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CHERNEGA 1.1, ZAGORODNYUK A.2
NOTE ON BASES IN ALGEBRAS OF ANALYTIC FUNCTIONS ON BANACH SPACES

Let {P,};_ be a sequence of continuous algebraically independent homogeneous polynomials

on a complex Banach space X. We consider the following question: Under which conditions poly-
nomials {Pf ... pk "} form a Schauder (perhaps absolute) basis in the minimal subalgebra of entire
functions of bounded type on X which contains the sequence {P,};>_,? In the paper we study the
following examples: when P, are coordinate functionals on ¢y, and when P, are symmetric polyno-
mials on ¢1 and on L [0, 1]. We can see that for some cases {Pf I...Pf"} is a Schauder basis which
is not absolute but for some cases it is absolute.

Key words and phrases: Schauder bases, analytic functions on Banach spaces, symmetric analytic
functions.
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INTRODUCTION AND PRELIMINARIES

Let X be a complex Banach space. We recall that Hj,(X) is the algebra of all entire analytic
functions on X which are bounded on bounded subsets. It is well known that H,(X) endowed
with the metrisable topology generated by the countable family of norms

1fllr = sup [f(x)], 7e€Qy,f e Hy(X),

[l <r

is a Fréchet algebra and the space P(X) of all continuous polynomials on X is a dense subal-
gebra in Hy(X).

Let P = {P,}, be a sequence of continuous algebraically independent homogeneous
polynomials on X with ||P,|| = 1 and Py = 1. We denote by Pp(X) the algebra of all polyno-
mials generated by the sequence P and by Hyp(X) its closure in H,(X).

Clearly,

(PO = Pfr.. Pl (k) = (ky,... ky), n=0,1,2,...}

is a linear basis in Pp(X), and so the span of P() is dense in Hyp(X). Here we set Py = 1.
This work is motivated by the following natural question: Under which conditions {P®)} is a
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Schauder (perhaps absolute) basis in Hyp(X)? The main result of this paper is that depending
on the sequence P we can have different answers on this question. In the paper we study the
following examples: when P, are coordinate functionals on ¢y, and when P, are symmetric
polynomials on ¢; and on Le |0, 1].

Let us recall some definitions in the theory of locally convex spaces (see e.g. [14]).

A sequence of subspaces {E, }, of a locally convex space E is a Schauder decomposition of E
if for each x in E there exists a unique sequence of vectors (x,),, X, € E,, such that

[ee] m

x:an::n%ig;O;xn

n=1 n

and the projections (u,)5,_; defined by

) m
Um (Z xn> = an
n=1 n=1

are continuous. A Schauder decomposition {E, }, of a locally convex space E is absolute if for
each semi-norm p € cs(E),
(£) - £ o
n=1 n=1
defines a continuous semi-norm on E. Finally, a Schauder decomposition {E,}, of a locally
convex space E is global if for allr > 0,allx =)_° ; x, € Ewithall x, € E,

Z x, € E
n=1
and for each p € ¢s(E),
Pr (Z xn> = Z r"p(xn)
n=1 n=1

defines a continuous semi-norm on E.
If each E, is a finite dimensional subspace, then the decomposition is called finite dimen-
sional. If each E, is one dimensional and e, spans E,, then (e,)$’_; is a Schauder basis.

1 MAIN RESULTS

Let X = cg and P, = e}, be the coordinate functionals on cy. Then
PO (x) = (ef (x))f - (eh(x))r = b1 abe, m=0,1,2,...,

are so-called k1 + ... 4+ ky,-homogeneous monomials on cy. Since every polynomial on ¢y can
be approximated by polynomials of finite type and every polynomial of finite type belongs
to linear span of monomials, we have that Hyp(co) = Hj(cp). Moreover, in [8] it is proved
that the monomials {P(*)} endowed with some special order form a Schauder basis for Hj(c)
which however is not absolute. Indeed, if it is absolute, then the subset of monomials
{PW): deg PY) = m} form an unconditional basis in the Banach space of all n-homogeneous
polynomials P(™cp). But it is not so for m > 1, according to [6].
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Let now deg P, = n.So if P € Pp(X) and deg P = m, then

m
k
P(x) = Z Z akl...knpll(x) o Pilffn (X), aklmkn S C (1)
n=0ky+2ky+...+nk,=n

We denote Pp("X) the linear space of all n-homogeneous polynomials in Pp(X). From (1) it
follows that Pp("X) is finite dimensional, polynomials {Pi< Lo PRk 4+ 2k kg, = n}
form a linear basis in Pp("X) and dim Pp("X) = p(n), where p(n) is the number of partitions
of n.

Proposition 1. Let deg P, = n. Then the sequence of spaces {Pp("X)}_, is a global finite
dimensional Schauder decomposition for Hyp(X). Here Pp(°X) = C.

Proof. In [14] it is proved that {P("X)}> , is a global Schauder decomposition for Hj(X).
Since Hyp(X) is a closed subspace of H,(X), Pp("X) = P("X) N Hyp(X) is a global Schauder
decomposition for Hyp(X). O

Note that in the general case the existence of a finite dimensional Schauder decomposition
does not imply the existence of a Schauder basis (see [13]).

Algebras of symmetric functions on ¢; or L1 [0, 1] deliver us interesting examples of Hyp(X).
By a symmetric function on ¢; we mean a function which is invariant under any reordering of
the basis in /1. We use the notations ;s (¢1) for the algebra of all symmetric analytic functions
on /7 that are bounded on bounded sets.

In [12] it is proved that the polynomials

F(x)=Y 2, k=12,
i=1

form an algebraic basis in the algebra of all symmetric polynomials on #;. This means that
the polynomials {Fy } are algebraically independent and their algebraic combinations coincide
with the space of all symmetric polynomials Ps(¢1) on 1. Thus, {F*) = Ff o F]]:”} forms a
linear basis in Pg(¢1) or, in other words, Hys(¢1) = Hyr(¢1).

The algebras Hj,s (/) and their spectrum were investigated in [2—4, 10].

In [5] was constructed an example of a symmetric analytic function on ¢; which is not of
bounded type.

The algebra Py (¢1) has other natural algebraic bases. For us it is important the basis {G, } :

Gu(x) = i Xp

1 Xk
k1< --<ky

n

and Gy := 1. Itis known [3] that |G, || = 1/n!. By the Waring’s formula we have

- 1 A A
Gk = Z (_1>k ()\1+)\2++)\k) 5 - Fl 1., Fkk_
A 424+ A+ kA=k A1IM - Atk

Note that in the general case, algebra Pp(X) admits a lot of algebraic bases of homogeneous
polynomials and linear bases as well. Indeed, if deg P,, = 1, then we can set Q; = a1 P; and

Qn=a110Qn-1P1 +a2Qu_2P1 + - + 4y, Py
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for some complex numbers 4;; such that a;; # 0. Then polynomials Q, form an algebraic basis

and QW) = Qll(1 e Qi” form a linear basis in Pp(X). Note that there is a linear basis of Ps("¢7)
which is not generated by an algebraic basis. For a given partition (k) = (kq, ..., k,) such that
|(k)] = k1 + ...+ k, = n we denote by M(*)(x) = Yoy £ i xfll e x:‘: Then {M(k)}“’]‘<’|:0 is a
linear basis in Ps("47).

We need the following simple lemma which probably is well known (c.f. [1, Theorem 2.1]).

Lemma 1. Let Py, ..., Py be algebraically independent polynomials from a Banach space X to
C such that the map
X 3 x> (Py(x),...,Py(x)) e CN

is onto. Then there is an isomorphism Iy from the minimal subalgebra of entire functions gen-
erated by Py, ..., Py onto the algebra of all entire functions on CN, H(CN) such that Iy(P;) =
t,k=1,...,N, (t,...,ty) € CN.

Theorem 1. Let P, = 1n!G,,. Then {P(*) = Pfl e P]’:”} is a Schauder basis in Hys((1).

Proof. Let ry be the operator of restriction onto subspace Viy C ¢; spanned on the standard ba-
sis vectors ey, ..., eN. Clearly that 5 (Gy) = 0if N < k. Also, we know that rn(Py),...,*N(PN)
are algebraically independent and the map

61 S X = (T’N(Pl),...,T’N(PN)) S CN

is onto. So from Lemma 1 we have the isomorphism Iy from the minimal subalgebra of en-
tire functions Hs(Vy) on Vy, generated by ry(Py),...,rn(Py) to H(CN). By the same rea-
son, we have the isomorphism Zy from the minimal subalgebra of entire functions HY (¢;)
on /1, generated by Pj,..., Py to H (CN ). From here we have that the operator of restriction
rN: Hps(1) — Hg(Vy) is onto and Iﬁl o Iy is the “extension” isomorphism from H,(V;)
to Hé\’ (£1). Also, we know [7, p. 240] that monomials on ¢4, ..., t, form an absolute basis in
H(CN). Thus Pf to.. P,]:" for k < N form an absolute basis in HN (/1) and so all projections Ty,
to finite dimensional subspaces W, generated by these basis vectors are continuous. Thus any
projection u,, from Hys(¢1) to Wy, can be represented by

up=TyoIy' olyory
and so is continuous. O

Let us denote Ays(By,) the completion of Hs(¢1) by the norm || - ||; that is, the sup-norm
on the unit ball By, of /1. Such algebra consists of analytic and uniformly continuous functions
on By, and was considered in [1].

Theorem 2. {F() = F{( To.. F,]:”} cannot be an absolute Schauder basis in H;s(¢1) and cannot
be an unconditional basis in Ay;({1).

Proof. Let us remind that a sequence {e,};’ ; is an unconditional basis of a Banach space, if
there exists a constant M such that for every Y ; a,e, and for every ¢1,...,&n, || = 1, we

have . .
MH Z apenll > H Z Endnenll. (2)
n=1 n=1




46 CHERNEGA 1., ZAGORODNYUK A.

It is well known in combinatorics that

! =1
PAIA AR

3)
MA2A0+. +kA=

Let g(x) = Yoo Gu(x). Since ||Gul| = L, g(x) € Hps(f1) C Aus(fq). According to the
Waring’s formula,

v oy (kg kot k) 1 Ky
8(x)—2 Z ( 1)n(1 R
n=0ki+2ko+...+nk,=n kl!lkl o 'k”!nkn

Fkn,

Wesete ) = €, k) = (—1)ktkattkutn) - According to (3) and ||Ff1 .- Ff"||; = 1 the series

) 1 . L
E E F.o.. Ffn
11k1 .. . e Iygkn 1 n
e PRNE VA o 1) LR L

diverges. It contradicts (2). Also, if {F(K)} is an absolute basis in H,(¢;), then the series

i 1
—(ky+ko+...+ky ki, .. pkn
Z H(_l)n ek )k1!1k1 . kn!nkn 11 Fn

1=0 ky+ 2kt otk y=n 1

1

(o]
= Z Z 11k ... J Ik
n=0ki+2ko+...+nk,=n kl'l ! k”'n !

should be convergent. But it is not so. O

Algebra of symmetric analytic functions Hy(L[0,1]) on Leo[0, 1] consists of analytic func-
tions which are invariant with respect to all measurable automorphisms of [0, 1].
According to [9] polynomials P, = R;, where

Ra(x) = /[Oll](x(t))”dt, neN,

form an algebraic basis in the algebra of all symmetric polynomials on Le[0,1]. In [11] it is
proved that {R*) = R’l(l e R’,i”} is an absolute basis in Hys(Loo [0, 1]).
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Hexait { P, };;_, — TOCAIAOBHICTb HeTlepepBHMX aATe6paiuyHO He3aAeXHIX OAHOPIAHMX MOAIHO-
MiB Ha KOMIIAeKCHOMY baHaxoBoMy mpocTopi X. PosrasiHeMO HacTynHe mMTaHHS: 3a SIKMX YMOB
TIOAIHOMM {Pf To.. P,Ii”} yTBOpIOOTH 6asuc Illayaepa (MOXAMBO aOCOAIOTHWIL) B MiHIMaABHIl MiA-
aarebpi miamx dpyHkil obMexeHoro Timy Ha X, sSIKi MicTsSTh mocAipoBHICTE { Py} (? Y pobori
AOCAIAXKYIOTBCSI HACTYIHI IPMKAAAM: KOAU Py, € KoopAMHaTHMMM (PYHKLIOHAAAMM Cq, 1 koan Py, €
CUMEeTPUYHIMIY ToAIHOMaMM Ha £1 1 Ha Loo [0, 1]. My 6aummo, 1110 y AeSIKMX BATIAAKAX {P{( L...pkn e
6asmcom lllayaepa sSKiii He € aGCOAIOTHMM, aAe B A@SIKMX BUIIAAKAX € aOCOAIOTHVIM.

Kontouosi cnosa i ppasu: 6asuc Illayaepa, aHariTwuri pyHKIIT Ha 6aHAXOBMX IMPOCTOpax, CUMe-
TPMYHI aHAAITIUUHI (PYHKIIII.



