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COUPLED COINCIDENCE POINT RESULTS FOR CONTRACTION OF C-CLASS

MAPPINGS IN ORDERED UNIFORM SPACES

In the literature there is a lot of works related to fixed point theory. The theory has many

applications and some authors are interested in these applications in various spaces. In 2009,

Altun I. and Imdad M. defined the order relation on uniform spaces and the concept of compat-

ibility of mappings. Later Ansari A.H. defined the C-class function concept. In this paper, we take

some ultra altering distance and C-class functions, then we prove some coupled coincidence point

theorems for a mapping providing mixed g-monotonicity property in ordered uniform spaces. We

also give the appropriate examples.
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INTRODUCTION AND PRELIMINARIES

In the literature there is a lot of works related to fixed point theory. Some of them are

fixed or common fixed point results in uniform space (e.g. [1–3, 12]). Lately, Aamri M. and

El Moutawakil D. [1] have introduced the concept of E-distance function on uniform spaces

and utilize it to improve some well known results of the existing literature involving both E-

contractive or E-expansive mappings. Later, Altun I. and Imdad M. [3] have introduced a

partial ordering on uniform spaces utilizing E-distance function and have used the same to

prove a fixed point theorem for single-valued non-decreasing mappings on ordered uniform

spaces.

In this paper, we use the C-class function defined by Ansari A.H. [4], the order relation

on uniform spaces defined by Altun I. and Imdad M. [3] and the concept of compatibility of

mappings, then we prove coupled coincidence point theorems in ordered uniform spaces. We

also discuss an example.

Now, we mention some relevant definitions and properties from the foundation of uniform

spaces. We call a pair (X, ϑ) to be a uniform space which consists of a non-empty set X together

with a uniformity ϑ, wherein the latter begins with a special kind of filter on X × X, whose all

elements contain the diagonal ∆ = {(x, x) : x ∈ X}. If V ∈ ϑ and (x, y) ∈ V, (y, x) ∈ V, then

x and y are said to be V-close. Also a sequence {xn} in X is said to be a Cauchy sequence with

regard to uniformity ϑ if for any V ∈ ϑ, there exists N ≥ 1 such that xn and xm are V-close for
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m, n ≥ N. A uniformity ϑ defines a unique topology τ (ϑ) on X for which the neighborhoods

of x ∈ X are the sets V (x) = {y ∈ X : (x, y) ∈ V} when V runs over ϑ.

A uniform space (X, ϑ) is said to be Hausdorff if and only if the intersection of all the

V ∈ ϑ reduces to diagonal ∆ of X, i.e. (x, y) ∈ V for V ∈ ϑ implies x = y. Notice that

Hausdorffness of the topology induced by the uniformity guarantees the uniqueness of limit

of a sequence in uniform spaces. An element of uniformity ϑ is said to be symmetrical if

V = V−1 = {(y, x) : (x, y) ∈ V}. Since each V ∈ ϑ contains a symmetrical W ∈ ϑ and if

(x, y) ∈ W then x and y are both W and V-close and then one may assume that each V ∈ ϑ

is symmetrical. When topological concepts are mentioned in the context of a uniform space

(X, ϑ) , they are naturally interpreted with respect to the topological space (X, τ (ϑ)) .

In the sequel we shall require the following definitions and lemmas.

Definition 1 ([1]). Let (X, ϑ) be a uniform space. A function p : X × X → R
+ is said to be an

E-distance if

(p1) for any V ∈ ϑ there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ for some z ∈ X,

imply (x, y) ∈ V,

(p2) p (x, y) ≤ p (x, z) + p (z, y) for any x, y, z ∈ X.

The following lemma embodies some useful properties of E-distance.

Lemma 1 ([1, 2]). Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on X. Let

{xn} and {yn} be arbitrary sequences in X and {αn}, {βn} be sequences in R
+ converging to

0. Then, for x, y, z ∈ X, the following holds.

(a) If p (xn, y) ≤ αn and p (xn, z) ≤ βn for all n ∈ N, then y = z. In particular, if p (x, y) = 0

and p (x, z) = 0, then y = z.

(b) If p (xn, yn) ≤ αn and p (xn, z) ≤ βn for all n ∈ N, then {yn} converges to z.

(c) If p (xn, xm) ≤ αn for all m > n, then {xn} is a p-Cauchy sequence in (X, ϑ) .

Let (X, ϑ) be a uniform space equipped with E-distance p. A sequence in X is p-Cauchy if it

satisfies the usual metric condition. There are several concepts of completeness in this setting.

Definition 2 ([1, 2]). Let (X, ϑ) be a uniform space and p be an E-distance on X. Then

(i) X said to be S-complete if for every p-Cauchy sequence {xn} there exists x ∈ X with

lim
n→∞

p (xn, x) = 0,

(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence {xn} there exists x ∈ X

with lim
n→∞

xn = x with respect to τ (ϑ) ,

(iii) f : X → X is p-continuous if lim
n→∞

p (xn, x) = 0 implies lim
n→∞

p ( f xn, f x) = 0,

(iv) f : X → X is τ (ϑ)-continuous if lim
n→∞

xn = x with respect to τ (ϑ) implies lim
n→∞

f xn = f x

with respect to τ (ϑ) .
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Remark 1 ([1]). Let (X, ϑ) be a Hausdorff uniform space and let {xn} be a p-Cauchy sequence.

Suppose that X is S-complete, then there exists x ∈ X such that lim
n→∞

p (xn, x) = 0. Then

Lemma 1 (b) gives that lim
n→∞

xn = x with respect to the topology τ (ϑ) which shows that S-

completeness implies p-Cauchy completeness.

Lemma 2 ([3]). Let (X, ϑ) be a Hausdorff uniform space, p be E-distance on X and ϕ : X → R.

Define the relation ” � ” on X as follows;

x � y ⇔ x = y or p(x, y) ≤ ϕ (x)− ϕ (y) .

Then ” � ” is a (partial) order on X induced by ϕ.

Definition 3 ([6]). We call an element (x, y) ∈ X × X a coupled fixed point of the mapping

T : X × X → X if T (x, y) = x, T (y, x) = y.

Definition 4 ([11]). An element (x, y) ∈ X × X is called a coupled coincidence point of a

mapping T : X × X → X and g : X → X if T (x, y) = g (x) , T (y, x) = g (y) .

Definition 5 ([11]). Let X be a non-empty set and T : X × X → X and g : X → X. We say T

and g are commutative if g (T (x, y)) = T (g (x) , g (y)) for any x, y ∈ X.

Definition 6 ([7]). Let (X, ϑ) be a Hausdorff uniform space, p be E-distance on X. The map-

pings T and g, where T : X × X → X and g : X → X, are said to be compatible if

lim
n→∞

p (g (T (xn, yn)) , T (g (xn) , g (yn))) = 0

and

lim
n→∞

p (g (T (yn, xn)) , T (g (yn) , g (xn))) = 0

whenever {xn} and {yn} are sequences in X, such that lim
n→∞

T (xn, yn) = lim
n→∞

g (xn) = x and

lim
n→∞

T (yn, xn) = lim
n→∞

g (yn) = y, for any x, y ∈ X are satisfied.

In 2014, the concept of C-class functions (see Definition 7) was introduced by A.H. Ansari

in [4] that is pivotal result in fixed point theory. Also see [5, 8, 9].

Definition 7. A mapping f : [0, ∞)2 → R is called C-class function if it is continuous and

satisfies following axioms:

(1) f (s, t) ≤ s;

(2) f (s, t) = s implies that either s = 0 or t = 0 for all s, t ∈ [0, ∞).

Remark 2. Note for some f we have that f (0, 0) = 0.

We denote C-class functions as C .

Example 1. The following functions f : [0, ∞)2 → R are elements of C , for all s, t ∈ [0, ∞):

(1) f (s, t) = s − t, f (s, t) = s ⇒ t = 0;

(2) f (s, t) = ms, 0<m<1, f (s, t) = s ⇒ s = 0;
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(3) f (s, t) = s
(1+t)r ; r ∈ (0, ∞), f (s, t) = s ⇒ s = 0 or t = 0;

(4) f (s, t) = log(t + as)/(1 + t), a > 1, f (s, t) = s ⇒ s = 0 or t = 0;

(5) f (s, t) = ln(1 + as)/2, a > e, f (s, t) = s ⇒ s = 0.

Definition 8 ([10]). A function ψ : [0, ∞) → [0, ∞) is called an altering distance function if the

following properties are satisfied:

(i) ψ is non-decreasing and continuous,

(ii) ψ (t) = 0 if and only if t = 0.

Definition 9. An ultra altering distance function is a continuous, nondecreasing mapping ϕ :

[0, ∞) → [0, ∞) such that ϕ(t) > 0 , t > 0 and ϕ(0) ≥ 0.

We denote by Φu the set of ultra altering distance functions.

Definition 10 ([12]). Let (X, ϑ) be a uniform space and let ” � ” be an order relation on X and

let T : X × X → X be an operator. We say that T has the mixed monotone property if T (x, y)

is monotone nondecreasing in x and is monotone nonincreasing in y, that is for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 ⇒ T (x1, y) � T (x2, y)

and

y1, y2 ∈ X, y1 � y2 ⇒ T (x, y1) � T (x, y2) .

Definition 11 ([12]). Let (X, ϑ) be a uniform space and let ” � ” be an order relation on X and

let T : X × X → X, g : X → X be operators. We say T has the mixed g-monotone property if

T is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its

second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, g (x1) � g (x2) implies T (x1, y) � T (x2, y)

and

y1, y2 ∈ X, g (y1) � g (y2) implies T (x, y1) � T (x, y2) .

Remark 3. If g is the identity mapping, then Definition 11 reduces to Definition 10.

1 THE MAIN RESULTS

Theorem 1. Let (X, ϑ) be a Hausdorff uniform space, ” � ” is an order on X and suppose

there is an E-distance p on X such that (X, p) is a p-Cauchy complete uniform space. Assume

there is a function F ∈ C, ϕ ∈ Φu and also suppose T : X × X → X and g : X → X are such

that T has the mixed g-monotone property and

p (T (x, y) , T (u, v))

≤ F

((

p (g (x) , g (u)) + p (g (y) , g (v))

2

)

, ϕ

(

p (g (x) , g (u)) + p (g (y) , g (v))

2

))

(1)

for all x, y, u, v ∈ X for which g (x) , g (u) are comparable and g (y) , g (v) are comparable.

Suppose T (X × X) ⊆ g (X) , g is τ (ϑ)-continuous and monotone increasing and T and g be

compatible mappings. Also suppose
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(a) T is τ (ϑ)-continuous

or

(b) X has the following property :

(i) if a non-decreasing sequence

{xn} → x, then xn � x for all n, (2)

(ii) if a non-increasing sequence

{yn} → y, then y � yn for all n. (3)

If there exist x0, y0 ∈ X such that g (x0) � T (x0, y0) and g (y0) � T (y0, x0) , then there exist

x, y ∈ X such that g (x) = T (x, y) and g (y) = T (y, x), that is, T and g have a coupled

coincidence point in X.

Proof. Let x0, y0 ∈ X be such that g (x0) � T (x0, y0) and g (y0) � T (y0, x0) . Since T (X × X) ⊆

g (X) , we can define x1, y1 ∈ X such that g (x1) = T (x0, y0) and g (y1) = T (y0, x0).

In the same way we construct, g (x2) = T (x1, y1) and g (y2) = T (y1, x1) . Continuing in

this way we construct two sequences {g(xn)} and {g(yn)} in X such that,

g (xn+1) = T (xn, yn) and g (yn+1) = T (yn, xn) for all n ≥ 0. (4)

Now we prove that for all n ≥ 0,

g (xn) � g (xn+1) (5)

and

g (yn) � g (yn+1) . (6)

Since g (x0) � T (x0, y0) and g (y0) � T (y0, x0) , in view of g (x1) = T (x0, y0) and g (y1) =

T (y0, x0) , we have g (x0) � g (x1) and g (y0) � g (y1) , that is, (5) and (6) hold for n = 0.

We presume that (5) and (6) hold for some n > 0. As T has the mixed g-monotone property

and g (xn) � g (xn+1) , g (yn) � g (yn+1) , from (4), we get

g (xn+1) = T (xn, yn) � T (xn+1, yn) and T (yn+1, xn) � T (yn, xn) = g (yn+1) . (7)

Also for the same reason we have

g (xn+2) = T (xn+1, yn+1) � T (xn+1, yn) and T (yn+1, xn) � T (yn+1, xn+1) = g (yn+2) . (8)

Then from (7) and (8), g (xn+1) � g (xn+2) and g (yn+1) � g (yn+2) . Then, by mathematical

induction it follows that (5) and (6) hold for all n ≥ 0.

Let

δn = p (g(xn), g(xn+1)) + p (g(yn), g(yn+1))

and

δpn = p (g(xn+1), g(xn)) + p (g(yn+1), g(yn)) .

Next we prove that

δn ≤ 2F

(

δn−1

2
, ϕ

(

δn−1

2

))

and δpn ≤ 2F

(

δpn−1

2
, ϕ

(

δpn−1

2

))

. (9)
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Since for all n ≥ 0, g (xn−1) � g (xn) and g (yn−1) � g (yn) , we have from (1) and (4),

p(g(xn), g(xn+1)) = p (T (xn−1, yn−1) , T (xn, yn))

≤ F

((

p(g(xn−1), g(xn) + p(g(yn−1), g(yn))

2

)

, ϕ

(

p(g(xn−1), g(xn)) + p(g(yn−1), g(yn))

2

))

= F

(

δn−1

2
, ϕ

(

δn−1

2

))

and

p(g(xn+1), g(xn)) = p (T (xn, yn) , T (xn−1, yn−1))

≤F

((

p (g (xn) , g (xn−1)) + p (g (yn) , g (yn−1))

2

)

,

ϕ

(

p (g (xn) , g (xn−1)) + p (g (yn) , g (yn−1))

2

))

= F

(

δpn−1

2
, ϕ

(

δpn−1

2

))

.

(10)

Similarly from (1) and (4), we have for all n ≥ 0,

p (g (yn) , g (yn+1)) = p (T (yn−1, xn−1) , T (yn, xn))

≤ ϕ

(

p (g (yn−1) , g (yn)) + p (g (xn−1) , g (xn))

2

)

= F

(

δn−1

2
, ϕ

(

δn−1

2

))

and

p (g (yn+1) , g (yn)) = p (T (yn, xn) , T (yn−1, xn−1))

≤ ϕ

(

p (g (yn) , g (yn−1)) + p (g (xn) , g (xn−1))

2

)

= F

(

δpn−1

2
, ϕ

(

δpn−1

2

))

.
(11)

Combining (10) and (11) we obtain (9). Since ϕ (t) > 0 for t > 0, it follows from (9) that

the sequences {δn} and {δpn} are monotone decreasing sequence of non-negative real numbers.

Hence there exist δ ≥ 0 and δp ≥ 0 such that lim
n→∞

δn = δ and lim
n→∞

δpn = δp. Taking the limit as

n → ∞ in (9),we obtain δ = lim
n→∞

δn ≤ 2 lim
n→∞

F
(

δn−1
2 , ϕ

(

δn−1
2

))

= 2F
((

δ
2

)

, ϕ
(

δ
2

))

. So, δ
2 = 0

or ϕ
(

δ
2

)

= 0. Thus δ = 0. Hence we have

lim
n→∞

[p(g (xn) , g (xn+1)) + p(g (yn) , g (yn+1))] = lim
n→∞

δn = 0

and similarly δp = 0 that is

lim
n→∞

[p(g (xn+1) , g (xn)) + p(g (yn+1) , g (yn))] = lim
n→∞

δpn = 0. (12)

Next we show that {g(xn)} and {g (yn)} are p-Cauchy sequences. Let at least one of

{g (xn)} and {g (yn)} be not a p-Cauchy sequence. Then there exists ε > 0 and sequences

of natural numbers {m (k)} and {l (k)} such that for every natural number k, m (k) > l (k) ≥ k

and

pk = p
(

g
(

xl(k)

)

, g
(

xm(k)

))

+ p
(

g
(

yl(k)

)

, g
(

ym(k)

))

≥ ε. (13)

Now corresponding to l (k) we can choose m (k) to be the smallest positive integer for which

(13) holds. Then,

p
(

g
(

xl(k)

)

, g
(

xm(k)−1

))

+ p
(

g
(

yl(k)

)

, g
(

ym(k)−1

))

< ε. (14)
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Further from (13) and (14), for all k ≥ 0, we have

ε ≤ pk ≤ p
(

g
(

xl(k)

)

, g
(

xm(k)−1

))

+ p
(

g
(

xm(k)−1

)

, g
(

xm(k)

))

+ p
(

g
(

yl(k)

)

, g
(

ym(k)−1

))

+ p
(

g
(

ym(k)−1

)

, g
(

ym(k)

))

= p
(

g
(

xl(k)

)

, g
(

xm(k)−1

))

+ p
(

g
(

yl(k)

)

, g
(

ym(k)−1

))

+ δm(k)−1 < ε + δm(k)−1.

Taking the limit as k → ∞, we have by (12),

lim
k→∞

pk = ε. (15)

Again, for all k ≥ 0, we have,

pk = p
(

g
(

xl(k)

)

, g
(

xm(k)

))

+ p
(

g
(

yl(k)

)

, g
(

ym(k)

))

≤ p
(

g
(

xl(k)

)

, g
(

xl(k)+1

))

+ p
(

g
(

xl(k)+1

)

, g
(

xm(k)+1

))

+ p
(

g
(

xm(k)+1

)

, g
(

xm(k)

))

+ p
(

g
(

yl(k)

)

, g
(

yl(k)+1

))

+ p
(

g
(

yl(k)+1

)

, g
(

ym(k)+1

))

+ p
(

g(ym(k)+1), g
(

ym(k)

))

= p
(

g
(

xl(k)

)

, g
(

xl(k)+1

))

+ p
(

g
(

yl(k)

)

, g
(

yl(k)+1

))

+ p
(

g
(

xl(k)+1

)

, g
(

xm(k)+1

))

+ p(g
(

yl(k)+1

)

, g
(

ym(k)+1

)

+ p
(

g
(

xm(k)+1

)

, g
(

xm(k)

))

+ p
(

g
(

ym(k)+1

)

, g
(

ym(k)

))

.

Hence, for all k ≥ 0

pk ≤ δl(k) + δp
m(k)

+ p
(

g
(

xl(k)+1

)

, g
(

xm(k)+1

))

+ p
(

g
(

yl(k)+1

)

, g
(

ym(k)+1

))

. (16)

From (1), (4), (5), (6) and (13), for all k ≥ 0, we obtain

p
(

g
(

xl(k)+1

)

, g
(

xm(k)+1

))

= p
(

T
(

xl(k), yl(k)

)

, T
(

xm(k), ym(k)

))

≤ F
( p
(

g
(

xl(k)

)

, g
(

xm(k)

))

+ p
(

g
(

yl(k)

)

, g
(

ym(k)

))

2
,

ϕ
( p
(

g
(

xl(k)

)

, g
(

xm(k)

))

+ p
(

g
(

yl(k)

)

, g
(

ym(k)

))

2

))

= F
( pk

2
, ϕ
( pk

2

))

.

(17)

Also by (1), (4), (5), (6) and (13), for all k ≥ 0, we have,

p
(

g
(

yl(k)+1

)

, g
(

ym(k)+1

))

= p
(

T
(

yl(k), xl(k)

)

, T
(

ym(k), xm(k)

))

≤ F









p
(

g
(

xl(k)

)

, g
(

xm(k)

))

+ p
(

g
(

yl(k)

)

, g
(

ym(k)

))

2



 ,

ϕ





p
(

g
(

xl(k)

)

, g
(

xm(k)

))

+ p
(

g
(

yl(k)

)

, g
(

ym(k)

))

2







 = F
( pk

2
, ϕ
( pk

2

))

.

(18)

Putting (17) and (18) in (16), for all k ≥ 0, we obtain, pk ≤ δl(k) + δp
m(k)

+ 2F
( pk

2 , ϕ
( pk

2

))

.
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Letting n → ∞ in the above inequality and using (12), (13) and (15) we obtain,

ε ≤ 2 lim
k→∞

F
( pk

2
, ϕ
( pk

2

))

= 2F
( ε

2
, ϕ
( ε

2

))

.

So, ε
2 = 0, or ϕ

(

ε
2

)

= 0 which is a contradiction. Therefore, {g (xn)} and {g (yn)} are

p-Cauchy sequences in X and hence they are convergent in the p-Cauchy complete uniform

space (X, ϑ) . Let

lim
n→∞

T (xn, yn) = lim
n→∞

g (xn) = x and lim
n→∞

T (yn, xn) = lim
n→∞

g (yn) = y. (19)

Since T and g are compatible mappings, we have by (19),

lim
n→∞

p (g (T (xn, yn)) , T (g (xn) , g (yn))) = 0 (20)

and

lim
n→∞

p (g (T (yn, xn)) , T (g (yn) , g (xn))) = 0. (21)

Next we prove that g(x) = T (x, y) and g(y) = T (y, x) . Let (a) hold. For all n ≥ 0, we

have,

p (g (xn) , T (g (xn) , g (yn))) ≤ p (g (xn) , g (T (xn, yn))) + p (g (T (xn, yn)) , T (g (xn) , g (yn)))

Taking the limit as n → ∞, using (4), (19), (20) and the fact that T and g are continuous, we

have p (g (xn) , T (x, y)) = 0.

Similarly, from (4), (19), (21) and the continuities of T and g, we have p (g (yn) , T (y, x)) = 0.

Combining the above two results we get g (x) = T (x, y) and g (y) = T (y, x) .

Next we suppose that (b) holds. By (5), (6) and (19) we have {g (xn)}} is non-decreasing

sequence, g (xn) → x and {g (yn)} is non-increasing sequence, g (yn) → y as n → ∞. Then by

(2) and (3) we have for all n ≥ 0,

g (xn) � x and g (yn) � y. (22)

Since, T and g are compatible mappings and g is continuous, by (20) and (21) we have,

lim
n→∞

g (g (xn)) = g (x) = lim
n→∞

g (T (xn, yn)) = lim
n→∞

T (g (xn) , g (yn)) (23)

and

lim
n→∞

g (g (yn)) = g (y) = lim
n→∞

g (T (yn, xn)) = lim
n→∞

T (g (yn) , g (xn)) . (24)

Now we have p (g (x) , T (x, y)) ≤ p (g (x) , g (gxn+1)) + p (g (g (xn+1)) , T (x, y)) . Taking

the limit as n → ∞ in the above inequality, using (4) and (23) we have,

p (g (x) , T (x, y)) ≤ lim
n→∞

p (g (x) , g (g(xn+1))) + lim
n→∞

p (g (T (xn, yn)) , T (x, y))

≤ lim
n→∞

p (T (g (xn) , g (yn)) , T (x, y)) .

Since the mapping g is monotone increasing, by (1), (22) and the above inequality, we have

for all n ≥ 0, Using (19)

p (g (x) , T (x, y)) ≤ lim
n→∞

F(
p (g (g(xn)) , g (x)) + p (g (g (yn)) , g (y))

2
,

ϕ(
p (g (g(xn)) , g (x)) + p (g (g (yn)) , g (y))

2
)) = F(p (g (x) , T (x, y)) , ϕ(p (g (x) , T (x, y)))).
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So, p (g (x) , T (x, y)) = 0, or , ϕ(p (g (x) , T (x, y))) = 0.

That is g (x) = T (x, y) and similarly, by virtue of (4), (19) and (24) we obtain g (y) =

T (y, x) . Thus we have proved that T and g have coupled coincidence point in X. This com-

pletes the proof.

Remark 4. If we take F(s, t) = ϕ(s) where ϕ : [0, ∞) → [0, ∞) is a continuous function such

that ϕ(0) = 0 and ϕ(t) < t for t > 0 in the above theorem then we obtain a corollary in [12].

Corollary 1. Let (X, ϑ) be a Hausdorff uniform space, ” � ” is an order on X and suppose

there is an E-distance p on X such that (X, p) is a p-Cauchy complete uniform space. Assume

there is a function F ∈ C, ϕ ∈ Φu and also suppose T : X × X → X and g : X → X are such

that T has the mixed g-monotone property and

p(T(x, y),T(u, v))

≤ F

((

p(g(x), g(u)) + p(g(y), g(v))

2

)

, ϕ

(

p(g(x), g(u)) + p(g(y), g(v))

2

))

for all x, y, u, v ∈ X for which comparable g (x) , g (u) and comparable g (y) , g (v) . Suppose

T (X × X) ⊆ g (X) , g is τ (ϑ)-continuous and commutes with T and also suppose either

(a) T is τ (ϑ)-continuous or (b) X has the following property:

(i) if a non-decreasing sequence {xn} → x,then xn � x for all n,

(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

If there exist x0, y0 ∈ X such that g (x0) � T (x0, y0) and g (y0) � T (y0, x0) , then there

exist x, y ∈ X such that g (x) = T (x, y) and g (y) = T (y, x), that is, T and g have a coupled

coincidence.

Example 2. Let X = [0, 1], p (x, y) = |x − y|. Then for x, y ∈ X and ” � ” is a partially ordered

with the natural ordering of real numbers. Then (X,�) is an ordered uniform space and (X, p)

is a p-Cauchy complete uniform space. Let g : X → X be defined as g (x) = x for all x ∈ X.

Let T : X × X → X be defined as T (x, y) =

{

x−y
2 , x, y ∈ X, x � y

0, x ≺ y
. T obeys the mixed

g-monotone property.

Let ϕ : [0, ∞) → [0, ∞) be defined as ϕ (s) = s, for s ∈ [0, ∞) and F(s, ϕ(s)) = ϕ(s).

Therefore F(s, ϕ(s)) = ϕ(s) = s ≤ s and F(s, ϕ(s)) = s ⇒ s = 0 or ϕ(s) = 0 and ϕ(s) = 0 ⇒

s = 0. So F ∈ C, ϕ ∈ Φu. Let {xn} and {yn} be two sequences in X such that, lim
n→∞

T (xn, yn) =

a, lim
n→∞

g (xn) = a, and lim
n→∞

T (yn, xn) = b, lim
n→∞

g (yn) = b. Then obviously, a = 0 and b = 0.

Now, for all n ≥ 0; g (xn) = xn, xn ∈ X and g (yn) = yn, yn ∈ X,

T (xn, yn) =

{

xn−yn

2 , if xn � yn,

0, if xn ≺ yn,
and T (yn, xn) =

{

yn−xn

2 , if yn � xn,

0, if yn ≺ xn.

Then, it follows that

lim
n→∞

p (g (T (xn, yn)) , T (g (xn) , g (yn))) → 0 as n → ∞

and

lim
n→∞

p (g (T (yn, xn)) , T (g (yn) , g (xn))) → 0 as n → ∞.
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Hence, the mappings T and g are compatible in X. Also, x0 = 0 and for a positive number

m, y0 = m are two points in X such that g (x0) = g (0) = 0 = T (0, m) = T (x0, y0) and

g (y0) = g (m) = m � m
2 = T(m, 0) = T (y0, x0) . We next verify inequality (1) of Theorem 1.

We take x, y, u, v ∈ X, such that g (x) � g (u) and g (y) � g (v) , that is, x � u and y � v.

We consider the following cases:

Case 1: x � y and u � v.

Then

p (T (x, y) , T (u, v)) = p

(

x − y

2
,

u − v

2

)

=

∣

∣

∣

∣

x − y

2
−

u − v

2

∣

∣

∣

∣

=

∣

∣

∣

∣

x − u

2
−

y − v

2

∣

∣

∣

∣

�

∣

∣

∣

∣

x − u

2

∣

∣

∣

∣

+

∣

∣

∣

∣

y − v

2

∣

∣

∣

∣

= ϕ(
|x − u|

2
+

|y − v|

2
) = ϕ(

p (g (x) , g (u)) + p (g (y) , g (v))

2
)

= F

(

p (g (x) , g (u)) + p (g (y) , g (v))

2
, ϕ(

p (g (x) , g (u)) + p (g (y) , g (v))

2
)

)

.

Case 2: x � y and u ≺ v.

Then

p (T (x, y) , T (u, v)) = p

(

x − y

2
, 0

)

=

∣

∣

∣

∣

x − y

2

∣

∣

∣

∣

=
x − y

2
=

u + x − y − u

2

=
(u − y)− (u − x)

2
(since v ≻ u) �

| u − x |

2
+

| v − y |

2

= ϕ(
|x − u|

2
+

|y − v|

2
) = ϕ(

p (g (x) , g (u)) + p (g (y) , g (v))

2
)

= F

(

p (g (x) , g (u)) + p (g (y) , g (v))

2
, ϕ(

p (g (x) , g (u)) + p (g (y) , g (v))

2
)

)

.

Case 3: x ≺ y and u � v.

Then

p (T (x, y) , T (u, v)) = p

(

0,
u − v

2

)

=

∣

∣

∣

∣

u − v

2

∣

∣

∣

∣

=
u − v

2
=

u + x − v − x

2

=
(u − x)− (v − x)

2
(since y ≻ x) �

| u − x |

2
+

| v − y |

2
= ϕ(

|x − u|

2
+

|y − v|

2
)

= ϕ(
p (g (x) , g (u)) + p (g (y) , g (v))

2
)

= F

(

p (g (x) , g (u)) + p (g (y) , g (v))

2
, ϕ(

p (g (x) , g (u)) + p (g (y) , g (v))

2
)

)

.

Case 4: x ≺ y and u ≺ v.

Then T (x, y) = 0 and T (u, v) = 0, that is p (T (x, y) , T (u, v)) = 0. Obviously (1) is satis-

fied.

Thus it is verified that the functions T, g, ϕ satisfy all the conditions of Theorem 1. Here

(0, 0) is the coupled coincidence point of T and g in X.
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Ансарi A.Г., Бiнбасiоглу Д., Туркоглу Д. Результати про зв’язану точку збiгу для стискуючих

вiдображень класу C у впорядкованих рiвномiрних просторах // Карпатськi матем. публ. — 2019.

— Т.11, №1. — C. 3–13.

У лiтературi iснує багато робiт, пов’язаних з теорiєю нерухомої точки. Ця теорiя має багато

застосувань, тому деякi автори зацiкавленi в цих застосуваннях в рiзних просторах. У 2009 р.

Алтун I. та Iмдад М. визначили вiдношення порядку на рiвномiрних просторах i поняття су-

мiсностi вiдображень. Ансарi А. ввiв концепцiю функцiй C-класу. У цiй статi ми вибираємо

функцiї C-класу, що ультра змiнюють вiдстань, та доводимо деякi теореми про зв’язану точку

збiгу для вiдображень, що задовольняють властивiсть змiшаної g-монотонностi у впорядкова-

них рiвномiрних просторах. Ми також наводимо вiдповiднi приклади.

Ключовi слова i фрази: зв’язана точка збiгу, C-клас вiдображень, впорядкований рiвномiр-

ний простiр.


