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UNCONVENTIONAL ANALOGS OF SINGLE-PARAMETRIC METHOD OF
ITERATIONAL AGGREGATION

When we solve practical problems that arise, for example, in mathematical economics, in the
theory of Markov processes, it is often necessary to use the decomposition of operator equations
using methods of iterative aggregation. In the studies of these methods for the linear equation
x = Ax + b the most frequent are the conditions of positiveness of the operator A, constant b and
the aggregation functions, and also the implementation of the inequality p(A) < 1 for the spectral
radius p(A) of the operator A.

In this article for an approximate solution of a system composed of the equation x = Ax +b
represented in the form x = Ajx + Ayx + b, where b € E, E is a Banach space, Aj, A; are linear
continuous operators that act from E to E and the auxiliary equation y = Ay — (¢, A2x) — (¢, b)
with a real variable y, where (¢, x) is the value of the linear functional ¢ € E* on the elements
x € E, E* is conjugation with space E, an iterative process is constructed and investigated

¥ Alx()
21D — Ax() 4 p 4 L(y(ﬂ) —y ) (< ),

(@,xM) ¥ A
i=0

YO = A0 — (g, A5x®) — (g,0).

The conditions are established under which the sequences x("), y("), constructed with the help of
these formulas, converge to x*, y* as a component of solving the system constructed from equations
x = A1x + Apx + b and the equation y = Ay — (¢, Axx) — (¢, b) not slower than the rate of conver-
gence of the geometric progression with the denominator less than 1. In this case, it is required that
the operator A be a compressive and constant by sign, and that the space E is semi-ordered. The
application of the proposed algorithm to systems of linear algebraic equations is also shown.
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INTRODUCTION

Actuality of the investigation of iterative aggregation methods connected with necessity of
solving big dimensional problems with the aid of multiprocessor computable technical devices
using decompositional algorithms for corresponding mathematical models. Multiparametric
iterative aggregation has appeared to be an effective in mathematical economy, in investigation
of Markov processes etc. (see [1-3,6,7,13]) due to ability to make an acceptable results even
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in circumstances when convergence conditions of algorithms is unknown (see [5, p. 158]). The
simplest single parametric method of iterative aggregation for equation

x=Ax+b (1)

in [5, p. 155-158] was described by formula

(nt1) _ (¢,b) (n)
* (@, x(M) — Ax(m) AT+, @)

where (¢, x) are values of linear functional ¢ on elements x of Banach space E, A : E — E.
Instead of (2) we can consider

(n+1)
n+l) (q)’x )Ax(n) +b. (3)
(@, ()

In [4,8-12] it is launched method of algorithm (3) convergency investigation and its multi-
parametric generalization under conditions of not semi ordered space E and inequality p(A) <
1 of spectral radius p(A) of operator A does not demand.

x!

1 MAIN SUGGESTIONS

Let us suppose that equation (1) can be considered in the form
x=A1x+ Ayx+b, 4)

where b € E, E is a Banach space, Aj, A are linear continuous operators that act from E to E.
Let us denote by (¢, x) values of linear functional ¢ € E* on elements x € E, E* is the adjoint
space to E, Aj is the adjoint operator to A, E’ is a set of real numbers. Let us consider the
system formed by equation (4) and additional equation

y = Ay — (¢, Aox) — (¢,b) (5)

with the real unknown y. Let us define a norm of {x,y} (x € E,y € E’) by formula

[yl = /P + [yl

where ||x|| is a norm of element x € E, |y| is an absolute value of number y € E’. We denote
by € a set of pairs {x,y} (x € E,y € E’) that satisfy the equation

(¢, x) +y=0. (6)

Theorem 1. Let the following conditions hold
1) pair (x*,y*) is the solution of system (4), (5) in E=ExE;
2) the following equality takes place

Ajp=Ap, AeE, A#1. (7)

Then (x*,y*) € e.



298 DEeMKIV I.I., KOPACH M.I., OBSHTA A.F., SHUVAR B.A.
Proof. From the condition 2) and the equalities (4), (5) for x = x*, y = y* it follows that

(@, x%) +y" = (@, A1x") + (¢, A2x") + (@, b) + Ay" — (¢, A2x") — (@, b)
= (A1, x") + Ay* = A(9,x") +y'].

Since A # 1, then we obtain that (x*, y*) satisfies (6). O

Theorem 2. Let us consider operator a(x)w which is continuous by x € E and linear and
continuous by w € E'. Let us suppose that equality

(p,a(x))=A, A€eE,A#1 (8)

takes place and condition 2) of Theorem 1 holds. If {x,y} € ¢, x € E, y € E/, then for pair
{u, v}, which is the solution of system

u=A1x+Ax+b+a(x)(y —o), )
v=Av— (¢, Axx) — (¢,b), (10)
we can state that {u, v} € .

Proof. Let us prove that (1, v) satisfies (6). Really,

(p,u) +v= (¢, A1x) + (¢, A2x) + (¢, b) + (¢, a(x))y — (¢, a(x))v
+ Av — (¢, A2x) — (¢,b) = A[(@, x) +y].

Therefore (u,v) € e. O

Theorem 3. If the condition 2) of Theorem 1 takes place, then the operator
ax) = — = (m < o) (a1

satisfies equality (8).

Proof. Using (7) we obtain from (11) following;:
Y (¢, Ajx) (Ajg, A7 'x)
(poalx)) = = e =
(¢, x) ,EO Al (¢, x) _EO Al

1= 1=

I
I

m . m—1
AY (9, A7) A Y Alg,x)
_ i=1 _ 1=0 — A

m—1 m—1
(¢, x) ';0 Al (¢, x) ';0 Ai

The theorem is proved. O
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2 ITERATIVE FORMULAS AND SUFFICIENT CONDITIONS OF CONVERGENCY

Let us construct sequence {x("}, {y("} with starting approximation (x(0),y()) € ¢ by
formulas

g Aﬁx(”)
L) Ap() Lha i=1 _ (y(n) o y(nJrl)) (m < 0), (12)
(q),x(”)) Y. Al
i=0
) = Ay (g, Apx ™) — (g, b), (13)

where x € E,y € E/, A € E/, A # 1. From (5) and (13) we get

(1) _ = 1 (n) _ yx
y y' =y (e A = X))

From the Theorems 1 and 2 we obtain equality

y" =yt = (g2 —x).
From (12), (13) and (11) we get

() — x))
1-A

x(n+1) - A(x(n) _ x*) _ a(x("))(q),x(") _ x*) —I—a(x(”)) ((P/AZ

= AW —x) = T (g1 — )0 - x)),
or
g Aax(n)
2D e A(x(n) _ x*) N i=1 (q)’ (I _ A)(x(?l) — x*)), (14)

where [ is the identity operator.

Theorem 4. Let the conditions of Theorems 1-3 take place. If for (x,y) € ¢, w = x — x* and
operator H(x)w defined by the formula

the inequality
I (0[] < ¢ (15)

holds for g; < 1, then every sequence of {x("}, {y(™}, constructed by formulas (12), (13),
converges respectively to x*, y*, as a components of solution of system (4), (5), not slowly then
geometry progression with multiplier q;.

Proof. 1t is sufficient to use formulas (14), inequality (15) and condition ¢q; < 1. O
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3 APPLICATION TO A SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

Let us consider case when A1, A, are the squared matrices of order N, N < co. For (x,y) €
e, w € E’ let us define operator Hy(x)w by the formula

' (1= A)w,

(1-A)gTx ¥ A,
=0

where notation goTx used instead of (¢, x), q)T is a line vector, x is a row vector, T is the trans-
position symbol, A € E/, A # 1.

Theorem 5. If for matrices A1, Ay conditions of theorems 1 — 3 take place and inequalities
||[H2(x)|| < g2 < 1 hold, then sequences {x™}, {y("}, constructed by formulas (12), (13)
converge to x* and y* respectively as a components of solution of system (4), (5) not slowly
then geometry progression with multiplier q;.

Proof. The theorem is a partial case of Theorem 4. O

4 EXPANSION ON CASE m = oo

Let us change formula (12) as follows

Ag(I = Ap)~Tx(
(¢, x(m)

where A € E/,A # 1,x € E, and consider iterative process, which describes pair of formu-
las (16) and (13) with starting approximation {x(o),y(o)} € ¢. Let us restrict ourselves to the
situation, when A < 1.

For {x,y} € ¢, w = x — x* let us define operator H3(x)w by the formula

xH) = Ax() 4 p 4

(1—=A7), (16)

Al(l — A1>_1x

Hi(x)w = Aw — (1 — A) (o 0)

(¢, (I = A)w). (17)

Theorem 6. Let the conditions of Theorems 1-3 take place and for operator H3(x)w, defined
by the formula (17), following inequality holds

[IH3(x)[] < g5 < 1. (18)

Then sequences {x("}, {y("}, constructed with the help of formulas (13), (16), converge to x*
and y* respectively as a components of solution of system (4), (5) not slowly then geometry
progression with multiplier q3.

Proof. The proof of the theorem can be obtained by notions (17), (18). O



UNCONVENTIONAL ANALOGS OF SINGLE-PARAMETRIC METHOD OF ITERATIONAL AGGREGATION 301

Theorem 6 is an analogue of Theorem 4. Using similar way we can obtain analogue of

Theorem 5 for systems of linear algebraic equations.
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ITpu po3p’s3aHHI MpaKTUYHMX 3aBAAHB, 110 BUHMKAIOTh, HAMPMKAAA, B MaTeMaTUUHill eKOHOMi-
1Ii, B Tepil MapKiBChKMX MPOLIECiB, YaCTO AOBOAUTHCSI BUKOPUCTOBYBATI ACKOMIIO3MIIIIO OIepaTop-
HMX PiBHSIHD 3a AOIIOMOTOIO METOAIB iTepaTMBHOIO arperyBaHHs1. B AOCAIAKeHHSIX VX METOAIB AAST
AiHiViHOTO piBHSHHS X = AX + b HalfyacTilMMM € BUMOTM AOAATHOCTI ollepaTopa A, BIABHOTO uAe-
Ha b Ta arperyiounx (oyHKIIIOHaAIB, @ TAKOX BUKOHaHHS HepiBHOCTI p(A) < 1 AASI CIIEKTPaABHOTO
paaiyca p(A) onepatopa A.

B cTaTTi AASI HAGAVKEHOTO pO3B’SI3aHHS CUCTEMY, CKAAAHOI 3 piBHSHHS X = Ax + b, ipeacTaB-
A€HOTO y BUTASIAL X = A1x + Apx + b, ae b € E, E — banaxis npocrip, A1, Ap — AiHilHI HenlepepBHi
omeparopy, 1o AifoTs 3 E B E, i Aonomixsoro piBaHsHHS i = Ay — (¢, A2x) — (¢, b) 3 alitcHuM He-
BiaoMuM Y, Ae (¢, Xx) — 3HauUeHHS AiHIHOTO dyHkuionary ¢ € E* Ha eremeHTax x € E, E* —
crpstxeHmit 3 E mpocTip, mo6yA0BaHO i AOCAIAXKEHO iTepaTHMBHIMIA IIpoliec

3 Alx(n
x(n+l) = Ax(n) + b + Zzlim(y(n) — y(”"’_l)) (m < oo),

(@, xM) ¥ Af
i=0

Y = Ay — (g, Apx™)) — (,b).

BcraroBAGHO YMOBM, IpM BUKOHAHHI SIKMX IIOCAIAOBHOCTI x(”),y(”>, obyAOBaHi 3 AOIIOMOTOIO
X POPMYA, 36iraloThest BIATIOBIAHO A0 X*, Y™ SIK KOMIIOHEHT PO3B’SI3Ky CHCTEeMM, CKAAAEHOI 3 PiB-
HSHHSI X = A1x + Apx + b Ta pisastHESL ¥ = Ay — (¢, Apx) — (¢, b), He IOBiABHIIIIE BiA IIBUAKO-
CTi 361XHOCTi reoMeTpUUHOI TIporpecii 31 3HAMEHHMKOM, MEHIIMM Bia oAmevli. ITpyu npomy BuMa-
raeThest, 06 onepaTop A 6yB CTHCKYIOUMM Ta 3HAKOCTAAMM, a IPOCTip E HamiByIOpsIAKOBaHVIM.
IToxa3aHO TaKOX 3aCTOCYBaHHS 3allPOIIOHOBAHOTO aATOPUTMY AO CHCTeM AiHIVHMX aArebpaldHmx
PiBHSIHD.

Kontouosi cnosa i ¢ppasu: AeKOMIIO3MIIisI, iTepaTVBHe arpeTyBaHHsI, arperyodi (pyHKITIOHAANL.



