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SLIMANE A.

SPACES GENERATED BY THE CONE OF SUBLINEAR OPERATORS

This paper deals with a study on classes of non linear operators. Let SL(X,Y') be the set of all
sublinear operators between two Riesz spaces X and Y. It is a convex cone of the space H(X,Y) of
all positively homogeneous operators. In this paper we study some spaces generated by this cone,
therefore we study several properties, which are well known in the theory of Riesz spaces, like order
continuity, order boundedness etc. Finally, we try to generalise the concept of adjoint operator. First,
by using the analytic form of Hahn-Banach theorem, we adapt the notion of adjoint operator to the
category of positively homogeneous operators. Then we apply it to the class of operators generated
by the sublinear operators.

Key words and phrases: Riesz space, Banach lattice, homogeneous operator, sublinear operator,
order continuous operator.
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INTRODUCTION

The theory of Riesz spaces plays an important role in several branches of mathematics,
in particular in the geometry of Banach spaces and the theory of linear operators where the
notion of Banach lattice play a central role. In this work we generalize some vector lattice
properties to the category of sublinear operators i.e., positively homogenous and subadditive.
The set obtained is not a Banach space but a positive convex cone. Hence, this paper deals
with the extension of this set and their properties. The paper is organized as follows.

In Section 1 we recall some basic definitions and properties of Riesz spaces, we also recall
the notion of sublinear operators between a vector space X and a Riesz space Y.

In Section 2 we introduce the spaces spanned by different cones of sublinear operators. In
other hand we present some principal notions concerning the theory of Riesz spaces like order
continuity, order ideal, and we apply these notions on these spaces.

In Section 3 we introduce the adjoint of positively homogeneous operator. We first establish
the following result.

Let u be in £(X,Y). Then the bounded adjoint operator u* of u can be extended to a
bounded linear operator u* belongs to L(H*(Y), H*(X)) such that #* = u* on Y* and ||u*|| =
|u*|| = ||u||, where H*(Y) is the space of all bounded positively homogeneous functionals on
Y, Y* is the topological dual space of Y and £(X,Y) is the Banach space of all bounded linear
operators from X into Y. Finally we adapt the existence theorem of bounded adjoint linear
operator to the category of positively homogeneous operators as follows.
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Let X, Y be two Banach spaces and T € H(X,Y). Then, T; € L(H*(Y), H*(X)) such that
|T|| = || T;; ||, where T} denotes the adjoint of T and H (X, Y) is the Banach space of all bounded
positively homogeneous operators from X into Y.

1 PRELIMINARIES

In this section, we introduce some terminology concerning Riesz spaces and Banach lat-
tices. These spaces are well known. For more details, the interested reader can consult, for
example, the references [2,4-6]. But for our convenience, we include some recalls. We also
introduce the class of positively homogeneous operators.

Let X be a real vector space. Then X is called a Riesz space (or vector lattice) if it is an
ordered vector space with the additional property that the supremum of every nonempty finite
subset of X exists in X. We denote the supremum of the set {x,y} by sup{x,y} or x V y.
Similarly, inf{x, y} or x A y denote the infimum of the set {x, y}.

Let X be a Riesz space. The subset X = {x € E : x > 0} is called the positive cone of
X (which is salient, i.e. X N (—=X*) = {0}) and the elements of X are called the positive
elements of X.

Let X be a Riesz space, equipped with a norm. The norm in X is called a Riesz norm if

x| < lyl = lIxll < llyll,

where |x| = sup{x, —x}. Denote x* = sup{x,0}, x~ = sup{—x,0}. Then obviously we have
x = xt —x~ and |x| = x* + x~. Note that this implies that for any x € X, the elements x
and |x| have the same norm. A Riesz space X equipped with a Riesz norm, is called a normed
Riesz space. If the norm is complete, X is called a Banach lattice. The convex cone X+ is norm
closed. A complete Banach lattice is a Banach lattice such that every order bounded set in X
has a supremum.

By a Riesz subspace (or a vector sublattice) of a Riesz space X we mean a linear subspace E
of X so that sup{x, y} belongs to E whenever x,y € E. A vector subspace E of a Riesz space X
is said to be an order ideal or simply ideal whenever |x| < |y| and y € E imply x € E.

A non-empty subset D is said to be upwards directed (respectively downwards directed)
if for all x1,x, € D there is x3 € D such that x; V xp < x3 (respectively x1 A xp > x3), if
sup D = x exists and D upwards directed (respectively inf D = y exists and D downwards
directed) we shall write D 1 x (respectively D | y).

Definition. Let X be a vector space and Y be a Riesz space. An operator T : X — Y is
1- positively homogeneous if for all x in X and A in R we have

T(Ax) = AT(x),
2- subadditive if for all x,y in X we have
T(x+y) < T(x) +T(y).

The operator T is sublinear if it is positively homogeneous and subadditive. The operator
T is said to be superlinear if T is positively homogeneous and superadditive (i.e. T(x +y) >
T(x) + T(y) for all x,y in X). We have for all x in X

—T(—x) < T(x). (1)
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We denote by H(X,Y) (respectively SL(X,Y)) the real vector space of all positively homo-
geneous (the set of all sublinear) operators from X into Y, equipped with the natural order
inducted by Y, i.e.

T<S if T(x)<S(x), VxeX

The set SL(X,Y) is a pointed convex cone of H(X,Y) which is not salient.

Let T be in SL(X,Y). We will denote by VT the subdifferential of T, which is the set of all
linear operators 1 : X — Y such that u(x) < T(x) for all x in X. We know (see, for example,
[1]), that VT is not empty if Y is a complete Banach lattice and T(x) = sup{u(x) : u € VT},
moreover, the supremum is attained. If Y is simply a Banach lattice, then VT is empty in
general (see [3]).

If X is a Banach space and Y is a Banach lattice, then we will denote by SL(X,Y) the set
of all bounded (= continuous) sublinear operators from X into Y and by £(X,Y) the Banach
space of all bounded linear operators from X into Y. Let T be in SL(X,Y). We have (see [1]),
that T is bounded if and only if u is bounded for all u in VT. The set SL(X, Y) (respectively the
space L(X,Y)) is a subset (respectively a subspace) of the space H(X,Y) of all homogeneous
bounded operators from X into Y. The space (X, Y) is normed by the standard norm

ITI| = sup [[T(x)].

[l€l <1

2 SPACES SPANNED BY SUBLINEAR OPERATORS
Let X be a vector space and Y be a Riesz space. We denote by
ASL(X,Y) =SL(X,Y) —SL(X,Y)
the subspace of H(X,Y) spanned by SL(X,Y), i.e.
ASL(X,Y) ={T—-S5:T,5S € SL(X,Y)}.
We denote by ASL(X,Y) the subspace of all bounded operators in ASL(X,Y).

Proposition 1. Let X be a vector space and Y be a Riesz space. Then H(X,Y) is a Riesz space.
If in addition X is a Banach space and Y is a Banach lattice, then H(X,Y) is also a Banach
lattice.

Proof. Tt is sufficent to endow the vector space H(X,Y) with the partial order induced by Y.
It is clear that H(X,Y) is a Riesz space with respect to this order. Suppose now X be a Ba-
nach space and Y be a Banach lattice. Let (T,), C H(X,Y) be a Cauchy sequence, then
nl—iffoo | Tutp — Tl = 0 implies that nl_i)rJrrloo | Tutp(x) — Tu(x)|| = 0 forall x in X.

As Y is a Banach space there is T(x) € Y such that 1_1)1}: Tu(x) = T(x). Since Ty, (ax) =

n (o]
aT,(x) for all @ in R and all x in X we have T(ax) = LH’E Tu(ax) = LH’E aTy(x) = aT(x)
n (e n (e 9]

for all « in Ry and all x in X. Thus, T is positively homogeneous. The operator T is clearly
bounded and hence #(X,Y) is a Banach space. Let now T,S € H(X,Y) such that |T| < ||
then || T(x)|| < [|S(x)]|| forall x in X, so ||T|| < ||S|| and H(X,Y) is a Banach lattice. O
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Proposition 2. Let X be a vector space and Y be a Riesz space. Then
(a) the space ASL(X,Y) is a Riesz subspace of H(X,Y);

(b) if X is a normed space and Y be a normed Riesz space, then ASL(X,Y) is a normed
Riesz space.

Proof. (a) The space ASL(X,Y), which is included in H(X, Y), is partially ordered by the natu-
ral order inducted by Y. Consider T, S in ASL(X,Y). Then, there are Ty, Ty, S1, Sz in SL(X, Y)
such that

T=T, —T,S=S5 —S.

For all x in X we define T V S by
(TVvS)(x)=T(x)VS(x).
Using for x,y,z in X the identity x Vy +z = (x +z) V (y + z), we obtain

(TVS)(x) = (Th = T2)(x) V (S1 = S2)(x)
= (Ti+52)(x) V (S1 4+ T2)(x) — (T2 + S2)(x) = T(x) — 5(x)

with T, S € SL(X,Y), where

T:(T1+52)V(51+T2) and §:T2+52.

(b) It is clear that ASL(X,Y) is a normed Riesz space with the norm induced by the stan-
dard norm of H(X,Y) on ASL(X,Y), i.e. by thenorm || T||asz(x,y) = sup [[T(x)]. O

lx[[<1

Proposition 3. Let X be a vector space and Y be a Dedekind complete Riesz space. Then
H(X,Y) is also a Dedekind complete Riesz space.

Proof. Let M C H(X,Y) be a nonempty subset, which is upper bounded. Then there is
S € H(X,Y) such that forall T € M we have T < S, thatisforall T € M and all x € X
we have T(x) < S(x). This implies that for all x € X the set {T(x) : T € M} is upper bounded
by S(x) € Y. Since Y is a Dedekind complete Riesz space, the supremum of {T(x) : T € M}
exists in Y. We can put now R(x) = sup{T(x) : T € M}. Itis clear that R is a positively
homogeneous operator. O

Remark 1. For all T = P — Q in ASL(X,Y) there is o7 € SL(X,Y) and @ super linear
(i.e. —@y sublinear) such that o < T < @7 and ¢1(—x) = ¢_7(x) (respectively p;(—x) =
@_1(x)) for all x in X. It suffices to define g1, ¢ by

¢r(x) = P(x) + Q(—x), 9r(x) = —P(=x) - Q(x)
and use the inequality (1).

Definition 1. Let T € ASL(X,Y) be an operator between two Riesz spaces. The operator T
is said to be order bounded if T carries order bounded subsets of X to order bounded subsets
ofY.
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Definition 2. Let T € ASL(X,Y) be an order bounded operator. Then T is said to be

(1) order continuous if for any downwards directed set D in E having infimum the null
element (i.e. D | 0) we have inf(|T(x)|,x € D) =0inY;

(2) o-order continuous if for all x,, | 0 in X we have in Y

inf(|T(x,)|,n > 0) = 0.

We denote by

ASLy(X,Y) ={T € ASL(X,Y), T order bounded},
ASLy(X,Y) ={T € ASL(X,Y), T order continuous}.

It should be clear that all these collections are real vector spaces under the usual pointwise
algebraic operations.

Proposition 4. The set ASL,(X,Y) is a Riesz subspace of ASL(X,Y).
Proof. Consider Ty, T» in ASLy(X,Y), (¢, ) in R? and & < x < B. Then
|[(aTy + BT2) (x)| < [af|To(x)] + [Bl|T2(x)[ < |aler + [Blea = c.

This implies that aT; + BT, € ASL,(X,Y) and hence T; V T, € ASLy(X,Y) because
i1 VT, = 3(T1 + To + |T1 — T»|). Consequently, ASL,(X,Y) is a Riesz subspace of the Riesz
space ASL(X,Y). O

3 THE ADJOINT OF POSITIVELY HOMOGENEOUS OPERATORS

Definition 3. Let X, Y be two Riesz spaces. Put
ASLIX,Y)={T1—To: Ty, T € (SL(X,Y))*} C ASL(X,Y).
A sublinear operator T € SL(X,Y) is said to be regular if T € A,SL(X,Y).
We denote by
SLi(X,Y) ={T € SL(X,Y) : T increasing},
ASLI(X,Y) ={Th —To: T, T, €SL(X,Y)}
= SLZ(Xr Y) - SLZ(Xr Y)r
(X, Y) ={T € L(X,Y) : Tincreasing},

ALZ(X,Y) = {Tl —T: T, T, € LZ(X,Y)}
= Li(X/ Y) - Li(X/ Y)/

=~

and we put X; = AL;{(X,R), Xj = ASL{(X,R).

Proposition 5. The spaces /\,SL(X,Y), ASL;(X,Y) are Riesz subspaces of ASL(X,Y).
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Proof. The set A,SL(X,Y) is a subspace of ASL(X,Y). Further, if Ty, T, € A,SL(X,Y), then
there is P, Q1, P>, Q2 € (SL(X,Y))" such that T} = P; — Q1 and T, = P, — Q. We have
T'VT,=(Pi+Q2)V(P+ Q1) — (Q1 + Q2), which is in A,SL(X,Y) because

(Pr+Q2) V(P2 + Q1), (Q1 +Q2) € (SL(X,Y)) ™.
The same for ASL;(X,Y). O
Proposition 6. The spaces /\,SL(X,Y), ASL;(X,Y) are Riesz subspaces of ASL(X,Y).

Proof. The set A,SL(X,Y) is a subspace of ASL(X,Y). Further, if Ty, T, € A,SL(X,Y), then
there is P;,Q1, P>,Q2 € (SL(X,Y))" such that Ty = P — Qy and T, = P, — Q. We have
T'VT,=(Pi+Q2)V(P+ Q1) — (Q1 + Q2), which is in A,SL(X,Y) because

(Pr+Q2) V(P2 + Q1), (Q1 +Q2) € (SL(X,Y)) ™.
The same for ASL;(X,Y). O
Remark 2. 1) Any linear operator is a regular sublinear operator. Indeed, ifu € L(X,Y), then
u=ut—u" withut(x) = 0Vu(x), u (x) = 0V (—u(x)), which are positive sublinear
operators.

2) The existence of the regular sublinear operators (not linear) is assured by the fact that if
T € SL(X,Y) such that |T| € SL(X,Y), then T is regular

T=T"—T =2T" —|T| (2T*,|T| € (SL(X,Y))").

As example, consider a, € RT such thata > fand T : R — R defined by

ax, if x >0,
T(x) =
Bx, if x <O0.

Then T is sublinear (T(x) = (ax) V (Bx)) and |T| also because
ITI(x) = [T(x)| = (ax) V (=px).

Lemma 1 ([6, Lemma 21.3]). Let E be an ordered vector space, and let A, B be two subsets of E
such thatinf A = xg inf B = yy. Then

xo + yo = inf(A + B) = inf{a + b such thata € A,b € B}.
Proposition 7. Let X, Y be two Riesz spaces. Put

SLo(X,Y) = {T € SL/(X,Y) such that T order continuous},
ASLy(X,Y) = SLy(X,Y) — SLo(X, Y).

Then
(a) the set SL,(X,Y) is a convex cone;
(b) the space ASL,(X,Y) C ASLy(X,Y) is an order ideal.
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Proof. (a) Let D | 0, and p,q € SLo(X,Y), then (p + q)(D) is upwards directed such that
(p+9)(D) | 0. Indeed, if x1, x, € D, then there is x3 € D such that x3 < x; and x3 < x,. This
implies that (p +¢q)(x3) € (p+¢)(D). Thus

(P+q)(x3) < (p+q)(x1) and (p +q)(x3) < (p + ) (x2)-
Let 1 be the infimum of (p + q)(D), then for all x1, x, € D there is x3 € D such that

h<(p+q)(x3) < p(x1)+q(x) forall x1,x € D.

We have
h <inf{p(x1) +q(x2),x1,x, € D}
<inf{p(x1),x1 € D} +inf{g(xz),xp € D }
<inf{|p(x1)|,x1 € D} +inf{|g(x2)],x, € D} <0.
Consequently,

inf{|(p + )(x)], x € D} < inf{|p(x)| + [q(x)], * € D}
<inf{p(x) +q(x), x € D} <O0.

Itis clear that Ap € SL, (X,Y) forall A € R" and all p € SL,(X,Y). Furthermore

inf{|(p vV q)(x)|, x € D} =inf{(p vV q)(x), x € D}
<inf{(p+4)(x), x € D} <0.

(b) Let T € ASLy(X,Y). Then T = p — g with p,q € SL,(X,Y). Let D | 0. We have
lp—ql(x) < |p(x)[ +]q(x)] < p(x) +4g(x) forall x € D.
So,

inf{|(p — q)(x)|, x € D} <inf{(p +q)(x), x € D} <0.

Consequently, T € ASL, (X, Y).
Letnow D | 0. Assume that |T| < |S|, S € ASLy(X,Y), then

inf{|T|(x), x € D} <inf{|S|(x), x € D} <0.
This ends the proof. O

In the sequel, we extend the notion of adjoint operator on some spaces defined above. Let
X be a Banach space and Y be a Banach lattice. Put

X' = L(X,R),

X* = L(X,R),

X\ = ASL(X,R),

Xi = ASL(X,R),
H'(X) = H(X,R),
H*(X) = #(X,R).

We have X' C X), C H'(X) and X* C X} C H*(X).
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Theorem 1. Let X,Y be two Riesz spaces and u be in L(X,Y). Then there exists an i’ in
L(H'(Y),H'(X)) such thati’ = u' onY" and &' (¢) < |@p o u| forall p € H'(Y), where v’ is the
adjoint operator of u.

Proof. Let u bein L(X,Y), the adjoint operator of u is defined by
W'Y — X' ¢ H'(X)
such that
u'(p) =gouforalgeY.
Letnow P € SL(H'(Y), H (X)) be defined by

P(g) = |poul.
We have
u'(p) = gou < |pou| =P(p)forallp € Y.
By the Hahn-Banach theorem (the analytic form), there is ##’ € L(H'(Y), H'(X)) such that
i =u"onY and
#(p) < P(p) < lpou|

for all ¢ € H'(Y) and this completes the proof. O
Theorem 2. Let X,Y be two Banach spaces and u be in L(X,Y). Then there exists an i’ in
L(H*(Y),H*(X)) such that i’ = u* on Y* and ||#/'|| = ||[u*|| = ||u||. In this case i’ is denoted
by u*.

Proof. Let ube in L(X,Y). By Theorem 1 there is &’ in L(H'(Y), H'(X)) such that &’ = u* on
Y and it (¢) < |@oul forall ¢ € H'(Y). On the other hand, because &’ (¢) < |¢ o u| we obtain
|t (¢)| < |@ ou| and hence for all ¢ € H*(Y)

i (@)l < llgoull < [lulllloll

So, ' € L(H*(Y),H*(X)). It remains to show that ||| = ||u||. Since ||#'(¢)| < [Jullle|l,

we conclude that ||#7’|| < ||u||. For the converse inequality, we know that ||u*|| = ||u||, hence
Jull = llu*]l = sup [u*(e)]]
(PEBy*
= sup [|i'(¢)| (because i’ y. = u*)
< sup [@'(¢)| (because By C By (y))
(PEBH*(Y)
= [l
and then the theorem is proved. O

Now, we extend the notion of adjoint operator to positively homogeneous operators.
Definition 4. Let X, Y be two Riesz spaces and T € H(X,Y). We define the adjoint of T by
T, : H(Y) — H'(X)
¢r— Ty(p) = ¢oT
such that T; (¢)(x) = ¢ o T(x).
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Proposition 8. Let X,Y be two Banach spaces and T € H(X,Y). Then T} € L(H*(Y), H*(X))
such that || T|| = ||T}||. In this case T}, is denoted by T}'.

Proof. Consider T in H(X,Y). We have for all ¢ € H*(Y)

ITh (@)l = llgo Tl < ll@lHIT].

So, T, € L(H*(Y),H*(X)). To show that | T|| = ||T;||, we first consider the mapping
i:x € X+ i(x) € H*(X) such that

i(x) : H(X) — R,
@ — (i(x), ¢) = (@, x).

Then i is such that ||i(x)|| = ||x|| for all x € X. Indeed,
i) = sup [[(i(x), @)
qDEBH*(X)
= sup |[[{g, )]
qDEBH*(X)
< ||l

Conversely
[x[[ = sup [[&, )] < sup (¢, x)[| (because Bx: C By (x))
CEBx* (PEBH*(X)

< sup [|(i(x), @)l < [[i(x)]-
(PEBH*(X)

Finally, we have
ITyll = sup |Ti(@)ll= sup [lgoT]|
[PEBH*(Y) gDEBH*(Y)
= sup (sup [[(¢oT,x))

gDEBH*(Y) xeBX

— sup (sup [|{g, T(x))])

@EBy+(y) xE€Bx

:sup( sup H<(p,T(x)>H)

xEBy gDEBH*(Y)

=sup( sup [[(i(T(x)), )|

xE€By (PGBH*(Y)

= sup [li(T(x))]|

xE€Byx

= sup [|T(x)[| = [IT]-

XEBy

This completes the proof. O
Definition 5. Let X,Y be two Riesz spaces. Consider T € ASL(X,Y) withT = P — Q. We

define a linear operator on Y] denoted T; by
T .Y, — X},
T —Tp — T[(Tl—Tz) =TioP+To0Q— (T10Q+T20P).
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Note that this operator is well defined. Indeed, if S € YI’ ssuchthat S = 51 — S, = 53— Sy,
then

T{(S1—S2) =S10P+50Q—(S510Q+S,0P)
:(51—52>OP—(51—52>OQ
= (S3—S4) 0P —(S3—54) 0Q = T{(S3 — Sa).

Proposition 9. Let X,Y be two Riesz spaces, then there is T, in L(H'(Y), H'(X)) such that
T/ =T onY],.

Proof. We define a sublinear operator S : H' (Y) — H'(X) by
5(¢) = lpoP[+]|poQl

Forall ¢ = @1 — @2 € Y], we have

Ti(@) =T/(¢1— ¢2) = P10 P+ @20Q — (p10Q+ ¢20P) = (1 — ¢2) o P — (91 — ¢2) 0 Q
< (91— ¢2) o P[+ |[(¢1 — ¢2) o Q| = S(9).

The Hahn-Banach theorem implies that T/ can be extended to a linear operator

T! € L(H'(Y), H'(X)) such that T/(p) < S(¢) forall ¢ € H'(Y). O

Remark 3. If T € L(X,Y), then we have T' = T, on Y’, where T| denote the operator defined
in Definition 4. If T € ASL(X,Y), then we have T = T} on Y.

Proposition 10. Let X, Y be two Riesz spaces and T be in (SL(X,Y))". Then the following
properties are satisfied.

(1) We have |T|; < |T/|.
(2) The restriction of T! to SL;(Y,R) verifies |T/| = |T|;.

Proof. (1) Let T € (SL(X,Y))* and ¢ € Y], then there is @1, 92 € SL;i(X,Y) such that
@ =¢1— ¢rand

T/ [(¢) =T (¢)| = |p10T —@20T| > @r0T —¢p0T
> @10|T| —@20|T| > |T|i(g).

(2)LetT € (SL(X,Y))" and ¢ € SL;(Y,R) we have

Ti (@) = IT'(¢)| = [¢(T)| = ¢(T) (because ¢ T and T > 0)

= ¢(IT]) = |T[}(¢)

and this completes the proof. O
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Y witf cTaTTi AOCAIAXYIOTBCS AesIKi KAACK HeAiHivHNX oneparopis. Hexait SL(X, Y) — MHOXMEHa
BCiX cybaiHilHMX omepaTopiB Mix ABoMa mpoctopamn Pica X rta Y. Lle € omykamii KOHyC B IIpo-
cropi H (X, Y) BCiX ITO3UTMBHO OAHOPIAHMX OIlepaTopiB. Y IIilf CTaTTi AOCAIAXKEHO AesIKi IIPOCTOpPH,
IIOPOA’KEH] IIMM KOHYCOM, 30KpeMa MU AOCAIAXY€EMO AesIKi BAACTMBOCTI, siKi A06pe BiaoMi B Teopil
mpocropis Pica, Taki sk mopsiaAkoBa HellepepBHICTh, TOPsSIAKOBa 06MeXeHicTh Ta iH. Hacamxinerrs,
MU IIPOOYEMO y3araAbHITY KOHIIETIIIIO CITPsIXeHOoro oreparopa. CIiouaTKy, BUKOPMCTOBYIOUM aHa-
Altany dpopmy Teopemu I'ana-baHaxa, MV IPMCTOCOBYEMO TOHSITTSI CIIPSIKEHOTO OIlepaTopa AO
KaTeropii MO3UTMBHO OAHOPIAHMX ONepaTopiB, a MOTiM 3aCTOCOBYEMO JIOTO AO KAacy OIepaTopis,
TIOPOAKEHMX CyOAIHINHMMY OIlepaToOpaMI.

Kntouosi cnoea i ppasu: mpoctip Pica, 6aHaxoBa rpaTka, OAHOPiAHMIT oIlepaTop, CyOAiHIIHIMIA oTTe-
parTop, IOPsSIAKOBO HelepepBHUIA OIlepaTop.



