let || - ||« be the corresponding norms, i.e., |||ty = \/(f, f)rq- In order to verify the well-
posedness of this definition, i.e., that formula (7) defines scalar, and not just quasiscalar prod-
ucts, we note that if f € Pyy and ||f||r; = 0 then by (7) for each kernel f(") we have |f(")|; = 0
and therefore by (6) | f(")|.x; = 0. So, in this case f = 0in (L?).

Let (H:)q be completions of Py with respect to the norms | - |4, (H<) := prlim(H<)g,

q—0
D) := prlim (H,),. Asiseasy tosee, f € (H:), if and only if f can be presented in the form
p q y q y p
TeT,g—r00
f= Z (o1, fmy:, ) H (8)
n=0
(the series converges in (H¢),), with
1124 = 1 f1%,), = 3 (r)227[fV]2 < oo )
(He)q
n=0

(since for each n € Z ”Hf% - Hext, for f1) ¢ H%g :(0®", fM): is a well defined Wick
monomial, see Subsection 1.2). Further, f € (H:) (f € (D)) if and only if f can be presented
in form (8) and norm (9) is finite for each g € Z, (foreach v € T and each g € Z,).

Lemma 2. For each T € T there exists qo(T) € Z+ such that the space (H), is densely and
continuously embedded into (L?) for each q € Ngo(z) == {90(7),90(7) +1,...}.

The proof coincides up to obvious modifications with the proof of the corresponding state-
ment in the real case [25]. In view of this lemma one can consider a chain

(D)>(H ) D(H 1) gD (L*)D(He)gD (He) D(D), TET, g €Ny ),  (10)

where (H-1)—q, (H-7) = ind lim(H_)_p and (D’) = ind lim (H_z)_, are the spaces dual

q'—o0 TeT,q'—o0

of (H+)g, (H<) and (D) with respect to (L?).

Definition 2. Chain (10) is called a nonregular rigging of the space (L?). The positive spaces
of this chain ()4, (H+) and (D) are called Kondratiev spaces of nonregular test functions.
The negative spaces of this chain (H_+)_4, (H-<) and (D’) are called Kondratiev spaces of
nonregular generalized functions.

Finally, we describe natural orthogonal bases in the spaces (%) ;. Let us consider chains

D" > HM S HE) S HEE S DEM, (1)

ext

m e Zy (form = 0D®0 = ’H?% =1

ext

- 7—[(0) rc = D¢ © = = C), where HS’?{C and D‘{:(’”) =
(m)

ind lim 7-[( )C are the spaces dual of ’H®g and D%m with respect to H,., . In what follows, we

TeT

denote by (-, -)ext the real dual pairings between elements of negative and positive spaces from
chains (11), these pairings are generated by the scalar products in H gxt The next statement

follows from the definition of the spaces ()4 and the general duality theory (cf. [25,28]).
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Proposition 1. There exists a system of generalized functions

{ <O®m1Fe(xt)>' € (% ) | ext G H( T)C’ me Z+}

such that
1) for Fe(;:) € Héxt) C 7-[( ) : (o ®m,Fe(xt)>: is a Wick monomial that is defined in Subsec-
tion 1.2;

2) any generalized function F € (H )4 can be presented as a series
F= Z :<o®m’Fe(;’:)> v e(xt) < H( T)C’ (12)
m=0

that converges in (H )y, i.e,
”FHZ*T,*q : HFHZ 2 g ‘ ext (m) OO, (13)
(H— Z

and, vice versa, any series (12) with finite norm (13) is a generalized function from (H_:) 4
(i.e., such a series converges in (H_¢)4);

3) the dual pairing between F € (H_1)_4 and f € (H.), that is generated by the scalar
product in (L?), has the form

<<F/f>>(L2) = Z m!<Fe(3Zl)rf(M)>E’xi’r (14)
m=0
where Fe(xt) € H(_r:),c and f\" () 7-[®C are the kernels from decompositions (12) and (8) for F

and f respectively.

Itisclear that F € (H_¢) (F € (D)) if and only if F can be presented in form (12) and norm
(13) is finite for some g € IN, () (for some T € T and some g € N ().

2 ELEMENTS OF A WICK CALCULUS

In this paper we construct a Wick calculus on the spaces (#_+); but, as is easy to verify, all
our results hold true up to obvious modifications on the space (D’).

21 A Wick product and Wick versions of holomorphic functions

One can introduce a Wick product and Wick versions of holomorphic functions on (#_+)
by different ways. We use the most natural and convenient from technical point of view clas-
sical way, based on a so-called S-transform.

Definition 3. Let F € (H_). We define an S-transform (SF)(A), A € D¢, as a formal series

o0

(SFY(A) == Y (B, A8m), = FL) Z A e, (15)

m=0 m=1

where F™") € H" )C are the kernels from (12) for F. In particular, (SF)(0) = F9 s1=1.

ext ext”’
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Remark 4. As is easily seen, each term in series (15) is well-defined, but the series can di-
verge. However, the last is not an obstruction in order to construct the Wick calculus (cf. [15]);
moreover, it is easy to obtain a simple sufficient condition under which series (15) converges.
Namely, by the generalized and classical Cauchy-Bunyakovsky inequalities

(SHYN| < X 1 Ly M= Y @ 2IER |y ) (2 IAR)
m=0 -

m=0 -
<[ X 277 Ey ‘im Y 27 AR = [[Fll—q—qy [ Y 27" |AZ"
m=0 -7C Y m=0 m=0

(see (13)). Therefore series (15) converges if F € (H_r)_gand A € Dc is such that |A|; < 2-9/2,
Note that the last inequality is true if and only if a function f) (o) := Ygo_o - (0®™ A®™M): €
(H<)g, in this case || fillcq = \/Zﬁ:o 29M|A|2" < oo (see (9)). Now one can define the S-
transform of F by the formula (SF)(A) = ((F, fa))(12) (cf. [34]), see (14). Note that in the
Gaussian (and Poissonian) analysis fy (o) = exp®{(o,A)}, where exp® is a Wick version of
the exponential function (e.g., [34]), and therefore f, is called a Wick exponential; in the Lévy
analysis this representation for f, does not hold.

Definition 4. ForF, G € (H_+) and a holomorphic at (SF)(0) functionh : C — C we define a
Wick product FOG and a Wick version h¥ (F) by setting formally

FOG := S Y(SF-SG), hO(F) := S~ h(SF). (16)

It is obvious that the Wick multiplication ¢ is commutative, associative and distributive
over a field C.

Remark 5. A function h can be decomposed in a Taylor series

(e 9]

h(u) = Y hw(u— (SF)(0))™. (17)

m=0
Using this decomposition, it is easy to calculate that

(9]

BO(F) = Y h(F — (SF)(0))", (18)

m=0

where FO" .= FO - .- OF, FO0 .= 1.

m times

Let us write out "coordinate formulas" for the Wick product and for the Wick versions
of holomorphic functions (i.e., representations of FOG and h%(F) via kernels from decom-
positions (12) for F and G and coefficients from decomposition (17) for /). We need a small
preparation: it is necessary to introduce an analog of the symmetric tensor multiplication on
the spaces 7-[(_7:),@, meZy.

Consider a family of chains

D™ D HOM D HE S HEM S DE™, m € Zy (19)
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(as is well known (e.g., [6,8]), ’H?TC and D‘f:@m ind lTlm ’H®’”C are the spaces dual of ’H®m
¢ Te

and Dg’” respectively; in the case m = 0 all spaces from chain (19) are equal to C). Since
the spaces of test functions in chains (19) and (11) coincide, there exists a family of natural

isomorphisms Uy, : Do’:(m) — DO’:@)m, m € Z, such that for all i ¢ Do’:(m) and f(") ¢ Dg’”

ext

<F(m) f(m)>ext <umF( )f(m)> (20)

ext 7 ext 7

(m)

It is easy to see that the restrictions of U, to .
spaces 7-[( )C and 7—[®

+c are isometric isomorphisms between the

Remark 6. As we saw above, ’ngz = Hc, therefore in the case m = 1 chains (19) and (11)

coincide. Thus Uy is the identity operator on Dq’:(l) = Do’:@)l = D¢. In the case m = 0 U is,
obviously, the identity operator on C.

For F( ) € 7-[( T)C and G( ™) € 7-[(_'72@, n,mée Z.,set

ext ext

5 +
e(xt) © G(Sxt) . un—&m [(uﬂpe(xt))@)(uiﬂ Ge(xt))} = H(—nr,g) (21)

It follows from properties of operators U, and of the symmetric tensor multiplication that
the multiplication ¢ is commutative, associative and distributive over a field C. Further, since

. (m) @m . . . .
U, : Hfr,c — H%C, m € Z, are isometric isomorphisms,

’ ext ext ‘ (n+m) = ‘(unFe(xt)>®(umGe(Tt)>‘H®nEm
e (22)
< |u” ext |’H®" |u"1 ext | | ext | |Gext | "1C'

T,

Finally, by (20) and (21) for A € D¢

<F( ) )\®n>ext<G( )A®m> = <un1:( n) A®”)<umG( )A®m>

ext”’ ext 7 ext’ ext ’

<(un1:( )) ® (UmG( )) Ay <(un1:( ))®(UMG( )) A@n+m)

ext ext ext ext

<unim[(unF( ))®(UmG( ))] A®n+m> ext = < e(xt)OG( ) A@n—l—m)ext.

ext ext ext 7

Using (16), (15) and this equality, by analogy with the Meixner analysis [28] one can prove the
following statement.

Proposition 2. ForF,..., F, € (H_7)

F1<> . <>Fn — Z :<O®m, Z Fl(kl) Oee e OF’ng)> . (23)

m=0 kq,kn€Z y:
k1+~~~+kn:m

in particular, for F,G € (H_+)

(9]

FOG = Z ®m Z ext ext > (24)
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Here Fj(kj) € H(_](i),c, j € {1,...,n}, are the kernels from decompositions (12) for E; F( )

ext
k)

H(—T,C/ ngfk) € H(f:g ), are the kernels from the same decompositions for F and G respec-

tively. Further, for F € (H_-) and a holomorphic at (SF)(0) = F9 functionh : € — C

ext

o m
WOF)=ho+ 3 (™" Yohn Y Fafl oo oE)s 25)
m=1 n=1 kl,...,knGN:
kq+-+kn=m

where F (k) S ’H(Q’C, k € Z., are the kernels from decomposition (12) for F; h, € C,n € Z,

ext
are the coetficients from decomposition (17) for h.

Remark 7. Formulas (24) and (25) can be used as alternative definitions of the Wick product
and of the Wick version of a holomorphic function respectively.

Itis clear that in order to give an informal sense to notions "the Wick product" and "the Wick
version of a holomorphic function", it is necessary to study a question about convergence of
series (23) and (25) in the spaces (H_+).

Theorem 2. 1) LetFy,...,F, € (H_1). Then F;{ - --OF, € (H_+). Moreover, the Wick multi-
plication is continuous in the sense that

[F10++-OF|-ri-q < fmax 2 0n + 1" IR ooy [Fall ey 29

where g € N issuch thatF, ..., F, € (7—[4) (g—1)-
be holomorphic at (SF)(0). Then h®(F) € (H,T).

2) LetF € (H_1) and a functionh : C — C

Proof. 1) 1t is sufficient to prove (26), the fact that F;0 - -- OF, € (H_¢) follows from this es-
timate. Let Fj(k) € H(l(;c be the kernels from decompositions (12) for F;, j € {1,...,n}; and

g € N be such that Fy,...,F, € (7—[, )—(q—1) (such g exists because by Schwartz’s theorem
Ho)= U (H-1)y (]N ) is deflned m Lemma 2), see, e.g., [8] for details). Using (23),
9€N (7)

(13), a known estimate for a norm H Zle a H2 <p Zle |a;|? and (22), we obtain

IO OFul2 e, = qu’”} Y B%Ye---oFf ’Hfﬁc

ki,.kn€Z:
kq+-+kn=m
o0 m T’H*kl l’l”l*klf"'*knfz
=Y omy y .. Y Fl(kl) <>..-an(lﬁql)OF,Smiklfmfk"’l)},z}_L(m)
m=0 k1=0 kr—0 ky_1=0 —TL
(e%) m T’H7k1 I’I”l*k17~~~fkn,2 (k) (m K
—gm 1 —ki—-- 1
<Y o2 m"m+1) Y | Y - Y FEVeooF - \Hgmc
m=0 k=0 kp=0 ky_1=0 K
o0 m I’I”l*kl m—k1—~~—kn,2 K k
D i Y S St T
m=0 k1=0 ko=0 ky_1=0 *TC
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momokmkeke (it
ke
<Y ¥ e L IR Ry e ETTRR
k1=0 k=0 ky—1=0 Hoce Howe
Dy (k) 2 R m_kl_m_k”*z Dy p(k2) 2
qu WFWmZZ Y, 2w 2\F2\<kz
*TC m=ky ko= kn—1=0 *TC
1) (K — o ky—-—k,
..o—(q 1)(m ki) [k ke \j{ (mky k)
—1,C
o m m—ky—-—ky_» ko (p(k2) 2
COIRI oy Yo Y- X 2@ ORI,
m=0k,=0 ky_1=0 *TC
o ky— - —k
o= (9-1)(m—ko—++—ky_1 ]F(m 2 ot ‘2 (m—ky——kp,_1)
7TC

where C(n) := maxycz, [Z_m(m + 1)”_1].
2) Let us establish that for some g € Z ||h®(F)|-1—; < oo, it is enough to assert that
hO(F) € (H_z). Let Fe(xt) € HQ/C, k € Z,, be the kernels from decomposition (12) for F. Since

by Schwartz’s theorem for some g € Z F € (H-1)_z, by (13) for each k we have |F, xt| ® <

| El ,T,,q~2‘77‘/ 2, Further, it follows from the holomorphy of h that there exists ' € Z such that

foreachn € Z. |h,| < 2‘7/”, where h,, € C are the coefficients from decomposition (17) for h.
Using these estimates, (13), (25), (22) and the estimate Y 1= C,’;;ll < 2m=1 we obtain

k... kn€N:
ky - tkn=m

() m
e L e Ve D O D . 4
m= /

kl,...,knEN:
ky+-+kn=m
2 = —qm L (k1) (kn) 2
< |h0| + Z 2 < Z |hﬂ| Z |Fext |H(k1) ) |Fext kn) )
=1 =1 kq,...kn€N:
" " klimwizm (28)
~ 2
2 2
<o LR L, )
= sk €N
" " kl%‘r +nkn—m

2
< ol + zzq”q (z @7 |F| ") < oo,

if g € Z is sufficiently large. O

Remark 8. Let h%(l—“ ), N € N, be the Wick version of the N-th partial sum of decomposition
(17) for h. It follows from calculation (28) thath%(l—“) — hO(F) as N — oo in (H_z).

Remark 9. One of generalizations of the Gaussian white noise analysis is a so-called biorthogo-
nal analysis (see [1,2,5,23,24,36]) that developed actively in 90th of the last century. Its main idea
is to use as orthogonal bases in spaces of test functions so-called generalized Appell polynomi-
als (or their generalizations), in this case orthogonal bases in spaces of generalized functions
are biorthogonal to the above-mentioned polynomials generalized functions. Over time the
interest to the biorthogonal analysis went down because of the lack of interesting applications.



126 KACHANOVSKY NL.A.

But methods developed within its framework, and some its results can be successfully used
in another generalizations of the Gaussian analysis, in particular, in the Lévy analysis. For
example, the proof of Theorem 2 is adopted from the biorthogonal analysis, cf. [24].

2.2 Interconnection between the Wick calculuses in the regular and nonregular cases

In the paper [15], in particular, a Wick product and Wick versions of holomorphic functions
are introduced and studied on so-called parametrized Kondratiev-type spaces of reqular generalized
functions of the Lévy white noise analysis [15,25]. As distinct from the Gaussian or Poissonian
analysis, these spaces are not embedded into the spaces of nonregular generalized functions,
but have with the last wide intersections (for example, (L?) is a part of all these intersections).
So, it is natural to consider a question about interconnection between the Wick calculuses
on the spaces of regular and nonregular generalized functions. The answer is very simple:
actually, on the above-mentioned intersections the Wick products and the Wick versions of
holomorphic functions, introduced in [15] and in this paper, coincide. Now we’ll explain this
in detail.

Definition 5. Accept on default f € [0,1]. Parametrized Kondratiev-type spaces of regular

generalized functions (L?)_ g and (L?)~F can be defined as follows: (L?)_ g consists of formal

series (5) such that HFH2 = =% o(n) P2 F 2 | < oo; (L2) P = 1nd_>11m(L2),§.
l/] (e 9]

The well-posedness of thls definition is proved in [15,25]. Note that the space of square
integrable random variables (L?) = (L?) is densely and continuously embedded into each

(Lz) P and therefore into (L2)~P.

Remark 10. Let (L?) 5 , (L?)F = prlim(L?) 5 be parametrized Kondratiev-type spaces of regular

q—> 0

test functions [15,25], i.e., the positive spaces of a chain (L?)~F > (LZ):g O (L?) D (Lz)g D

(L2)P. It is not difficult to understand that (Lz)ﬁ consist of elements of form (5) such that
HF”?B)? = Y2 o(n)1*P2a1|F(") 2 . < co. By analogy one can introduce spaces (”;‘-LT)C/,3 that

consist of formal series (8) such that HfH?H ° = Y2 o (n!)1 P21 f()|2 < oo, It is possible to
T)q

study properties of these spaces and of its projective limits, to introduce and to study operators
and operations on them; such considerations are interesting by itself and can be useful for
applications. But, in contrast to the Gaussian and Poissonian analysis, in the Lévy analysis
(”HT)g ¢ (L?) if B < 1, generally speaking, so, we cannot consider (Hf)g

of test functions.

Definition 6 ([15]). For F € (L2)~F we define an S-transform (SF)(A), A € D¢, as a formal
series

with B < 1 as spaces

[ee]

Z )\®m ext = F( ) + Z (F(m)/ A®m)extz (29)

m=1

where F(") ¢ H™) are the kernels from decomposition (5) for F (cf. (15)). In particular,

ext

(SF)(0) = F©, 51 = 1.
Definition 7 ([15]). For F,G € (L?)~P and a holomorphic at (SF)(0) functionh : C — C we
define a Wick product F $G and a Wick version h? (F) by setting formally (cf. (16))

FOG := S Y(SF-SG), KO(F) := S~ n(SF). (30)
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As in the nonregular case, the Wick multiplication 5 is commutative, associative and dis-
tributive over a field C, and the following statement is fulfilled (cf. Theorem 2).

Theorem 3 ([15]). 1) Let F, ..., F, € (L2)~P. Then £, - - - OF, € (L2)~F. Moreover, the Wick
multiplication is continuous in the sense that for any q,q' € Z such thatF, ..., F, € (LZ):g,

andg > ¢ +(1—pB)log,n+1

||F1<> T <>Fn||(L2):§ < n%%)ip_m(m + 1)n—1] HF1||(L2):§/ e ”FHH(LZ):I:,
(cf. (26)). 2) Let F € (L?)~F and a function h : C — C be holomorphic at (SF)(0). Then
hO(F) € (L2)~ L.

Remark 11. Theorem 3 can be proved with the use of "coordinate formulas" for the Wick prod-
uct and for the Wick versions of holomorphic functions on the spaces (L?)~F [15]. Formally
these formulas coincide with the corresponding formulas in the nonregular case, see Proposi-
tion 2. Actually, this coincidence is not accidental: the restriction of the multiplication ¢ to the
spaces H gzz ,n € Z, is an analog of the symmetric tensor multiplication on these spaces, the
proof of this fact coincides up to obvious modifications with the proof of the corresponding

statement in the real case [31].

Comparing (15) with (29), (16) with (30), and taking into account Theorems 2 and 3, we
obtain the following statement.

Theorem 4. 1) LetFy,...,F, € (H_) N (L?)~P. Then
F1<>"‘<>Fn :Flé"'él:n S (,Hfr)m(Lz)_ﬁ-

2)LetF € (H-7)N (L?)~F and a function h : C — C be holomorphic at (SF)(0) = (SF)(0).
Then h¥ (F) = h°(F) € (H_-)n (L?)~.

2.3 Interconnection between the Wick calculus and operators of stochastic differentiation

As is well known, a very important role in the Gaussian white noise analysis and its gen-
eralizations belongs to the extended stochastic integral and to its adjoint operator — the Hida
stochastic derivative. Together with these operators, it is natural and useful to introduce and to
study so-called operators of stochastic differentiation, which are closely related with the stochastic
integral and derivative. Roughly speaking, one can understand the stochastic differentiation as
a "differentiation" with respect to a "stochastic argument", i.e., the operator of stochastic differ-
entiation acts on an orthogonal decomposition of a (generalized) random variable in common
with an action of the differentiation operator on Taylor’s decomposition of a function. The op-
erators of stochastic differentiation can be used, in particular, in order to study some proper-
ties of the extended stochastic integral and of solutions of stochastic equations with Wick-type
nonlinearities.

As is known [3], in the Gaussian analysis the operator of stochastic differentiation of order
1 is a differentiation (i.e., satisfies the Leibniz rule) with respect to the Wick multiplication.
This important for applications property holds true in a Gamma-analysis (i.e., a white noise
analysis connected with a so-called Gamma-measure) [22], in a Meixner analysis [26,27], and
in the Lévy analysis on the spaces of regular generalized functions [15]. But, in contrast to the
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Gaussian case, in the Lévy analysis (in the same way as in the Gamma- and Meixner analysis)
the operators of stochastic differentiation (in the same way as the Hida stochastic derivative)
cannot be naturally continued from (L?) to the spaces of nonregular generalized functions,
see [30] for details. Nevertheless, one can introduce on these spaces natural analogs of the
above-mentioned operators. These analogs are introduced and studied (in a real case) in [30].
They have properties similar to properties of "classical" operators of stochastic differentiation
[13], and can be accepted as operators of stochastic differentiation on the spaces of nonregular
generalized functions. Now we’ll recall the definition of such operator of order 1, and will
show that this operator satisfies the Leibniz rule with respect to the Wick multiplication ¢.

Let Fe(xt) € H(_n;),c, m € N\{1}, g € Hrc. We define a generalized partial pairing
1)

<Fe(xt),g>gxt € H(_n;j by setting for any f("—1) ¢ H?g_l

(F), &Y ext, F D)oy = (ELY, g®F 1) oy, (31)

Since by the generalized Cauchy-Bunyakovsky inequality

[(Fert 8BS entl < IF |y 188"Vl < 1 yon Iglelf "l
this definition is well posed and

[(Fet 8hextlyyon 1 < 1By Ly I8l (32

7‘[

Definition 8. Let g € H,c. We define (the analog of) the operator of stochastic differentiation
(Do)(8) : (H-—x) = (H-—x) (33)

as a linear continuous operator that is given by the formula
Z m: (0", e(xt)/g>€Xt> (34)

where E™) ¢ HS’?{C are the kernels from decomposition (12) for F € (H_+).

ext

The proof of the well-posedness of this definition is based on estimate (32) and coincides
up to obvious modifications with the proof of the corresponding statement in a real case [30].
Let us define a characterization set of the space (H_+) in terms of the S-transform, setting
Br := S(H_¢) = {SF : F € (H_¢)} (cf. [15]). It is clear that B is a linear space, which

consists of formal series Zﬁz()(Fe(ﬁ), .om) ot (see (15)) with the kernels e(xt) € 7-[( ) ¢ satisfying

a condition: there exists g € N, () € Z such that } ;7 (2~ qm| ot |2 m < oo.lt follows from
77 C
Definition 4 and Theorem 2 that B is an algebra with respect to the pointwise multiplication.

Moreover, if we introduce on B; a topology induced by the topology of (H_+), then the S-
transform becomes a topological isomorphism between a topological algebra () with the
Wick multiplication and a topological algebra B, with the pointwise multiplication.
Denote by
de:Br — By, g€ Heg, (35)
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a directional derivative, i.e., for (SF)(-) = Yo _o(F (m) P O<UmF(m) @My e By (see

ext / ext /
(15), (20); F € (H_<), F, ™ ¢ 7-[( )C are the kernels from decomposition (12) for F)

7 “ext
dg(SF)(') = Z m um e(xt)'g® om= 1 Z m ext 'g® ®m_1)>3”

m=1 m=1 (36)
= Z m gxt Ig extrs” ®m*1>ext - ( (DP)(g))() c BT

wnn

(see (20), (31), (34) and (15)). Aswe see, directional derivative (35) is the image on B of operator
of stochastic differentiation (33) under the S-transform (in particular, (35) is a linear continuous
operator). Vice versa, operator of stochastic differentiation (33) is a pre-image of directional
derivative (35) under the S-transform, i.e., forall F € (H_.) and g € H.¢

(DF)(g) = S™'dySF € (H_<). (37)
Now we are ready to prove the main result of this subsection.

Theorem 5. Operator of stochastic differentiation (33) is a differentiation (i.e., satisties the
Leibniz rule) with respect to the Wick multiplication, i.e., forall F,G € (H_.) and § € H.¢

(D(FOG))(g) = (DF)(8)0G + FO(DG)(g) € (H—)- (38)

Proof. First we note that the expressions in the left hand side and in the right hand side of
(38) belong to (H_¢), this follows from the definition of operator (33) and Theorem 2. As for
equality (38), using (37), (16), the fact that the directional derivative satisfies the Leibniz rule,
and (36), we obtain

(D(FOG))(g) = S 'dg(S(FOG)) = S 'dg(SF - SG) = S™![(d4SF) - SG + SF - (d¢SG)]
=S'[(S(DF)(g)) - SG + SF- (S(DG)(3))] = (DF)(8)0G + FO(DG)(g),
which is what had to be proved. O

Corollary. Let F € (H_7),§ € Hic,and h : C — C be a holomorphic at (SF)(0) function.
Then

(DhO(F))(g) = W (F)O(DF)(g) € (H_x), (39)

where h'¢ is the Wick version of the usual derivative of a function h.

Proof. Using (38), one can prove by the mathematical induction method that for each m € Z

-1
(D(F = (SF)(©0) ") (g) = m(F = (SF)(0)) " O(DF)(g). (40)
Further, let hl%(F ), N € N, be the Wick version of the N-th partial sum of decomposition

(17) for h, i.e., h$(F) = LN_o i (F — (SF)(0)) ™ see (18). It follows from the linearity of the
operator D, (40), Theorem 2 and Remark 8 that

(DK, (F 2 hun (D (F = (SF)(0)) ") (8)

Om—1
— 3 hm(F — (SF)0) " 'O(DF)(g) = HO(FO(DF)(g)
m=1
in (H-:). On the other hand, it follows from Remark 8 and the continuity of the operator
(Do)(g) on (H—<) that (DA, (F))(g) — (Dh®(F))(g) as N — oo in (H_¢). Therefore equality
(39) is valid. O
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In a forthcoming paper we’ll consider an interconnection between the Wick calculus and
stochastic integration on the spaces of nonregular generalized functions, and give examples

of integral stochastic equations with Wick-type nonlinearities.
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Po3BuTOK Teopii OCHOBHMX i y3araabHeHMX (PYHKIIIN, IIIO 3aAeXKaTh Bia HEeCKiHUEHHOI KiABKOCTi
3MIHHMX, € BaXKAMBOIO Ta aKTyaABHOIO 3apa4elo, sIKa 06yMOBAeHa oTpebamut (pismKm i MaTeMaTIKIL.
OapH 3 yCIminmHNX mAXOAIB A0 TO6YAOBM TaKoi TeOpii moAsITae y BBeA€HHI IPOCTOPIB BUIIIe3raAaHIX
yHKIII TaKMM UMHOM, IO AyaAbHe CITApIOBAHHS MiX OCHOBHVMMI i y3araabHeHMMM (PYHKIIiSIMI
IIOPOAXYEThCSI IHTETPYBaHHSIM 3a A€SIKOIO JIMOBipHiCHOIO Mipoo. Crodarky Iie 6yaa raycciBcbka
Mipa, 3roaoM OyAM 3pobaeH] WncAeHH] y3araabHeHHs. 30KpeMa, BaKAWBi pe3yAbTaTV MOXKHA OTPH-
MaTV, BUKOPMCTOBYIOUM Mipy 6iroro mrymy Aesi, BiATIOBiAHa Teopist Ha3MBa€ThCs AHANI30M 0in020
wymy Aesi.

Y raycciBcbKOMY BUMITaAKy MOXKHa 6yAyBaTV IPOCTOPM OCHOBHMX i y3araabHeHMX (PYHKII Ta
YBOAUTHU AesIKi BaXXAUMBi omepaTopy (HapMKAaA, CTOXacTMUHI iHTerpaAM i IMOXiAHI) Ha IMX ITpoO-
CTOpax 3a AOIIOMOTOIO Tak 3BaHOI siacmugocnti xaomuuroeo poskaady (BXP): rpybo kaxyum, KOXHY
KBaApaTUYHO iHTETPOBHY BUIIAAKOBY BEAMUMHY MOXXHA PO3KAACTU Y PSIA MOBTOPHMX CTOXACTAYHAX
inTerpanis ITo Bia HeBUIaAKOBUX (PYHKLIN. Y aHaAi3i AeBi Hema BXP, are € pisHi y3araabHeHHS i€l
BAACTMBOCTI.

Y wiif cTaTTi MM MaEMO CIpaBy 3 OAHMM 3 HaMOiABIII KOPUCHUX i TIEpCIIEKTUBHMX y3araAbHEHb
BXP y ananisi AeBi, sanponioHoBaHMM €. B. AUTBMHOBIMM, Ta 3 BiAIIOBIAHMMM ITPOCTOpPaMM Hepery-
ASIPHMX y3araAbHeHMX pyHKIIiN. MeToIo CTaTTi € yBecTV IpMpOAHIIL AOOYTOK (BiKiBChKMIT AOOYTOK)
Ha IMIX TIPOCTOPaXx, Ta BUBUMTHU AesIKi OB’ s13aHi muTanHs. OCHOBHMMM pe3yAbTaTaMy € TEOPeMM IIPO
BAACTMBOCTI BiKiBCbKOTO AOOYTKY i BikiBChbKMX Bepciit roroMopdoHMX pyHKIIiN. 30KpeMa, MU AOBO-
AVIMO, IIIO OIIEPATOP CTOXACTMYHOTO AVcpepeHIIiIOBaHHS 3aA0BOABHSIE IIPaBMAO AelibHiIla BiAHOCHO
BikiBcbKOTO MHOXeHHsI. KpiM Toro, Mm moxasyemo, 1o BikiBChbKi AOGYTKM i BikiBcbKi Bepcii roao-
MopdHMX pYHKIIiM, BU3HAUeH] Ha IPOCTOPax PETYASPHMX i HeperyAsipHIMX y3aTaAbHEHMX (OYHKIIIMN,
o6y AOBaHMX 3a AOIIOMOTOI0 AMTBMHIBCBKOTO y3araabHeHHs BXP, criBrmaaaioTh Ha mepeTmHaX X
MPOCTOPiB.

Harri AocAiaXeHHS € BHECKOM Y TTOAQABIIINIA PO3BUTOK aHaAi3y 6iroro mymy Aesi.

Kntouosi cnosa i ¢ppasu: mporec Aesi, BiKiBcbKMiT AOOYTOK, cTOXacTHUHe AMdpepeHIifoBaHHSI.



