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ASYMPTOTICS OF THE ENTIRE FUNCTIONS WITH v-DENSITY OF ZEROS ALONG
THE LOGARITHMIC SPIRALS

Let v be the growth function such that rv'(r)/v(r) — O asr — oo, I, = {z = teilptelnt) 1 <
t < 4co} be the logarithmic spiral, f be the entire function of zero order. The asymptotics of
In f (re(®+cIn7)y along ordinary logarithmic spirals Ig of the function f with v-density of zeros along
I outside of the Co-set is found. The inverse statement is true just in case zeros of f are placed on
the finite logarithmic spirals system I';, = U]’-"ZO Zgj.

Key words and phrases: entire function, density of zeros, logarithmic spiral.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: mykola.zabolotskyy@lnu.edu.ua (Zabolotskyi M.V.), yuliya.basyuk.92@gmail.com (Basiuk Yu.V.)

INTRODUCTION

The issues related to the study of behavior of entire functions along the logarithmic spirals
were considered in [1-4, 6]. In particular, Macintyre [6] introduced the notion of an indicator
along the logarithmic spiral and generalized the concept of associated function. Kennedy [3]
generalized the concept of Mittag - Leffler function on the curvilinear area. Valiron-type and
Valiron-Titchmarsh-type theorems for entire functions of positive order with zeros on the log-
arithmic spiral were proved by Balasov [2] and Kheifits [4] correspondingly. The relation be-
tween regular behavior of logarithm of modulus of entire function f of positive order along
the curves of regular rotation (in particular, the logarithmic spirals) and existance of density
of zeros of f along these curves was investigated in [1]. The results of [1] generalize the well-
known Levin and Pfluger research of entire functions of completely regular growth (see, for
example, [5, p. 118-122; p. 199]).

In this paper we study issues that similar to ones considered in [1] for entire functions of
zero order.

1 SECTION WITH RESULTS

Forc € R, ¢ € [—7;71) we denote by I¢,(a,7) = {z:z = tellotelnt) g <t < v}, 15(1, +00) =

leP the logarithmic spiral, D¢(r; a, B) = KL#@ lg,,(l, r) the curvilinear sector, -7t < & < B < 1.

Let L be the set of all growth functions v such that rv'(r) /v(r) — 0 as r — +oo where
growth function v : [0; +00) — R is a continuously differentiable increasing to +oo function.
Itis clear that a set L coincides with accuracy to equivalent functions with a set of slow growing
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functions in the sense of Karamata ([7, p. 15]). For v € L we denote by Hy(v) the class of
entire functions f of zero order that satisfy the condition n(r) = O(v(r)), ¥ — +oo, where
n(r) = n(r,0, f) is counting function of zeros (a,) % of function f.

We say that zeros of the function f € Hy(v) have v-density A°(«, B) along logarithmic
spirals [, if the limit

. n(nap)
= A @A)

exists for all o, B € R, 0 < B — a < 271 with the exception, perhaps, of a or § belongs to some
countable set N/, where n¢(r; a, B) is a number of zeros of the function f in D¢(r; «, B).

The equality A°(¢) = A°(¢1, @) for a fixed ¢1 ¢ N defines on the segment [¢1, ¢1 + 27|
a non-decreasing function A°(¢) which we extend on R by the rule A(¢ + 27m) — A°(p) =
A (@1 +27m) — A(¢1).

The logarithmic spiral [§ satisfying the condition

lim  Tom n(r;0 —h,0 +h)

=0
h—s0+ r—-+oo u(r)

is called ordinary for f € Hy(v). The other logarithmic spirals are called exceptional. It follows
from monotonicity of the function A°(¢) that the set of exceptional logarithmic spirals is no
more than countable if zeros of f € Hy(v) have v-density A°(a, B) along I,

Denote by In <1 = f) , an € I the single-valued in the domain D(Ij) = C \ I§(|au|, 4+c0)

n

= 0. Let

branch of multi-valued function Ln (1 — i) such that In (1 — i)
z=0

an an

@ =11 (1-2) o) )

n=1

Then
“+00

Inf(z) = Jioln (1 — f) ,z€C\ U Iy, (ri, +00),
n=1 n n=1

where 7; is the minimum module of zeros 4; of f that lie on the logarithmic spiral I, ¢; =
arga; € [—7, 7).

We call a set E € C the Cy-set if it can be covered by a system of circles {z : |z —ai| <
1}, k€ Nsuchthat Y 7o =o(r), r — +oo.

lag|<r
We write /1(6; ) for the 27r-periodic extension of the function k(6; ) = 6 — ¢ — 7T from

(;9+27) to R, =7 < ¢ < 7. Note N(r) = N(r,0, f) = /@ i,

0
0 T

Hy(o) = [ (0—p—m)dnc(y) = [ h(e;9)an(y). @
0—-2m -7

Theorem 1. Letv € L, f € Hy(v), zeros of f have v-density A°(a, B) along If,. Then there is a
Co-set E such that the following asymptotic relation holds (|z| = r):

Inf(z) = (1+ic)N(r) +iHg(0)v(r) +o(v(r)), z €Iy, z ¢ E, (3)

where [§ is ordinary logarithmic spiral.
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m

Letl;, = U lcj, - < 0 < ... < 8y < 7 be a finite system of logarithmic spirals,
j=1
9m+1 = 91 + 271.

Theorem 2. Letv € L, f € Hy(v), zeros of f lie on I}, H be a piecewise continuous on [—7t, 7r)
function. If for any 6 > 0 the following asymptotic relation

In f (re®+)) = (14 ic)N(r) +iH(0)o(r) + 0(v(r)), 1 o (4)
+1

holds uniformly with respect to 6 € [—7, 1) \ mU (6, — 0;0; +6), then zeros of f have v-density
j=1

A(a, B) along I,

Remark. The condition that zeros of f € Hy(v) lie on a finite system of logarithmic spirals I}y,
is significant in Theorem 2. In the general case of zeros arrangement the statement of Theorem
2 is wrong (see [8] in case c = 0).

2 THE PROOF OF RESULTS
At first we present the lemmas that will be used in the proof of the theorems.
Lemma 1 ([11]). LetA > 0,v € L, f € Hy(v), zeros of f lie on the logarithmic spiral I, p € R,
n(r) = (1+o0(1))Av(r), r — +oo.
Then for @ € R\{y + 27tk : k € Z} the following asymptotic relation holds:
In f <rei(9+"lm)> = (14 ic)N(r) +inh(8; 9)o(r) +o(v(r)), r — oo, (5)
moreover, relation (5) is uniform with respectto € [ + ;9 + 2w — 6], 0 <6 < 1.

Lemma 2. Let f has the form defined in (1), zeros of f have v-density A°(«, B) along S, e > 0 is
arbitrary number. Then there exist § > 0 and a Cy-set E such that for all ordinary logarithmic
spirals Iy of the function f the following inequality holds:

)lnf(z) —Info(z)| <ev(r), z€l5 z ¢ E,

~+o00
where f°(z) = [1] (1 — ai’>' |ay| = |an|, |arga, —argay| < 0.

n=1 n

The proof of the Lemma 2 follows from the considerations similar to [5, p. 132-133],
[1, p. 352-353] and Theorem 1 from [10].

We say that a set F C R is Ep-set if F is a measurable and mes(EN[0,7]) = o(r), r — +o0.

In view of Lemmas 4 and 5 from [9], we get

Lemma 3. Letf € [—m, ), v € L, f € Hy(v), 6 > 0. Then there exists a Ey-set F such that

0+
gl
0—o

| rei®)
f(re)

de = O(v(r)) <(5+51n <1+%>>, r— +oo, r ¢ F.
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Proof of Theorem 1. Let e > 0 is given arbitrary number, function HJS(H) defined by formula (2).
Choose § > 0 such that the integral sum

Z (0:9)) (A (911) — A°(),

where -7t =g < 91 < ... < Pp1 < P =7, max |P;;1 — ;| < I, satisfies the inequality

0<j<m—1
€
[H3(0) = Su(0)] < 5. ©)
Then take numbers a; such that [a;| = |a|, a; € lf/;]- ifap € Iy, ¢j < P < Yj1 (j =

0,1,...,m — 1) and build the function f°(z). Applying Lemma 2 we obtain that there exist
6 > 0 and Co-set E; such that for all ordinary logarithmic spirals [§ of f and f° the following
inequality holds:

‘lnf(z) - lnf‘s(z)‘ < gv(r), z¢ Eq, z €l (7)

Zeros of f(z) lie on a finite system of logarithmic spirals I}, so f°(z) can be depicted as a
product of m entire functions such that zeros of each function lie on a single logarithmic spiral
ll‘;Jj. From Lemma 1 (see (5)) we get that inequality

In f°(z) — (1 +ic)N(r)
v(r)

holds uniformly with respect to 6 € R\ U/L;(; — &;¢; + ), where 6 > 0 is an arbitrary
number.

Further taking into account (6), (7) we obtain that for z ¢ Eq, z € Ig, 6 € R\ U;.”:l(lp i —
d;j + ) the following inequality holds:

Inf(z) — (1 +ic)N(r)
v(r)

Choosing another segmentation of [—7t; 7] by points (1;7]’-)]’-”20, \1,0]’ 1 1,0]’] < J such that inter-
vals (l[)]/ - 1/1; + 6) do not have the mutual points with intervals (y; — J;; + J), we get that
(8) holds forz ¢ Ep, z € Ig, 6 € R \ U;-il(tp]" —J; 1/1]( + J), where Ej; is some Cy-set.

This yields that (3) holds for all ordinary logarithmic spirals [§ of function f. So Theorem 1
is proved. O

—iSm(H)‘ <e z€lj

—iH}(0)| <. )

Proof of Theorem 2. Letv € L, Q) = {|an| :n € N}, a, be zeros of f € Hy(v) that lie on a finite

system of logarithmic spirals I}, = U Iy T <0 <...< 0y <7 Set
]_

~1
oD (r;a,B) =15(1,r) UL (1,0, B) U <lf§(1,r)) U (T'(1; a,ﬁ))fl,
wherer & Q, =71 <O <a <Oy < ... <05y <P <0511 <7,

[(T;a,B) = {z =107 . o < 9 < B
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Since dz = (1 + ic)e/(?+eInt)dt for I5(1, 7) then with the notation

F(t,9) = Tei(90+C1nT)f/(Tei((PJrClnT))
, f(Tei(§0+ClnT)>
using Residue theorem we have
/ !
intep)= [ Gus| [ [ - [ [ ){ge
oD<(r;a,8) (Lr)  T(ruap) lﬁlr I(1a,p)

(1+zc)/<P(t“)— (t5>dt+/ F(r,6) — F(1,0)) id6

h’lf 7’6 i(a+clnr) ) lnf ret +clnr))

L bro

n 2 / / / F(r,0)id6 + C,

=Ko 655 og+s  T=kog—

©)

‘ 0, — — 01— 0;
where C — —lnf(e”") +lnf( 1[3) —/ (1,9)1519, 0<d< min{ koz “,ﬁ 2950’ ]+12 ]},

o

j = kO/ S0 — 1.
0416
Taking account of / F(r,0)id6 = lnf(rei(9j+1*5+Ch‘lr)> _ lnf(rei(0j+5+c1nr)>’ from (9) we
9]‘+(5
obtain
S0 ) .
2min(r; o, B) = Z <lnf(rez(9ﬁ§+clnr)) _ lnf(rez(0j+5+clnr))>
j=ko
0j+4 (10)
+ Z / re!(®+einr))igg _Z +Z
J=kog_s
Applying (4) we get
Y, =i Z — H(8;+6)) v(r) +o(v(r)), r — co.

j=ko
In view of Lemma 3, there exist Eq-sets F; such that (j = ko, so)

9j+(5

j+o ! (4pi(0+cInr) b0
F(re'®tenn)yige| < r freTe ) do =r

= f(rei(0+clnr)) -
0,5 0,5 0,5

= O(o(r)) <5+51n (14—%)), r— too, r & F.

f/(re'?)
Fret)

de
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'Zz < Ki(v(r)) <5+(5ln <1+%>> ,1r— +oo, r¢F,

50
where F = | F;is a Eg-set, K is some constant.
j=ko
Combining the last inequalities and (10) yields

_onf(rna,p) 1 & _ . 1
r%;“W_Ej;;o(H(ef_‘S)—H(@ﬁr&))jth <5+51n(1+5>>.

Directing ¢ to 0+ gives

n‘(r;a, B) 1 &

rETmW =5 ij (H(0; —0) — H(0; +0)) := A(a, B).
r¢E ]=ko

Whereas F is Eyp-set, then any interval (R, (1 + #)R), > 0, includes points that are not in F.
Due to the monotonicity of the function n(r; a, B) with respect to r for r > Ry we can assert

that ryn, B o(r) _ ne(raB) _ né(rsa,B) vlra)
n(ry;a, B) v(rg n(r;a, n(ro; e, B) v(ro
o) o) S ) S u(n) o)

wherer(1—y) <r <r<ro<(l+4+mn)r, r1,rn ¢ F.
Since v(ry) ~ v(r) ~ v(ry),r — oo, the last relation yields

. n(raB)
rlggo o) A, B).

Theorem 2 is proved. O
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Hexait doyrkuist spocranss v Taxa, mwo rv'(r) /v(r) — 0mpur — 400, If = {z = telloteint) 1 <
t < 400} — rorapudpMivra cripans, f — mira PYHKILSI HyABOBOTO IOPSIAKY. 3a YMOBY iCHYBaHHSI
U-IIIABHOCTI Hy AiB f B3AOBX [(, 3HAVAEHO aCMITOTHKY In f (re!(0+€In")y p3p0Bx 3BITUAIHIX AOTApH-
dmiurmx cripaneit I dynkii f 308Hi Co-MHOXMHM. [TokasaHo, 1110 obepHeHe A0 IILOTO TBEPAXKe-
HHSI TIpaBUABHE AMIIIe V¥ BUITAAKY PO3TalllyBaHHS HyAiB f Ha cKiHUeHHIN cmcTeMi AorapmdpmigriX
crmipaneit 'y, = U]’-”ZO Zgj.

Kntouosi cnosa i ppasu: 1ira pYHKITisI, ITIABHICTD HYAiB, AorapudpMiuHa CIipab.



