Carpathian Math. Publ. 2019, 11 (1), 26-32 doi:10.15330/cmp.11.1.26-32

http://www.journals.pnu.edu.ua/index.php/cmp Карпатські матем. публ. 2019, Т.11, №1, С.26-32

ZABOLOTSKYI M.V., BASIUK YU.V.

ASYMPTOTICS OF THE ENTIRE FUNCTIONS WITH v-DENSITY OF ZEROS ALONG THE LOGARITHMIC SPIRALS

Let v be the growth function such that $rv'(r)/v(r) \to 0$ as $r \to +\infty$, $l_{\varphi}^c = \{z = te^{i(\varphi + c \ln t)}, 1 \le 1\}$ $t < +\infty$ be the logarithmic spiral, f be the entire function of zero order. The asymptotics of $\ln f(re^{i(\theta+c\ln r)})$ along ordinary logarithmic spirals l^c_θ of the function f with v-density of zeros along l_{ω}^{c} outside of the C_0 -set is found. The inverse statement is true just in case zeros of f are placed on the finite logarithmic spirals system $\Gamma_m = \bigcup_{i=0}^m l_{\theta_i}^c$.

Key words and phrases: entire function, density of zeros, logarithmic spiral.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine $E-mail: \ {\tt mykola.zabolotskyy@lnu.edu.ua} \ (Zabolotskyi \ M.V.), \ {\tt yuliya.basyuk.92@gmail.com} \ (Basiuk \ Yu.V.) \ (Zabolotskyi \ M.V.), \ {\tt yuliya.basyuk.92@gmail.com} \ (Zabolotskyi \ M.V.), \ {\tt yuliya.basyuk.$

INTRODUCTION

The issues related to the study of behavior of entire functions along the logarithmic spirals were considered in [1–4,6]. In particular, Macintyre [6] introduced the notion of an indicator along the logarithmic spiral and generalized the concept of associated function. Kennedy [3] generalized the concept of Mittag - Leffler function on the curvilinear area. Valiron-type and Valiron-Titchmarsh-type theorems for entire functions of positive order with zeros on the logarithmic spiral were proved by Balašov [2] and Kheifits [4] correspondingly. The relation between regular behavior of logarithm of modulus of entire function f of positive order along the curves of regular rotation (in particular, the logarithmic spirals) and existance of density of zeros of f along these curves was investigated in [1]. The results of [1] generalize the wellknown Levin and Pfluger research of entire functions of completely regular growth (see, for example, [5, p. 118-122; p. 199]).

In this paper we study issues that similar to ones considered in [1] for entire functions of zero order.

SECTION WITH RESULTS

For $c \in \mathbb{R}$, $\varphi \in [-\pi; \pi)$ we denote by $l_{\varphi}^{c}(a, r) = \{z : z = te^{i(\varphi + c \ln t)}, a \leqslant t < r\}, l_{\varphi}^{c}(1, +\infty) = l_{\varphi}^{c}$ the logarithmic spiral, $D^{c}(r; \alpha, \beta) = \bigcup_{\alpha \leqslant \varphi < \beta} l_{\varphi}^{c}(1, r)$ the curvilinear sector, $-\pi \leqslant \alpha < \beta < \pi$.

Let L be the set of all growth functions v such that $rv'(r)/v(r) \to 0$ as $r \to +\infty$ where growth function $v:[0;+\infty)\to\mathbb{R}_+$ is a continuously differentiable increasing to $+\infty$ function. It is clear that a set L coincides with accuracy to equivalent functions with a set of slow growing functions in the sense of Karamata ([7, p. 15]). For $v \in L$ we denote by $H_0(v)$ the class of entire functions f of zero order that satisfy the condition n(r) = O(v(r)), $r \to +\infty$, where n(r) = n(r, 0, f) is counting function of zeros $(a_n)_{n=1}^{+\infty}$ of function f.

We say that zeros of the function $f \in H_0(v)$ have v-density $\Delta^c(\alpha, \beta)$ along logarithmic spirals l^c_{ω} if the limit

$$\lim_{r\to\infty}\frac{n^c(r;\alpha,\beta)}{v(r)}=\Delta^c(\alpha,\beta)$$

exists for all $\alpha, \beta \in \mathbb{R}$, $0 < \beta - \alpha \le 2\pi$ with the exception, perhaps, of α or β belongs to some countable set \mathcal{N} , where $n^c(r; \alpha, \beta)$ is a number of zeros of the function f in $D^c(r; \alpha, \beta)$.

The equality $\Delta^c(\varphi) = \Delta^c(\varphi_1, \varphi)$ for a fixed $\varphi_1 \notin \mathcal{N}$ defines on the segment $[\varphi_1, \varphi_1 + 2\pi]$ a non-decreasing function $\Delta^c(\varphi)$ which we extend on \mathbb{R} by the rule $\Delta^c(\varphi + 2\pi) - \Delta^c(\varphi) = \Delta^c(\varphi_1 + 2\pi) - \Delta^c(\varphi_1)$.

The logarithmic spiral l_{θ}^{c} satisfying the condition

$$\lim_{h\to 0+} \overline{\lim_{r\to +\infty}} \frac{n^c(r;\theta-h,\theta+h)}{v(r)} = 0$$

is called *ordinary* for $f \in H_0(v)$. The other logarithmic spirals are called *exceptional*. It follows from monotonicity of the function $\Delta^c(\varphi)$ that the set of exceptional logarithmic spirals is no more than countable if zeros of $f \in H_0(v)$ have v-density $\Delta^c(\alpha, \beta)$ along l_{φ}^c .

Denote by $\ln\left(1-\frac{z}{a_n}\right)$, $a_n \in l_{\theta}^c$ the single-valued in the domain $D(l_{\theta}^c) = \mathbb{C} \setminus l_{\theta}^c(|a_n|, +\infty)$

branch of multi-valued function $Ln\left(1-\frac{z}{a_n}\right)$ such that $\ln\left(1-\frac{z}{a_n}\right)\Big|_{z=0}=0$. Let

$$f(z) = \prod_{n=1}^{+\infty} \left(1 - \frac{z}{a_n} \right) \in H_0(v). \tag{1}$$

Then

$$\ln f(z) = \sum_{n=1}^{+\infty} \ln \left(1 - \frac{z}{a_n} \right), z \in \mathbb{C} \setminus \bigcup_{n=1}^{+\infty} l_{\varphi_i}^c(r_i, +\infty),$$

where r_i is the minimum module of zeros a_i of f that lie on the logarithmic spiral $l_{\varphi_i}^c$, $\varphi_i = \arg a_i \in [-\pi, \pi)$.

We call a set $E \in \mathbb{C}$ the C_0 -set if it can be covered by a system of circles $\{z: |z-a_k| < r_k\}$, $k \in \mathbb{N}$ such that $\sum_{|a_k| \leqslant r} r_k = o(r)$, $r \to +\infty$.

We write $\hat{h}(\theta; \psi)$ for the 2π -periodic extension of the function $h(\theta; \psi) = \theta - \psi - \pi$ from

$$(\psi; \psi + 2\pi)$$
 to \mathbb{R} , $-\pi \leqslant \psi < \pi$. Note $N(r) = N(r, 0, f) = \int_{0}^{r} \frac{n(t)}{t} dt$,

$$H_f^c(\theta) = \int_{\theta - 2\pi}^{\theta} (\theta - \psi - \pi) d\Delta^c(\psi) = \int_{-\pi}^{\pi} \hat{h}(\theta; \psi) d\Delta^c(\psi). \tag{2}$$

Theorem 1. Let $v \in L$, $f \in H_0(v)$, zeros of f have v-density $\Delta^c(\alpha, \beta)$ along l_{φ}^c . Then there is a C_0 -set E such that the following asymptotic relation holds (|z| = r):

$$\ln f(z) = (1 + ic)N(r) + iH_f^c(\theta)v(r) + o(v(r)), \ z \in l_{\theta}^c, \ z \notin E, \tag{3}$$

where l_{θ}^{c} is ordinary logarithmic spiral.

Let $\Gamma_m = \bigcup_{j=1}^m l_{\theta_j}^c$, $-\pi \leqslant \theta_1 < \ldots < \theta_m < \pi$ be a finite system of logarithmic spirals, $\theta_{m+1} = \theta_1 + 2\pi$.

Theorem 2. Let $v \in L$, $f \in H_0(v)$, zeros of f lie on Γ_m , H be a piecewise continuous on $[-\pi, \pi)$ function. If for any $\delta > 0$ the following asymptotic relation

$$\ln f\left(re^{i(\theta+c\ln r)}\right) = (1+ic)N(r) + iH(\theta)v(r) + o(v(r)), \ r \to \infty \tag{4}$$

holds uniformly with respect to $\theta \in [-\pi, \pi) \setminus \bigcup_{j=1}^{m+1} (\theta_j - \delta; \theta_j + \delta)$, then zeros of f have v-density $\Delta^c(\alpha, \beta)$ along l_{ω}^c .

Remark. The condition that zeros of $f \in H_0(v)$ lie on a finite system of logarithmic spirals Γ_m is significant in Theorem 2. In the general case of zeros arrangement the statement of Theorem 2 is wrong (see [8] in case c = 0).

2 The proof of results

At first we present the lemmas that will be used in the proof of the theorems.

Lemma 1 ([11]). Let $\Delta > 0$, $v \in L$, $f \in H_0(v)$, zeros of f lie on the logarithmic spiral l_{ψ}^c , $\psi \in \mathbb{R}$,

$$n(r) = (1 + o(1))\Delta v(r), r \rightarrow +\infty.$$

Then for $\theta \in \mathbb{R} \setminus \{ \psi + 2\pi k : k \in \mathbb{Z} \}$ the following asymptotic relation holds:

$$\ln f\left(re^{i(\theta+c\ln r)}\right) = (1+ic)N(r) + i\Delta\hat{h}(\theta;\psi)v(r) + o(v(r)), \ r\to\infty, \tag{5}$$

moreover, relation (5) is uniform with respect to $\theta \in [\psi + \delta; \psi + 2\pi - \delta]$, $0 < \delta < 1$.

Lemma 2. Let f has the form defined in (1), zeros of f have v-density $\Delta^c(\alpha, \beta)$ along l_{φ}^c , $\varepsilon > 0$ is arbitrary number. Then there exist $\delta > 0$ and a C_0 -set E such that for all ordinary logarithmic spirals l_{θ}^c of the function f the following inequality holds:

$$\left|\ln f(z) - \ln f^{\delta}(z)\right| < \varepsilon v(r), \ z \in l_{\theta}^{c}, \ z \notin E,$$

where
$$f^{\delta}(z) = \prod_{n=1}^{+\infty} \left(1 - \frac{z}{a'_n}\right)$$
, $|a'_n| = |a_n|$, $|\arg a_n - \arg a'_n| < \delta$.

The proof of the Lemma 2 follows from the considerations similar to [5, p. 132-133], [1, p. 352-353] and Theorem 1 from [10].

We say that a set $F \subset \mathbb{R}_+$ is E_0 -set if F is a measurable and $mes(E \cap [0, r]) = o(r)$, $r \to +\infty$. In view of Lemmas 4 and 5 from [9], we get

Lemma 3. Let $\theta \in [-\pi, \pi)$, $v \in L$, $f \in H_0(v)$, $\delta > 0$. Then there exists a E_0 -set F such that

$$r\int_{\theta-\delta}^{\theta+\delta} \left| \frac{f'(re^{i\varphi})}{f(re^{i\varphi})} \right| d\varphi = O(v(r)) \left(\delta + \delta \ln \left(1 + \frac{1}{\delta} \right) \right), \ r \to +\infty, \ r \notin F.$$

Proof of Theorem 1. Let $\varepsilon > 0$ is given arbitrary number, function $H_f^c(\theta)$ defined by formula (2). Choose $\delta > 0$ such that the integral sum

$$S_m(\theta) = \sum_{j=0}^{m-1} \hat{h}(\theta; \psi_j) (\Delta^c(\psi_{j+1}) - \Delta^c(\psi_j)),$$

where $-\pi = \psi_0 < \psi_1 < \ldots < \psi_{m-1} < \psi_m = \pi$, $\max_{0 \le j \le m-1} |\psi_{j+1} - \psi_j| < \delta$, satisfies the inequality

$$\left| H_f^c(\theta) - S_m(\theta) \right| < \frac{\varepsilon}{3}. \tag{6}$$

Then take numbers a_k' such that $|a_k'| = |a_k|$, $a_k' \in l_{\psi_j}^c$ if $a_k \in l_{\psi}^c$, $\psi_j \leqslant \psi < \psi_{j+1}$ ($j = 0, 1, \ldots, m-1$) and build the function $f^{\delta}(z)$. Applying Lemma 2 we obtain that there exist $\delta > 0$ and C_0 -set E_1 such that for all ordinary logarithmic spirals l_{θ}^c of f and f^{δ} the following inequality holds:

$$\left|\ln f(z) - \ln f^{\delta}(z)\right| < \frac{\varepsilon}{3}v(r), \ z \notin E_1, \ z \in l_{\theta}^c. \tag{7}$$

Zeros of $f^{\delta}(z)$ lie on a finite system of logarithmic spirals Γ_m so $f^{\delta}(z)$ can be depicted as a product of m entire functions such that zeros of each function lie on a single logarithmic spiral $l_{\psi_i}^c$. From Lemma 1 (see (5)) we get that inequality

$$\left| \frac{\ln f^{\delta}(z) - (1+ic)N(r)}{v(r)} - iS_m(\theta) \right| < \varepsilon, \ z \in l_{\theta}^c$$

holds uniformly with respect to $\theta \in \mathbb{R} \setminus \bigcup_{j=1}^{m} (\psi_j - \delta; \psi_j + \delta)$, where $\delta > 0$ is an arbitrary number.

Further taking into account (6), (7) we obtain that for $z \notin E_1$, $z \in l_{\theta}^c$, $\theta \in \mathbb{R} \setminus \bigcup_{j=1}^m (\psi_j - \delta; \psi_j + \delta)$ the following inequality holds:

$$\left| \frac{\ln f(z) - (1 + ic)N(r)}{v(r)} - iH_f^c(\theta) \right| < \varepsilon.$$
 (8)

Choosing another segmentation of $[-\pi;\pi]$ by points $(\psi'_j)_{j=0}^m$, $|\psi'_{j+1} - \psi'_j| < \delta$ such that intervals $(\psi'_j - \delta; \psi'_j + \delta)$ do not have the mutual points with intervals $(\psi_j - \delta; \psi_j + \delta)$, we get that (8) holds for $z \notin E_2$, $z \in l^c_\theta$, $\theta \in \mathbb{R} \setminus \bigcup_{j=1}^m (\psi'_j - \delta; \psi'_j + \delta)$, where E_2 is some C_0 -set.

This yields that (3) holds for all ordinary logarithmic spirals l_{θ}^{c} of function f. So Theorem 1 is proved.

Proof of Theorem 2. Let $v \in L$, $\Omega = \{|a_n| : n \in \mathbb{N}\}$, a_n be zeros of $f \in H_0(v)$ that lie on a finite system of logarithmic spirals $\Gamma_m = \bigcup_{i=1}^m l_{\theta_i}^c$, $-\pi \leqslant \theta_1 < \ldots < \theta_m < \pi$. Set

$$\partial D^c(r;\alpha,\beta) = l^c_{\alpha}(1,r) \cup \Gamma(r;\alpha,\beta) \cup \left(l^c_{\beta}(1,r)\right)^{-1} \cup \left(\Gamma(1;\alpha,\beta)\right)^{-1},$$

where $r \notin \Omega$, $-\pi \leqslant \theta_{k_0-1} < \alpha < \theta_{k_0} < \ldots < \theta_{s_0} < \beta < \theta_{s_0+1} < \pi$,

$$\Gamma(\tau;\alpha,\beta) = \{z = \tau e^{i(\varphi + c \ln \tau)} : \alpha \leqslant \varphi \leqslant \beta\}.$$

Since $dz = (1 + ic)e^{i(\varphi + c \ln t)}dt$ for $l_{\theta}^{c}(1, r)$ then with the notation

$$F(\tau, \varphi) = \tau e^{i(\varphi + c \ln \tau)} \frac{f'(\tau e^{i(\varphi + c \ln \tau)})}{f(\tau e^{i(\varphi + c \ln \tau)})}$$

using Residue theorem we have

$$2\pi i \, n^{c}(r;\alpha,\beta) = \int_{\partial D^{c}(r;\alpha,\beta)} \frac{f'(z)}{f(z)} \, dz = \left(\int_{l_{\alpha}^{c}(1,r)} + \int_{\Gamma(r;\alpha,\beta)} - \int_{l_{\beta}^{c}(1,r)} - \int_{\Gamma(1;\alpha,\beta)} \right) \frac{f'(z)}{f(z)} \, dz$$

$$= (1+ic) \int_{1}^{r} \left(\frac{F(t,\alpha)}{t} - \frac{F(t,\beta)}{t}\right) dt + \int_{\alpha}^{\beta} (F(r,\theta) - F(1,\theta)) \, id\theta$$

$$= \ln f(re^{i(\alpha+c\ln r)}) - \ln f(re^{i(\beta+c\ln r)})$$

$$+ \left(\int_{\alpha}^{\theta_{k_{0}}-\delta} + \sum_{j=k_{0}}^{s_{0}-1} \int_{\theta_{j}+\delta}^{\theta_{j+1}-\delta} + \sum_{j=k_{0}}^{s_{0}} \int_{\theta_{j}-\delta}^{\theta_{j}+\delta} F(r,\theta) \, id\theta + C, \right)$$

$$(9)$$

where $C = -\ln f(e^{i\alpha}) + \ln f(e^{i\beta}) - \int_{\alpha}^{\beta} F(1,\theta)id\theta$, $0 < \delta < \min\left\{\frac{\theta_{k_0} - \alpha}{2}, \frac{\beta - \theta_{s_0}}{2}, \frac{\theta_{j+1} - \theta_j}{2}\right\}$, $j = \overline{k_0, s_0 - 1}$.

Taking account of $\int_{\theta_{j}+\delta}^{\theta_{j+1}-\delta} F(r,\theta)id\theta = \ln f(re^{i(\theta_{j+1}-\delta+c\ln r)}) - \ln f(re^{i(\theta_{j}+\delta+c\ln r)}), \text{ from (9) we}$

$$2\pi i \, n^{c}(r; \alpha, \beta) = \sum_{j=k_{0}}^{s_{0}} \left(\ln f(re^{i(\theta_{j} - \delta + c \ln r)}) - \ln f(re^{i(\theta_{j} + \delta + c \ln r)}) \right)$$

$$+ \sum_{j=k_{0}}^{s_{0}} \int_{\theta_{j} - \delta}^{\theta_{j} + \delta} F(re^{i(\theta + c \ln r)}) i d\theta = \sum_{1} + \sum_{2}.$$

$$(10)$$

Applying (4) we get

obtain

$$\sum_{1} = i \sum_{j=k_0}^{s_0} \left(H(\theta_j - \delta) - H(\theta_j + \delta) \right) v(r) + o(v(r)), \ r \to \infty.$$

In view of Lemma 3, there exist E_0 -sets F_j such that $(j = \overline{k_0, s_0})$

$$\begin{vmatrix} \int_{\theta_{j}-\delta}^{\theta_{j}+\delta} F(re^{i(\theta+c\ln r)})id\theta \end{vmatrix} \leqslant r \int_{\theta_{j}-\delta}^{\theta_{j}+\delta} \left| \frac{f'(re^{i(\theta+c\ln r)})}{f(re^{i(\theta+c\ln r)})} \right| d\theta = r \int_{\theta_{j}-\delta}^{\theta_{j}+\delta} \left| \frac{f'(re^{i\varphi})}{f(re^{i\varphi})} \right| d\varphi$$
$$= O(v(r)) \left(\delta + \delta \ln \left(1 + \frac{1}{\delta} \right) \right), \ r \to +\infty, \ r \notin F_{j}.$$

So,

$$\left|\sum_{2}\right| \leqslant K_{1}(v(r))\left(\delta + \delta \ln \left(1 + \frac{1}{\delta}\right)\right), r \to +\infty, r \notin F,$$

where $F = \bigcup_{j=k_0}^{s_0} F_j$ is a E_0 -set, K_1 is some constant.

Combining the last inequalities and (10) yields

$$\lim_{\substack{r \to +\infty \\ r \neq E}} \frac{n^{c}(r; \alpha, \beta)}{v(r)} = \frac{1}{2\pi} \sum_{j=k_{0}}^{s_{0}} \left(H(\theta_{j} - \delta) - H(\theta_{j} + \delta) \right) + K_{2} \left(\delta + \delta \ln \left(1 + \frac{1}{\delta} \right) \right).$$

Directing δ to 0+ gives

$$\lim_{\substack{r \to +\infty \\ r \notin E}} \frac{n^c(r; \alpha, \beta)}{v(r)} = \frac{1}{2\pi} \sum_{j=k_0}^{s_0} \left(H(\theta_j - 0) - H(\theta_j + 0) \right) := \Delta(\alpha, \beta).$$

Whereas F is E_0 -set, then any interval $(R, (1 + \eta)R)$, $\eta > 0$, includes points that are not in F. Due to the monotonicity of the function $n^c(r; \alpha, \beta)$ with respect to r for $r > R_0$ we can assert that

$$\frac{n^c(r_1;\alpha,\beta)}{v(r_1)}\frac{v(r_1)}{v(r)} \leqslant \frac{n^c(r;\alpha,\beta)}{v(r)} \leqslant \frac{n^c(r_2;\alpha,\beta)}{v(r_2)}\frac{v(r_2)}{v(r)},$$

where $r(1 - \eta) < r_1 < r < r_2 < (1 + \eta)r$, $r_1, r_2 \notin F$.

Since $v(r_2) \sim v(r) \sim v(r_1), r \to \infty$, the last relation yields

$$\lim_{r\to\infty}\frac{n^c(r;\alpha,\beta)}{v(r)}=\Delta(\alpha,\beta).$$

Theorem 2 is proved.

REFERENCES

- [1] Balašov S.K. On entire functions of completely regular growth along curves of regular rotation. Math. USSR-Izv. 1976, 10 (2), 321–338. doi:10.1070/IM1976v010n02ABEH001691 (translation of Math. USSR-Izv. 1976, 30 (2), 338–354 (in Russian)).
- [2] Balašov S.K. On entire functions of finite order with zeros on curves of regular rotation. Math. USSR-Izv. 1973, 7 (3), 601–627. doi:10.1070/IM1973v007n03ABEH001963 (translation of Math. USSR-Izv. 1973 37 (3), 603–629 (in Russian)).
- [3] Kennedy P. A class of integral functions bounded on certain curves. Proc. Lond. Math. Soc. 1956, 3 (6), 518–547. doi:10.1112/plms/s3-6.4.518
- [4] Kheifits A.I. *Analogue of the Valiron-Titchmarsh theorem for entire functions with roots on a logarithmic spiral*. Izv. Vyssh. Uchebn. Zaved. Mat. 1980, **12**, 74–75. (in Russian)
- [5] Levin B.Ja. Distribution of Zeros of Entire Functions. State publishing house of technical and theoretical literature, Moscow, 1956. (in Russian)
- [6] Macintyre A. Laplace's transformation and integral functions. Proc. Lond. Math. Soc. 1939, 45 (2), 1–20. doi:10.1112/plms/s2-45.1.1
- [7] Seneta E. Regularly varying functions. Springer-Verlag, Berlin-Heidelberg New York, 1976.

- [8] Zabolotskii M. An example of entire function of strongly regular growth. Mat. Stud. 2000, 13 (2), 145–148.
- [9] Zabolotskii N.V. Strongly regular growth of entire functions of order zero. Math. Notes. 1998, 63 (2), 172–182. (translation of Math. Notes. 1998, 63 (2), 196–208. doi:10.4213/mzm1266)
- [10] Zabolotskyi M.V, Basiuk Y.V. *Proximity of the entire functions of zero order with v-density of zeros*. Visnyk of the Lviv Univ. Series Mech. Math. 2017, **84**, 80–86.
- [11] Zabolotskyi M.V, Basiuk Y.V., Tarasyuk S.I. Entire functions of zero order with zeros on the logarithmic spiral. Ukrain. Mat. Zh. 2018, **70** (7), 923–932. (in Ukrainian)

Received 20.09.2018

Заболоцький М.В., Басюк Ю.В. Асимптотика цілих функцій з v-щільністю нулів вздовж логарифмічних спіралей // Карпатські матем. публ. — 2019. — Т.11, №1. — С. 26–32.

Нехай функція зростання v така, що $rv'(r)/v(r) \to 0$ при $r \to +\infty$, $l_{\varphi}^c = \{z = te^{i(\varphi+c\ln t)}, 1 \leqslant t < +\infty\}$ — логарифмічна спіраль, f — ціла функція нульового порядку. За умови існування v-щільності нулів f вздовж l_{φ}^c знайдено асимптотику $\ln f(re^{i(\theta+c\ln r)})$ вздовж звичайних логарифмічних спіралей l_{θ}^c функції f зовні C_0 -множини. Показано, що обернене до цього твердження правильне лише у випадку розташування нулів f на скінченній системі логарифмічних спіралей $\Gamma_m = \bigcup_{i=0}^m l_{\theta_i}^c$.

Ключові слова і фрази: ціла функція, щільність нулів, логарифмічна спіраль.