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COUPLED COINCIDENCE POINT RESULTS FOR CONTRACTION OF C-CLASS
MAPPINGS IN ORDERED UNIFORM SPACES

In the literature there is a lot of works related to fixed point theory. The theory has many
applications and some authors are interested in these applications in various spaces. In 2009,
Altun I. and Imdad M. defined the order relation on uniform spaces and the concept of compat-
ibility of mappings. Later Ansari A.H. defined the C-class function concept. In this paper, we take
some ultra altering distance and C-class functions, then we prove some coupled coincidence point
theorems for a mapping providing mixed g-monotonicity property in ordered uniform spaces. We
also give the appropriate examples.
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INTRODUCTION AND PRELIMINARIES

In the literature there is a lot of works related to fixed point theory. Some of them are
fixed or common fixed point results in uniform space (e.g. [1-3,12]). Lately, Aamri M. and
El Moutawakil D. [1] have introduced the concept of E-distance function on uniform spaces
and utilize it to improve some well known results of the existing literature involving both E-
contractive or E-expansive mappings. Later, Altun I. and Imdad M. [3] have introduced a
partial ordering on uniform spaces utilizing E-distance function and have used the same to
prove a fixed point theorem for single-valued non-decreasing mappings on ordered uniform
spaces.

In this paper, we use the C-class function defined by Ansari A.H. [4], the order relation
on uniform spaces defined by Altun I. and Imdad M. [3] and the concept of compatibility of
mappings, then we prove coupled coincidence point theorems in ordered uniform spaces. We
also discuss an example.

Now, we mention some relevant definitions and properties from the foundation of uniform
spaces. We call a pair (X, @) to be a uniform space which consists of a non-empty set X together
with a uniformity ¢, wherein the latter begins with a special kind of filter on X x X, whose all
elements contain the diagonal A = {(x,x) : x € X}.If V € ¢and (x,y) € V, (y,x) € V, then
x and y are said to be V-close. Also a sequence {x,} in X is said to be a Cauchy sequence with
regard to uniformity ¢ if for any V' € 9, there exists N > 1 such that x, and x,, are V-close for
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m,n > N. A uniformity ¢ defines a unique topology 7 (¢) on X for which the neighborhoods
of x € X are thesets V (x) = {y € X : (x,y) € V} when V runs over 9.

A uniform space (X, ¢) is said to be Hausdorff if and only if the intersection of all the
V € 0 reduces to diagonal A of X, i.e. (x,y) € V for V € ¢ implies x = y. Notice that
Hausdorffness of the topology induced by the uniformity guarantees the uniqueness of limit
of a sequence in uniform spaces. An element of uniformity ¢ is said to be symmetrical if
V =Vl ={(yx): (x,y) € V}. Since each V € ¢ contains a symmetrical W € ¢ and if
(x,y) € W then x and y are both W and V-close and then one may assume that each V € ¢
is symmetrical. When topological concepts are mentioned in the context of a uniform space
(X, 9), they are naturally interpreted with respect to the topological space (X, T (8)) .

In the sequel we shall require the following definitions and lemmas.

Definition 1 ([1]). Let (X, 9) be a uniform space. A functionp : X x X — R is said to be an
E-distance if

(p1) for any V € 0O there exists § > 0 such that p(z,x) <  and p(z,y) < ¢ for somez € X,
imply (x,y) €V,

(p2) p(xy) < p(xz)+p(zy) foranyx,y,z € X.
The following lemma embodies some useful properties of E-distance.

Lemma 1 ([1,2]). Let (X, ) be a Hausdorff uniform space and p be an E-distance on X. Let
{xn} and {yn} be arbitrary sequences in X and {a,}, {Bn} be sequences in R™ converging to
0. Then, for x,y,z € X, the following holds.

(@) Ifp (xn,y) < apand p (xn,z) < Bp foralln € N, theny = z. In particular, if p (x,y) =0
andp (x,z) =0, theny = z.

(b) If p (xn,yn) < an and p (xn,2z) < B foralln € N, then {y,} converges to z.
(c) If p (xn, xm) < ay for allm > n, then {x, } is a p-Cauchy sequence in (X, 9) .

Let (X, ) be a uniform space equipped with E-distance p. A sequence in X is p-Cauchy if it
satisfies the usual metric condition. There are several concepts of completeness in this setting.

Definition 2 ([1,2]). Let (X, ¢) be a uniform space and p be an E-distance on X. Then

(i) X said to be S-complete if for every p-Cauchy sequence {x,} there exists x € X with
1i_r>n p(xy,x)=0,
n—oo

(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence {x, } there exists x € X
with lim x, = x with respect to T (9),

n—oo
(iii) f : X — X is p-continuous 1'fnli_r>n p (xn,x) = 0 implies nlgn p(fxu fx) =0,
(iv) f: X — X is T (8)-continuous if lgn x, = x with respect to T (¢) implies lgl1fxn = fx
n—oo n—oo

with respect to T (9) .
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Remark 1 ([1]). Let (X, ¢) be a Hausdorff uniform space and let {x, } be a p-Cauchy sequence.
Suppose that X is S-complete, then there exists x € X such that nlgnp (xn,x) = 0. Then

Lemma 1 (b) gives that lgn x, = x with respect to the topology T (¢) which shows that S-
n—oo

completeness implies p-Cauchy completeness.

Lemma 2 ([3]). Let (X, ¢) be a Hausdorff uniform space, p be E-distance on X and ¢ : X — R.
Define the relation” < ” on X as follows;

x2yex=yorplxy) <) —¢y).
Then” = " is a (partial) order on X induced by ¢.

Definition 3 ([6]). We call an element (x,y) € X x X a coupled fixed point of the mapping
T:XxX—=>XifT(x,y)=xT(y,x)=y.

Definition 4 ([11]). An element (x,y) € X x X is called a coupled coincidence point of a
mapping T : X x X — Xandg: X = XifT (x,y) =8 (x), T(y,x) =g (y).

Definition 5 ([11]). Let X be a non-empty setand T : X x X — X and g : X — X. Wesay T
and g are commutative if ¢ (T (x,y)) = T (¢ (x),8 (y)) for any x,y € X.

Definition 6 ([7]). Let (X, ) be a Hausdorff uniform space, p be E-distance on X. The map-
pings T and g, where T : X x X — X and g : X — X, are said to be compatible if

lim p (¢ (T (xn,yn)), T (g (xn), & (yn))) =0

and
im p (& (T (yn, %)), T (& (yn) , & (xn))) =0

n—oo

whenever {x,} and {y,} are sequences in X, such that lgn T (X, Yn) = 1Lm g (xn) = x and
n o0 n [ee)

nlgroloT (Yn, Xn) = nlgrolog (yn) =y, forany x, y € X are satisfied.

In 2014, the concept of C-class functions (see Definition 7) was introduced by A.H. Ansari
in [4] that is pivotal result in fixed point theory. Also see [5,8,9].

Definition 7. A mapping f : [0,00)?> — R is called C-class function if it is continuous and
satisfies following axioms:

(1) f(s,t) <s;
(2) f(s,t) = s implies that eithers = 0 ort = 0 for all s, t € [0, ).
Remark 2. Note for some f we have that f(0,0) = 0.
We denote C-class functions as C.
Example 1. The following functions f : [0,00)?> — R are elements of C, for all s, t € [0,00):
(1) f(s,t) =s—t, f(s,t) =s=>1t=0;
(2) f(s,t) =ms, 0<m<1, f(s,t) =s=s=0;
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3) f(s,t) = ﬁ;r € (0,00), f(s,t) =s=s=0ort=0;
4) f(s,t) =log(t+a®)/(1+t),a>1,f(s,t) =s=s=0o0rt=0;

(5) f(s,t) =In(1+4a°)/2,a > ¢, f(s,t) =s=s5=0.

Definition 8 ([10]). A function i : [0,00) — [0, c0) is called an altering distance function if the
following properties are satisfied:

(i) ¥ is non-decreasing and continuous,
(ii) ¢ (t) = 0ifand only ift = 0.
Definition 9. An ultra altering distance function is a continuous, nondecreasing mapping ¢ :
[0,00) — [0, c0) such that ¢(t) > 0,t > 0 and ¢(0) > 0.
We denote by &, the set of ultra altering distance functions.

Definition 10 ([12]). Let (X, ¢) be a uniform space and let” < ” be an order relation on X and
letT : X x X — X be an operator. We say that T has the mixed monotone property if T (x,y)
is monotone nondecreasing in x and is monotone nonincreasing in y, that is for any x,y € X,

x1,% € X, x1 X x2 = T (x1,y) X T (x2,y)
and
vy, 2 € X,y1 2y =T (x,y1) = T(x,42).

Definition 11 ([12]). Let (X, ¢) be a uniform space and let” < ” be an order relation on X and
letT : X x X = X, g: X = X be operators. We say T has the mixed g-monotone property if
T is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its
second argument, that is, for any x,y € X,

x1,x2 € X,8(x1) 2 g(x2) implies T (x1,y) = T (x2,y)
and

yy2 € X, 8 (y1) = g (y2) implies T (x,y1) = T (x,12)
Remark 3. If g is the identity mapping, then Definition 11 reduces to Definition 10.

1 THE MAIN RESULTS

Theorem 1. Let (X,®) be a Hausdorff uniform space, ” < ” is an order on X and suppose
there is an E-distance p on X such that (X, p) is a p-Cauchy complete uniform space. Assume
there is a function F € C, ¢ € ®, and also suppose T : X x X —+ X and g : X — X are such
that T has the mixed g-monotone property and

p(T(xy), T(u,0))

<F <<p(g (X),g(u));p(g (y),g(v))> 0 <p(g(x),g(u));p(g (y),g(v))» 1)

for all x,y,u,v € X for which g(x), g (u) are comparable and g (y), g (v) are comparable.
Suppose T (X x X) C g(X), g is T (¥)-continuous and monotone increasing and T and g be
compatible mappings. Also suppose
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(a) T is T (9)-continuous
or
(b) X has the following property :
(i) if a non-decreasing sequence
{x4} — x, thenx,, < x foralln, (2)
(ii) if a non-increasing sequence
{yn} — y, theny <y, foralln. (3)

If there exist xg, Yo € X such that g (x9) = T (xo,y0) and g (o) = T (yo,x0), then there exist
x,y € X such that g(x) = T(x,y) and g(y) = T (y,x), that is, T and g have a coupled
coincidence point in X.

Proof. Letxg,yo € X be such that g (xo) = T (xo,y0) and g (vo) = T (yo, x0) . Since T (X x X) C
g (X), we can define x1,y; € X such that g (x1) = T (x0,y0) and g (y1) = T (yo, Xo)-

In the same way we construct, ¢ (x2) = T (x1,1) and g (y2) = T (y1,x1) . Continuing in
this way we construct two sequences {g(x,)} and {g¢(y»)} in X such that,

g (xpt1) =T (xn,yn) and § (Yn4+1) = T (Yn, xn) foralln > 0. (4)
Now we prove that for all n > 0,
8 (x?l) = g(xn+1) (5)
and
8 (Yn) = & (Yn+1) - (6)

Since g (x9) < T (x0,y0) and g (yo) = T (yo, x0) , in view of g (x1) = T (x0,y0) and g (y1) =
T (yo, x0) , we have g (x0) = g (x1) and g (o) = & (y1), that s, (5) and (6) hold for n = 0.
We presume that (5) and (6) hold for some 1 > 0. As T has the mixed g-monotone property

and g (xu) X & (xn41), & (Yn) = & (Ynt1) , from (4), we get
g (xnt1) =T (xn,yn) 2T (Xus1,¥n) and T (Y1, %n) 2T (Y, Xn) = & (Ynr1) - (7)

Also for the same reason we have

g (Xnt2) =T (xps1, Ynt1) = T (X1, yn) and T (Yp41, Xn) = T (Yn+1, Xnt1) = § Wns2) . (8)

Then from (7) and (8), g (xy+1) = & (xn42) and g (¥n+1) = § (Yu+2) - Then, by mathematical
induction it follows that (5) and (6) hold for all n > 0.
Let

on = p(8(xn), §(xus1)) + P (8(Yn), §(WYn+1))
and
op = p(§(xn11),8(xn)) + P (8(Yn+1),8(yn)) -

Next we prove that

5! 5!
b6, < 2F (‘5”2‘1,4) (‘5”2‘1>> and 0!, < 2F ( "2_1,4) ( ”2—1)> : 9)
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Since foralln >0, g (x,—1) = g (x») and g (y,—1) =  (yn), we have from (1) and (4),

p(8(xn), &(xn+1)) = p (T (xp-1,Yn-1), T (Xn,Yyn))

<F ((P(g(xnl),g(xw J;p(g(ym),g(yn))) 0 (p(g(xnﬁ,g(xn)) er p(g(]/nl)rg(]/n))>>

o (5e(2)

and

p(g(xnt1),8(xn)) = (T (Xn,Yn), T (Xn—-1,Yn-1))

<F <<p (8 (¥n) 8 (¥n-1)) J2r P (8 (yn) rg(]/nl))> ,

’ <p<g<xn>,g<xn_1>>;p<g <yn>,g<yn_1>>>> r (c&z_llq) (c&;)) |

Similarly from (1) and (4), we have for alln > 0,

P (& Wn), & Wn+1)) = P (T (Yn—1,%n-1), T (Yn, xn))

<o <p(g (yn—l),g(yn»;P(g(xn_l),g(xn» _r (‘5”2—‘1,4) <5n_1>>

and
P (8 Wnt1),8(Wn)) =P (T (Yn, xn), T (Yn—1,Xn-1))
<y (p(g ()8 (9-1)) +p<g<xn>,g<xn1>>> r (5,;1, , (5)) oo

2 2 2

Combining (10) and (11) we obtain (9). Since ¢ (t) > 0 for t > 0, it follows from (9) that
the sequences {9, } and {J}, } are monotone decreasing sequence of non-negative real numbers.

Hence there exist 6 > 0 and ¢' > 0 such that 1i_r>n 0y = 6 and lim 6, = ¢'. Taking the limit as
n o) (e

n — oo in (9),we obtain § = nlglc}oén < 27}213013 <5”2*1,g0 ((5’121))”: 2F ((%) , P <%)> . So, % =0
or ¢ <%) = 0. Thus § = 0. Hence we have

lim [p(g (xn), & (xn+1)) + p(8 () , & (Yn+1))] = lim oy =0

n—oo

and similarly ' = 0 that is

lim [p(g (xu+1),8 (xn)) + P(§ Yu+1),8 (yn))] = lim 4, = 0. (12)

n—oo n—oo

Next we show that {¢(x,)} and {g(yx)} are p-Cauchy sequences. Let at least one of
{g (%)} and {g (yn)} be not a p-Cauchy sequence. Then there exists ¢ > 0 and sequences
of natural numbers {m (k) } and {I (k) } such that for every natural number k, m (k) > I (k) > k

d
" Pk =1p (8 <xl(k)> 8 <xm(k)>) +p (8 <yl(k)) 8 (ym(k))> > e (13)

Now corresponding to I (k) we can choose m (k) to be the smallest positive integer for which
(13) holds. Then,

4 <8 <xl(k)> /8 <xm(k)—1>) +p <8 (%(k)) 8 <]/m(k)—1)> <e (14)
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Further from (13) and (14), for all k > 0, we have

e<p<p (g <x1<k)> '8 <xm(k>—1>)

7 (8 (tmr1)8 (3w )+ 2 (8 (100) 18 (vm09-1) )+ 7 (8 (vmer-1) 18 (i)
= (8 (x100) & (omie1) ) + 2 (8 ())& (vmier1) ) + G2 <+ G 1.

Taking the limit as k — oo, we have by (12),

lim py = e. (15)

k—o0

Again, for all k > 0, we have,

P = p(( o)
< (s ().
(s (o) (yu )
=7 (s (xi00) 8 (s001)

+ (g (vie41) /& (Ve +1)
Hence, forallk > 0

Pk < 01 + 0,50 TP <8( (k)+1> 8 <xm(k)+1>) +p <g (yl(k)Jrl) '8 <ym(k)+1)> : (16)

From (1), (4), (5), (6) and (13), for all k > 0, we obtain

P (& (xi691) o8 (omwrr) ) = 2 (T (w00 vw) o T (gt )
§F<P<g<xu b) g( <>))+P<g(%< >) g(?f <>)), 1)

o) o)) -

Also by (1), (4), (5), (6) and (13), for all k > 0, we have,

p (& (1) o8 (vmwrs1) ) = 2 (T (003100 T (vt o))
<F((P 8 (x00). 8(x <>))+P<8(%<k>)'g<ym<k>)>),

2

, (P (8 () & (3m00) ) 1 (8 (i) & (90 )) CE (B (B).

<8 <J/l(k)> '8 (ym(k)>))> _ F(ﬁ <Pk)>_

¢

(18)

2

Putting (17) and (18) in (16), for all k > 0, we obtain, py < &) + (5"71(,() +2F (B, 9 (B)) .
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Letting n — oo in the above inequality and using (12), (13) and (15) we obtain,

e 2me (%o (2)) =2 (50 ()

So, § = 0,0r ¢ (5) = 0 which is a contradiction. Therefore, {g (x,)} and {g (vn)} are
p-Cauchy sequences in X and hence they are convergent in the p-Cauchy complete uniform
space (X, 9). Let

L T (xp,yn) = limg (xx) =x and  HmT (yn, xn) = limg (yn) = y. (19)

Since T and g are compatible mappings, we have by (19),

Jim p (g (T (xn,yn)) , T (g (xn),8 (yn))) =0 (20)
and
Tim p (g (T (Yn, %)), T (g (¥n), & (xn))) = O. (21)

Next we prove that ¢(x) = T (x,y) and g(y) = T (y,x). Let (a) hold. Foralln > 0, we
have,

p(8(xn), T(g(xn),8(n))) <P (8 (xn),&(T (xn,yn))) +p (& (T (xn,yn)), T (g (xn), & (¥n)))
Taking the limit as n — oo, using (4), (19), (20) and the fact that T and g are continuous, we
have p (g (xn), T (x,y)) = 0.
Similarly, from (4), (19), (21) and the continuities of T and g, we have p (¢ (y»), T (y, x)) = 0.
Combining the above two results we get ¢ (x) = T (x,y)and g (y) =T (y, x) .
Next we suppose that (b) holds. By (5), (6) and (19) we have {g (x,)}} is non-decreasing

sequence, ¢ (x,) — x and {g (y»)} is non-increasing sequence, ¢ (y,) — y as n — co. Then by
(2) and (3) we have for all n > 0,

g (xn) = xand g (yn) = y. (22)
Since, T and g are compatible mappings and g is continuous, by (20) and (21) we have,

lim ¢ (¢ (x4)) = g (x) = lim g (T (xu,yx)) = UM T (g (xn),8 (yn)) (23)

n—oo n—oo n—oo

and

lim ¢ (g (yn)) = & (y) = Hmg (T (yn, xn)) = Hm T (g (¥u), & (xn)) (24)

n—o0 n—o0

Now we have p (g (x), T (x,y)) < p(8(x),&(8%n+1)) + P (8(8 (xn41)), T (x,y)) . Taking
the limit as n — oo in the above inequality, using (4) and (23) we have,

p(g(x),T(xy)) < limp(g(x),8(g(xnt1))) + Im p (g (T (xn, yu)), T (x,y))
< lim p (T (g (xu), & (yn)), T (x,))-

Since the mapping g is monotone increasing, by (1), (22) and the above inequality, we have
for all n > 0, Using (19)

) < hmF(p(g (8(xn)), g (x)) +p(g(g(yn).8 W)
= 2

n—oo

p(g(x),T(xy

p(P8 808 0) 4P &S W8 WD) _ iy (g (x), T (1)), 0lp (5 (2). T (x,9))).
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So,p(g(x), T(x,y)) =0,0r,¢(p(g(x),T(xy))) = 0.

That is ¢ (x) = T (x,y) and similarly, by virtue of (4), (19) and (24) we obtain g (y) =
T (y, x) . Thus we have proved that T and g have coupled coincidence point in X. This com-
pletes the proof. O

Remark 4. If we take F(s,t) = ¢(s) where ¢ : [0,00) — [0,00) is a continuous function such
that ¢(0) = 0 and ¢(t) < t fort > 0 in the above theorem then we obtain a corollary in [12].

Corollary 1. Let (X, 9) be a Hausdorff uniform space, ” < ” is an order on X and suppose
there is an E-distance p on X such that (X, p) is a p-Cauchy complete uniform space. Assume
there is a function F € C,¢ € ®, and also suppose T : X x X —+ X and g : X — X are such
that T has the mixed g-monotone property and

p(T(x,y),T(u,0))

<F ((p(g(X),g(u)) ;P(g(y),g(v)) > . (p(g(X),g(u)) ;P(g(y),g(v)) ))

for all x,y,u,v € X for which comparable g (x), g (u) and comparable g (y), g (v) . Suppose
T(XxX) C g(X), g is T(9)-continuous and commutes with T and also suppose either
(a) T is T (¢)-continuous or (b) X has the following property:

(i) if a non-decreasing sequence {x,} — x,then x,, < x for alln,
(ii) if a non-increasing sequence {y,} — y, theny <y, for all n.

If there exist xp,yp € X such that g (x9) = T (x0,y0) and g (yo) = T (yo, Xo), then there
exist x,y € X such that g (x) = T (x,y) and g (y) = T (y, x), that is, T and g have a coupled
coincidence.

Example 2. Let X = [0,1], p (x,y) = |x —y|. Then forx, y € X and” < ” is a partially ordered
with the natural ordering of real numbers. Then (X, <) is an ordered uniform space and (X, p)
is a p-Cauchy complete uniform space. Let g : X — X be defined as g (x) = x for all x € X.

Xy

- -
7, xyeX, xxzy . T obeys the mixed
0, X<y

LetT: X x X — X be defined as T (x,y) = {
g-monotone property.

Let ¢ : [0,00) — [0,00) be defined as ¢ (s) = s, fors € [0,00) and F(s, ¢(s)) = ¢(s).
Therefore F(s, ¢(s)) = ¢(s) =s < sand F(s,¢(s)) =s =s=0or¢(s) =0and ¢(s) =0 =
s=0.SoF € C,¢ € ®,. Let {x,,} and {yn} be two sequences in X such that, nlgr(}oT (Xn,Yn) =
a, nlgrolog (xn) =a, and nlgroloT (Yn, xn) = b, nlgrolog (yn) = b. Then obviously,a = 0 and b = 0.

Now, foralln > 0; g (xp) = X, x4 € X and § (Yn) = Yn, Yn € X,

{ @r If Xn tynr { @r If }/n i Xn,

T (Xn,yn) = and T (Yn, xn) =

0, if Xy < Yn, 0, if ¥y < xy.

Then, it follows that

lim p (8 (T (xn,¥n)), T (g (xn),& (yn))) =0 as n— oo

and
lim p (& (T (yn, %)), T (& (yn),& (xn))) = 0 as n — co.

n—o0
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Hence, the mappings T and g are compatible in X. Also, xp = 0 and for a positive number
m, yo = m are two points in X such that g(x9g) = ¢(0) = 0 = T(0,m) = T (x0,y0) and
g (o) = g(m) =m = 3 = T(m,0) = T (yo, o) . We next verify inequality (1) of Theorem 1.
We take x,y,u,v € X, such that g (x) = ¢(u) and g (y) = g (v), thatis,x < uandy > v.

We consider the following cases:

Casel: x = yandu > v.

Then

x—ul |y—o| _ |x—ul  |y—7 p(g(x),8(m)+p8(y),8(©)
_F (P(g (X),g(u));;?(g W).8@) P& (x),g(u));;?(g (y),g(v)))>

Case2: x ~yandu < v.
Then

x—y‘ _x—y utx—y—u
2 2 2
ju—x| [o—y|

2 + 2
) = qD(zﬂ(g(ﬂf),g(u))ﬂﬂ(g (y),g(v)))

p(T(xy),T(u0)=p <x;y,0> _
(u—vy)— (u—x)

= > (sincev > u) =
_ oyl ly—o
=9 5

_r <P(g(x),g(u)) try),8()

Case 3: x <yandu >~ v.
Then

u—uv u—v_u+x—v—x

2 2 2

u—x| Jo—y|_ |x—ul |y-o
I S d S S M

(T ), T(no) =p (0,457 =
(u—x)—(0—3)

= 5 (sincey > x) < |

_ qo(p(g(X),g(u));p(g(y),g(v)))
_r (P(g(x),g(u));rp(g v).80) ,rEEx).gM) er P8 (y),g(v)))> .

Case4: x <yandu < v.

ThenT (x,y) = 0and T (u,v) = 0, thatis p (T (x,y),T (u,v)) = 0. Obviously (1) is satis-
tied.

Thus it is verified that the functions T, g, ¢ satisty all the conditions of Theorem 1. Here
(0,0) is the coupled coincidence point of T and g in X.
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Ancapi AT, Biabacioray A., Typxoray A. Pesynomamu npo 368’g3aHy mouky 36iey 019 CMUCKYIOUUX
sidobpadicerv kaacy C y snopaokosanux pigHomipHux npocmopax // Kapmarceki MaTeM. my6a. — 2019.
— T.11, Nel. — C. 3-13.

Y Aitepartypi icHye 6araTo pobiT, MOB’sI3aHNMX 3 Teopielo HepyxoMoi Touku. LIst Teopist Mae 6araTo
3aCTOCYBaHb, TOMY AesIKi aBTOPM 3allikaBAeHi B IMX 3aCTOCYBaHHSIX B pisHuX mpocTtopax. Y 2009 p.
Antyn L. Ta IMaaa M. BU3HAUMAK BiAHOILIEHHS TIOPSIAKY Ha PiBHOMipHIMX IPOCTOpaXx i MOHSTTS Cy-
MmicHOCTI BiaobpakeHb. AHcapi A. BBiB KoHIemIif0 doyHKIIN C-KkAacy. Y Hilt craTi My BubmpaemMo
dyrxii C-Kaacy, 10 yABTpa 3MiHIOIOTE BiACTaHb, Ta AOBOAVMO AesIKi TeOpeMM IPO 3B SI3aHy TOUKY
36iry Ans BiAOOpa’keHsb, III0 3aA0BOABHSIIOTh BAACTMBICTb 3MillIaHOI {-MOHOTOHHOCTI Y BIIOPSIAKOBa-
HMX PiBHOMIpHMX IpocTOpax. My Tako>X HaBOAMMO BiATIOBiAHI ITPMKAAAN.

Kntouosi croea i ¢ppasu: 3B’s13aHa TOUKa 36iry, C-Kaac Biro6paskeHb, BIIOPSIAKOBAHMIA PiBHOMIp-
HVVA IIPOCTIp.



