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CHARACTERIZATIONS OF REGULAR AND INTRA-REGULAR ORDERED
I'-SEMIHYPERGROUPS IN TERMS OF BI-I-HYPERIDEALS

The concept of I'-semihypergroups is a generalization of semigroups, a generalization of semihy-
pergroups and a generalization of I'-semigroups. In this paper, we study the notion of bi-I'-hyper-
ideals in ordered I'-semihypergroups and investigate some properties of these bi-I'-hyperideals.
Also, we define and use the notion of regular ordered I'-semihypergroups to examine some clas-
sical results and properties in ordered I'-semihypergroups.
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1 INTRODUCTION

A semigroup is an algebraic structure consisting of a non-empty set S together with an asso-
ciative binary operation [24]. The notion of a I'-semigroup was introduced by Sen and Saha [37]
as a generalization of semigroups as well as of ternary semigroups. Since then, hundreds of
papers have been written on this topic, see [6,7,16]. Many classical notions of semigroups have
been extended to I'-semigroups. Let S = {a,b,c,--- } and I = {«, B, 7, - - - } be two non-empty
sets. Then, S is called a I'-semigroup if there exists a mapping from S x I' X S to S, written as
(a,7,b) — ayb, satisfying the identity (aab)pc = aa(bBc) for all a,b,cin S and &, B inT. In
this case by (S,I') we mean S is a I'-semigroup. By an ordered semigroup, we mean an algebraic
structure (S, -, <), which satisfies the following conditions: (1) (S, ) is a semigroup; (2) S is
a partial ordered set by <; (3) If 2 and b are elements of S such thata < b, thena-c < b-c
and c-a < c-bforall c € S. Ordered semigroups have been studied extensively by Kehay-
opulu and Tsingelis, for example, see [27-29]. The notions of an ordered I'-groupoid and an
ordered I'-semigroup were defined by Sen and Seth in [38]. Many authors studied different as-
pects of ordered I'-semigroups, for instance, Abbasi and Basar [1], Chinram and Tinpun [7, 8],
Dutta and Adhikari [16,17], Hila [22], [ampan [25], Kehayopulu [26], Kwon [31], Kwon and
Lee [32,33], and many others. Recall from [38], that an ordered T'-semigroup (S,T, <) is a I'-
semigroup (S,T') together with an order relation < such that a < b implies that ayc < byc and
cya <cybforalla,b,ce Sand y €T.

The concept of ordered semihypergroups is a generalization of the concept of ordered semi-
groups. The concept of ordering hypergroups introduced by Chvalina [11] as a special class
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of hypergroups. Many authors studied different aspects of ordered semihypergroups, for in-
stance, Davvaz et al. [15], Gu and Tang [19], Heidari and Davvaz [20], Tang et al. [39], and
many others. Explicit study of ordered semihypergroups seems to have begun with Heidari
and Davvaz [20] in 2011. Recall from [20], that an ordered semihypergroup (S, o, <) is a semihy-
pergroup (S, o) together with a partial order < that is compatible with the hyperoperation o,
meaning that for any x,y,z € S,

x<y=zox<zoyandxoz<yoz.

Here, zo x < zoy means for any a € z o x there exists b € z oy such that a < b. The case
x oz < yozis defined similarly.

Recently, Davvaz et al. [4,5, 13,21, 23] studied the notion of I'-semihypergroup as a gen-
eralization of a semigroup, a generalization of a semihypergroup and a generalization of a
I'-semigroup. They proved some results in this respect and presented many exmaples of I'-
semihypergroups. Many classical notions of semigroups and semihypergroups have been
extended to I'-semihypergroups. The notion of a I'-hyperideal of a I'-semihypergroup was
introduced in [4]. Davvaz et al. [5] introduced the notion of Pawlak’s approximations in I'-
semihypergroups. Abdullah et al. [2] studied M-hypersystems and N-hypersystems in a I'-
semihypergroup. Algebraic hyperstructures are a suitable generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two elements is an element,
while in an algebraic hyperstructure, the composition of two elements is a set. The concept
of hyperstructure was first introduced by Marty [34] at the eighth Congress of Scandinavian
Mathematicians in 1934. A comprehensive review of the theory of hyperstructures can be
found in [9,10,12,40]. Let S be a non-empty set and P*(S) be the family of all non-empty
subsets of S. A mapping o : S x S — P*(S) is called a hyperoperation on S. A hypergroupoid
is a set S together with a (binary) hyperoperation. In the above definition, if A and B are two
non-empty subsets of S and x € S, then we denote

AoB=|J, xoA={x}oA and Box=Bo{x}.

acA
beB

A hypergroupoid (S, o) is called a semihypergroup if for every x,y,zin S, xo (yoz) = (xoy)oz.

That is,
U xou = U voz.

ucyoz vexoy

A non-empty subset K of a semihypergroup S is called a subsemihypergroup of S if Ko K C K.
A hypergroupoid (S, o) is called a quasihypergroup if for every x € S, xoS = S = Sox. This
condition is called the reproduction axiom. The couple (S, o) is called a hypergroup if it is a
semihypergroup and a quasihypergroup. A non-empty subset K of S is a subhypergroup of S if
Koa =aoK =K, for every a € K. A hypergroup (S, o) is called commutative if xoy = yox,
for every x,y € S.

2 REVIEW: ORDERED I'-SEMIHYPERGROUPS

The notion of a I'-semihypergroup was introduced by Davvaz et al. [4,5,21]. In [20], Heidari
and Davvaz introduced the concept of ordered semihypergroups, which is a generalization of
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ordered semigroups. In this section, we recall the notion of an ordered I'-semihypergroup and
then we present some definitions and properties which we will need in this paper. Throughout
this paper, unless otherwise stated, S is always an ordered I'-semihypergroup (S, T, <).

Definition 1 ([4,5]). Let S and I' be two non-empty sets. Then, S is called a I'-semihypergroup it
every v € I' isa hyperoperationonS, i.e., xyy C S forevery x,y € S, and forevery a, B € I' and
x,y,z € S, we have xa(ypz) = (xay)pBz. If every v € T is an operation, then S is a I'-semigroup.
Let A and B be two non-empty subsets of S. We define

ATB=U{ayb|ac AlbeBandy e} = |J AyB.
yerl

A T-semihypergroup S is called commutative if for all x,y € S and 7y € T, we have xyy = yyx.
AT-semihypergroup S is called a I'-hypergroup if for every v € T, (S, ) is a hypergroup.

Now, we consider the notion of an ordered I'-semihypergroup.

Definition 2 ([30]). An algebraic hyperstructure (S,T, <) is called an ordered T-semihypergroup
if (S,T') is a I'-semihypergroup and (S, <) is a partially ordered set such that for any x,y,z € S
and v € I, x < y implies zyx < zyy and xyz < yyz. Here, if A and B are two non-empty
subsets of S, then we say that A < B if for every a € A there exists b € B such thata < b.

Let S be an ordered I'-semihypergroup. By a sub I'-semihypergroup of S we mean a non-
empty subset A of S such thatayb C Aforalla,b € Aand v €T.

Example 1 (30]). Let (S, o, <) be an ordered semihypergroup and I' a non-empty set. We define
xyy = xoy forevery x,y € S and vy € I'. Then, (S,T, <) is an ordered I'-semihypergroup.

Definition 3. Let (S,I', <) be an ordered T-semihypergroup. A non-empty subset I of S is
called a left I-hyperideal of S if it satisfies the following conditions:

(1)ST1 C I;

(2) When x € I andy € S such thaty < x, imply thaty € I.

A right I'-hyperideal of an ordered I'-semihypergroup S is defined in a similar way. By
two-sided I'-hyperideal or simply I'-hyperideal, we mean a non-empty subset of S which both left
and right I'-hyperideal of S. A I'-hyperideal I of S is said to be proper if I # S.

Let K be a non-empty subset of an ordered I'-semihypergroup (S, T, <). If H is a non-empty
subset of K, then we define (H|g := {k € K | k < h for some h € H}. Note that if K = S, then
we define (H] := {x € S| x < hfor some h € H}. For H = {h}, we write (h] instead of ({h}].
Note that the condition (2) in Definition 3 is equivalent to (I] C I. If A and B are non-empty
subsets of S, then we have

(1) AC (A];

@) ((A]] = (AL

(3) If A C B, then (A] C (B];
(4) (AT(B] C (ATB];

(5) ((AJT(B]] = (ATB].
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Lemma 1. If I and | are I'-hyperideals of an ordered I'-semihypergroup (S,T, <), then IN ] is
a I'-hyperideal of S.

Proof. Letx € I,y € Jand vy € I'. Then, xyy C IT] C ITS C [ and xyy C IT] C SI'J C J. So,
xyy CINJand hence @ # INJ C S. Wehave (IN])TS C ITS C Iand ST(IN]) C STJ C J.
Similarly, (INJ)I'S C Jand ST(IN]) C I. So,wehave (IN)ISC INJand ST(IN]) CINJ.
Now, letx € IN ],y € Sand y < x. Since I and | are I'-hyperideals of S, we obtain y € I and
y € J. Thus, y € I N ]. This completes the proof. O

Let (S,T, <) be an ordered I'-semihypergroup. A subset A of S is called idempotent if A =
(AT A].

Lemma 2. The I'-hyperideals of an ordered I'-semihypergroup (S,T, <) are idempotent if and
only if for any I'-hyperideals I, ] of S, we have IN | = (IT']].

Proof. The sufficiency is obvious. For the necessity, let I, | be I'-hyperideals of S. We have
(IT]J] € (ITS] € (I] = I'and (IT]] C (STJ] € (J] = J. So, we have (ITJ] € INJ. On
the other hand, by Lemma 1, I N | is a I'-hyperideal of S. By assumption, we have I N ] =
((INNHI(IN]J)] C (IT]]. This completes the proof. O

Theorem 1. Let (S, T, <) be a commutative ordered T'-semihypergroup. If I is a I'-hyperideal
of S and A is a non-empty subset of S, then (I : A) = {x € S |xya C Iforalla € Aandy €T’}
is a I'-hyperideal of S.

Proof. Suppose thatx € (I: A),s € Sand d € I'. Then, xya C [ foralla € Aand y € I. We
have (séx)ya = sé(xya) C ST'I C I. So, we have séx C (I : A). In the similar way, we obtain
x6s C (I: A). Now,letx € (I: A),y € Sandy < x. Then, xya C [foralla € Aand v € T.
Also, we have yya < xyaforalla € A and ¢ € I, by hypothesis. So, for any u € yya, u < v for
some v € xya C I. Since I is a I'-hyperideal of S, it follows that u € I. So, we have yya C [ for
alla € Aand vy € T. Thus, we have y € (I : A). Therefore, (I : A) isa I-hyperidealof S. [

3 BI-I'-HYPERIDEALS

The study of ordered semihyperrings was first undertaken by Davvaz and Omidi [14].
In [35], Omidi, Davvaz and Corsini studied some properties of hyperideals in ordered Kras-
ner hyperrings. The concept of a bi-ideal is a very interesting and important thing in semi-
groups and ordered semigroups. In 1952, Good and Hughes [18] introduced the notion of
bi-ideals in semigroups. Recently, Davvaz et al. [4] introduced the notion of bi-I'-hyperideal
in I'-semihypergroups (cf. [3]). In [36], Pibaljommee and Davvaz studied the properties of
bi-hyperideals in ordered semihypergroups. The concept of bi-I'-hyperideals of an ordered I’-
semihypergroup is a generalization of the concept of I'-hyperideals (left I'-hyperideals, right I'-
hyperideals) of an ordered I'-semihypergroup. First, we define the concept of a bi-I'-hyperideal
in ordered I'-semihypergroups.

Definition 4 ([30]). A sub I'-semihypergroup B of an ordered T'-semihypergroup (S,T, <) is
called a bi-T'-hyperideal of S if the following conditions hold:

(1) BISTB C B;
(2) When x € Bandy € S such thaty < x, imply thaty € B.
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The concept of bi-I'-hyperideals of an ordered I'-semihypergroup is a generalization of
the concept of I'-hyperideals (left I'-hyperideals, right I'-hyperideals) of an ordered I'-semi-
hypergroup. Obviously, every left (right) I'-hyperideal of an ordered I'-semihypergroup S is a
bi-I'-hyperideal of S, but the the following example shows that the converse is not true in ge-
neral case. Indeed, If I is a left (right) [-hyperideal of S, then IT'I C ST'I C I. Hence, I is a sub
I'-semihypergroup of S.

Example 2. Let S = {a,b,c,d,e,f} and T = {v,B} be the sets of binary hyperoperations
defined as follows.

yla b ¢ de f Bla b ¢ d e f
ala b a aa a ala b a a a a
bbb b bb b bbb b b b b
cla b {a,c} a a {a f} cla b a a a a
dia b {a,e} a a {ad} dla b a {ad} {ae} a
ela b {ae} a a {ad} ela b a a a a
fla b {ac} a a {af} fla b a {a f} {ac} a

Then S is a I'-semihypergroup [41]. We have (S,T, <) is an ordered I'-semihypergroup where
the order relation < is defined by:

<= {(a,a), (a,), (a,¢), (a,d), (a¢), (a, f), (b,b), (c,<), (d,d), (e,e), (£, £)}.

The covering relation and the figure of S are given by:

<= {(a,b), (a,c), (a,d),(ae),(a,f)}.

C d e
bvf

Here,

(1) It is a routine matter to verify that By = {a,b,c} is a bi-I'-hyperideal of S, but it is not a
I'-hyperideal of S.

(2) With a small amount of effort one can verify that By = {a,b,c, f} is a bi-I'-hyperideal of
S, but it is not a left I'-hyperideal of S.

Lemma 3. The intersection of any family of bi-I'-hyperideals of an ordered I'-semihypergroup
(S,T,<) is a bi-T-hyperideal of S.

Proof. Let {By | k € A} be a family of bi-T-hyperideals of S and B = () By. It is easy to
keA
check that B is a sub I'-semihypergroup of S. Now, let x € BI'SI'B. Then, x € aaspb for

some a,b € B,s € Sand a, € I'. Since each By is a bi-I-hyperideal of S, it follows that

ansPBb C B I'ST By C By for all k € A. Then, x € By forall k € A. So, we have x € (| By = B.
ke
Since x was chosen arbitrarily, we have BISTB C B. If x € Band y € S such that y < x, then

x € By for all k € A. Since each By is a bi-I'-hyperideal of S, it follows that y € By for all k € A.

So, we havey € (| By = B. Hence, B is a bi-I'-hyperideal of S. O
keA
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Lemma 4. Let (S,T, <) be an ordered I'-semihypergroup. If B is a bi-I'-hyperideal of S and C
is a bi-T-hyperideal of B, such that C = (CT'C], then C is a bi-T-hyperideal of S.

Proof. By assumption, we have that
CI'C = (CICJI'(CIC] C (CI'(CICIC)] C (CIC] =C,

which shows that C is a sub I'-semihypergroup of S. On the other hand, we have BI'STB C
B and CI'BI'C C C. Thus, we have

CTSTC = (CTC|TST(CIC] = (CTC]T(S]T(CTC]
C (CTCTS|T(CIC] C (CT(CTSIC)IC]

C
C (CT(BTSTB)IC] C (CT'BIC] C (C]s C C.

Now, let c € Cand x < ¢, where x € S. Since B is a bi-I'-hyperideal of S and C C B, we get
x € B. On the other hand, C is a bi-I'-hyperideal of B. It follows that x € C. This completes the
proof. O

Let A be a non-empty subset of an ordered I'-semihypergroup (S,I', <). We denote by
Ls(A) (resp. Rs(A), Is(A)) the left (resp. right, two-sided) I'-hyperideal of S generated by A.

Lemma 5. If A is a non-empty subset of an ordered I'-semihypergroup (S,I’, <), then the
following hold:

(1) Ls(A) = (AUSTA);
(2) Rs(A) = (AU ATS];
(3) Is(A) = (AUSTAU ATS U STATS].

Proof. Since A C Lg(A) and STA C Lg(A), it follows that (A USTA] C Lg(A). Clearly,
(AUSTA| # @. We have

ST(AUSTA] = (S|T(AUSTA] C (ST(AUSTA)]
— (STAUST(STA)] C (STA] C (AUSTA].

Thus, (A U ST A] is a left I'-hyperideal of S containing A. This means that Lg(A) C (AU
ST A]. This proves that (1) holds. The conditions (2) and (3) are proved similarly. O

Corollary 1. Leta be an element of an ordered I'-semihypergroup (S, T, <). Then,
(1) Ls(a) = (aU STal;
(2) Rs(a) = (auals);
(3) Is(a) = (aUSTaUal'SUSTalsS].
Let A be a non-empty subset of an ordered I'-semihypergroup (S, T, <). We define
© = {B | Bis a bi-I-hyperideal of S containing A}.

Since S € O, it follows that © # &. We denote by Bg(A) the bi-I'-hyperideal of S generated by
A. Clearly, A C Bs(A) = () B. By Lemma 3, Bs(A) is a bi-T-hyperideal of S.
Be®
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Lemma 6. Let A be a non-empty subset of an ordered I'-semihypergroup (S,T, <). Then,
Bs(A) = (AUATAUATSTA]
Proof. Set B= (AU ATAU ATST A]. Clearly, B # @. We have

BTB = (AU ATAU ATSTAJT(A U ATA U ATSTA]
C ((AUATAUATSTA)T(AU ATA U ATSTA)]
C (ATSTA] C (AU ATAU ATSTAJ.

Hence, B is a sub I'-semihypergroup of S. Now,

BTSTB = (AUATAU ATSTA|TST(A U ATA U ATSTA]
C ((AUATAU ATSTA)TST(AU ATA U ATSTA)]
-

(ATA U ATSTA] C (AU ATA U ATSTA.

Therefore, B is a bi-I'-hyperideal of S, and hence Bs(A) C (AU ATA U ATSTA]. Let C be a
bi-I'-hyperideal of S containing A. Then, AIA C C and AI'STA C CI'STC C C. Thus, we have
B=(AUATAUAIST'A] C (C] = C. Hence, B is the smallest bi-I'-hyperideal of S containing
A. Therefore, Bs(A) = B = (AUATAU ATSTA]. O

Corollary 2. Leta be an element of an ordered I'-semihypergroup (S,T, <). Then,

Bs(a) = (aUalaUal'STa.

4 MAIN RESULTS

The concepts of regular (resp. intra-regular) ordered I'-semihypergroups generalize the
corresponding concepts of regular (resp. intra-regular) I'-semihypergroups as each regular
(resp. intra-regular) I'-semihypergroup endowed with the order <:= {(a,b) | a = b} is a reg-
ular (resp. intra-regular) ordered I'-semihypergroup. In this section, we introduce the notion
of regular ordered I'-semihypergroups and investigate some related results. We characterize
regular ordered I'-semihypergroups in terms of bi-I'-hyperideals, left I'-hyperideals and right
I'-hyperideals of ordered I'-semihypergroups. In this paper, some well known results of or-
dered semihypergroups in case of ordered I'-semihypergroups are examined.

Definition 5. An ordered I'-semihypergroup (S,T, <) is called regular if for every a € S there
existx € S, o, € T such thata < aaxpa. This is equivalent to saying thata € (al'ST'a], for
everya € Sor A C (ATSTA|, forevery A C S.

Example 3. Let S = {a,b,c,d,e} andT = {v, B} be the sets of binary hyperoperations defined
as follows.

Y| a b ¢ d e Bl a b ¢ d e
a|{ab} {be} ¢ {cd} e a|{be} e ¢ {cd} e
b|{be} e ¢ {cd} e b| e e ¢ {cd} e
cl ¢ c ¢ ¢ c cl ¢ c ¢ ¢ c
d|{cd} {cd} ¢ d {cd} d|{cd} {cd} ¢ d {cd}
e| e e ¢ {cd} e e| e e ¢ {cd} e
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Then S is a I'-semihypergroup [42]. We have (S,T, <) is an ordered I'-semihypergroup where
the order relation < is defined by:

<:={(a,a),(a,b),(a,c), (a,e), (b,b),(b,c), (be),(c,c) (dc), (dd),(ec) (ee)}.

The covering relation and the figure of S are given by:

<={(a,b), (b,e), (4,0), (e.c)}.

a s

d

We can easily verity that S is a regular ordered I'-semihypergroup.

Lemma 7. Every I'-hyperideal I of a regular ordered I'-semihypergroup (S,T, <) is a regular
sub I'-semihypergroup of S.

Proof. Leta € I. Since S is a regular ordered I'-semihypergroup, there exist x € S, &, 8,7,0 € T
such that a < aaxBa < aaxPayxdéa = an(xPayx)da. Since I is a I'-hyperideal of S, it follows
that xayx C STITS C I. Thus, a < t for some t € aa(xBayx)éa C al'll'a. So, we have
a € (al'ITa];. Therefore, I is a regular sub I'-semihypergroup of S. O

Theorem 2. If [ and | are regular I'-hyperideals of an ordered I'-semihypergroup (S,T, <),
then I N ] is also a regular I'-hyperideal of S.

Proof. Let I and ] are regular I'-hyperideals of S. By Lemma 1, I N | is a I'-hyperideal of S.
By Lemma 7, I and ]| are regular sub I'-semihypergroups of S. Now, let a € I N J. Then,
a < aaxPa and a < ayyda for some x,y € Sand «,B,7,6 € I'. So, we have a < aaxpfa <
(aaxpa)usA(ayyda) = an(xPapusAaryy)da. Since I and | are I'-hyperideals of S, we obtain
xBapusAayy C INJ. Thus, we have a < t for some t € aa(xPapusAayy)éa C al'(IN])Ta
which implies that a € (aI'(I N J)T'a];. Hence, there exists z € 1N ] such that a < aazda.
Therefore, I N | is a regular sub I'-semihypergroup of S. O

We now prove the following theorem which is the crucial theorem in the establishment of
our main theorems.

Theorem 3. An ordered I'-semihypergroup (S,T, <) is regular if and only if for every right
I'-hyperideal R and every left I'-hyperideal L of S, we have RN L = (RT'L].

Proof. Let R be a right I'-hyperideal and L a left I'-hyperideal of S. As RI'L C ST'L C L and
RTL C RIS C R, we have RTL € RN L. So, (RTL] € (RNL] € (RN (L] € RNL. Let S be
regular; we need to prove that RN L C (RT'L]. Since S is regular, we have

RNLC ((RNL)TST(RNL)] C (RTST(RNL)] C (RTSTL] C (RTL).
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Conversely, suppose that RN L = (RI'L] for any right I'-hyperideal R and any left I'-
hyperideal L of S. Leta € S. Since a € Rg(a) and a € Lg(a), it follows thata € Rg(a) N Lg(a).
By hypothesis, we have that

a € (Rg(a)TLg(a)] ((aUal'ST(a U Sla]

C (aTaUal'STaUal'STSTa] C (alTa Ual'STa.

Hence, a <t forsomet € al'aUal'STa. If u € aI'STa, then a < aaxPa for somex € S, a, B € T.
Thus, we have a € (aI'STa]. Therefore, S is a regular ordered I'-semihypergroup. If u € al'a,
then a < aaa < an(aPa). So, we have a € (al'ST'a]. Therefore, S is regular. O

Now, we obtain the following corollaries.
Corollary 3. If (S, T, <) is a regular ordered I'-semihypergroup, then S = (STS].

Corollary 4. An ordered I'-semihypergroup S is called fully I'-hyperidempotent it every I'-hyper-
ideal of S is idempotent. If S is a regular ordered I'-semihypergroup, then S is fully I'-hyper-
idempotent.

Theorem 4. Let (S,T', <) be a regular ordered T'-semihypergroup. Then, B is a bi-I'-hyperideal
of S if and only if there exists a right I'-hyperideal R and a left I'-hyperideal L of S such that
B = (RTL].

Proof. Let S be a regular ordered I'-semihypergroup and B a bi-I'-hyperideal of S. First, we
show that (BT'S] is a right I'-hyperideal of S. Let y € S and x € (BI'S]. Then, there exist b €
(BT'S],c € B,s € Sand a € T such that x < b < cas. Since S is an ordered I'-semihypergroup,
it follows that xpy < by < b < (cas)By C BI'S, where p € T'. Hence, xpy C (BI'S]. If y < x,
theny < x < b, and soy € (BI'S]. Therefore, (BI'S] is a right I'-hyperideal of S. Similarly, we
can prove that (ST'B] is a left [-hyperideal of S. Now, we prove that B = ((BI'S|T'(SI'B]]. Since
S is regular, it follows that B C (BI'ST'B], for every B C S. Since B is a bi-I'-hyperideal of S, it
follows that BI'ST'B C B. So, we have (BI'STB] C (B] = B. Hence, B = (BI'ST'B]. By Corollary
3, we have S = (ST'S]. Hence,

B = (BISTB] = (BI(ST'S|TB] = ((B]I((STS]|TB] = ((BISTS|IB]
— ((BTSTS|I(B]] = ((BISTS)TB] = ((BTS|T(STB]).

Conversely, suppose that R is a right I'-hyperideal and L a left I'-hyperideal of S such that
B = (RT'L]. We prove that (RT'L] is a bi-T-hyperideal of S. We have

(RTL|T(RTL] C ((RTL)T(RTL)] = ((RTLTR)TL] C ((RTSTR)TL] C (RTL].
Then, (RT'L] is a sub I'-semihypergroup of S. Also, we have

(RTLJTST(RTL] = (RTL]T(S]T(RTL] C ((RTL)TS|T(RTL] C ((RTL)IST(RTL)]

Z (RT(LTS)TRTL] C ((RTS)TRTL] C (RTRTL] C (RTSTL] C (RTL).

Now, suppose that y € S and x € (RTL] such that y < x. Since x € (RT'L], it follows that x < a
for some a € RTL. Sincey < x and x < a, we gety < a. So, we have y € (RTL]. Therefore,
(RT'L] is a bi-T'-hyperideal of S. O
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Theorem 5. An ordered I'-semihypergroup (S,T, <) is regular if and only if for every rightT-
hyperideal R, every left I'-hyperideal L and every bi-I'-hyperideal B of S, we have RN BN L C
(RTBTL).

Proof. Let R be right I'-hyperideal, L a left I'-hyperideal and B a bi-I'-hyperideal of S. By
hypothesis, we have

((RNBNL)TST(RNBNL)TST(RNBNL)TST(RNBNL)]
(RTSTBISTBISTL] = ((RTS)I(BTSTB)I(STL)] C (RTBTL).

Conversely, suppose that RN BN L C (RI'BTL| for every right I'-hyperideal R, every left
I'-hyperideal L and every bi-I'-hyperideal B of S. Since S is a bi-I'-hyperideal of S, we have
RNL=RNSNLC (RITSTL] C (RTL]. By Theorem 3, S is regular. O

Definition 6. Let (S,T, <) be an ordered T'-semihypergroup. An element a € S is said to
be intra-reqular if there exist x,y € S, «,B,v € I such thata < xaafayy. An ordered I'-
semihypergroup S is called intra-regular if all elements of S are intra-regular.

Equivalent definitions:

(1) a € (STal'al'S], for alla € S.
(2) A C (STATATS], forall A C S.

Example 4. Let S = {a,b,c,d,e} andT = {7, B} be the sets of binary hyperoperations defined
as follows.

Y| a b c d e Bl a b c d e
a|{a,b} {bc} ¢ {de} e a|{bc} ¢ c {de} e
b|{bc} ¢ c {de} e b| ¢ c c {de} e
c| ¢ c c {de} e c| ¢ c c {de} e
d|{de} {de} {de} d e d|{de} {de} {de} d e
e| e e e e e el e e e e e

Then S is a I'-semihypergroup [41]. We have (S,T, <) is an ordered I'-semihypergroup where
the order relation < is defined by:

<i={(a,a),(a,b),(a,c),(bb),(bc),(cc) (dd),(ee)}

The covering relation and the figure of S are given by:

<=A{(a,b),(bc)}.

c

b

Q.o
Y

a

Then, by routine calculations, (S,T, <) is intra-regular.
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Theorem 6. Let (S, T, <) be an ordered I'-semihypergroup. Then, S is intra-regular if and only
if for every right I'-hyperideal R and every left I'-hyperideal L of S, we have

RNLC (LTR].

Proof. Let R be a right I'-hyperideal and L a left I'-hyperideal of S. Let S be intra-regular; we
need to prove that RN L C (LTR]. Since S is intra-regular, we have

RNLC (ST(RNL)I(RNL)TS] C (STLTRTS] C (LTR].

Conversely, suppose that RN L C (LI'R] for any right I'-hyperideal R and any left I'-
hyperideal L of S. Leta € S. Since a € Rg(a) and a € Lg(a), it follows that a € Rg(a) N Lg(a).
By hypothesis, we have

a € (Lg(a)TRg(a)] ((aU STal'(a UalS]]

C (aTa U STala Ualal'S U STalal'S].

Hence, a < u forsomeu € al'aU STal'aUal'al'SUSTalal'S. If u € STal'al’S, thena < xaaPayy
for some x,y € S, w, B, € I'. Thus, we have a € (ST'al'al'S]. Therefore, S is intra-regular. If
u € ala, then a < ana < aw(apa) < awaPaya. So, we have a € (STal'al'S|. Hence, S is
intra-regular. If u € STal'a, then a < xaaPfa < xa(xyada)pa for some x € S, o, B,7v,6 € T.
So, we have a < syadaBa. Hence, a € (STal'al'S|. If u € alal'S, in a similar way, we obtain
a € (STalal'S]. Therefore, S is intra-regular. O

Corollary 5. Let (S,T', <) be an ordered I'-semihypergroup. Then, the following statements
are equivalent:

(1) S is regular and intra-regular.
(2) (RTL]=RNL C (LI'R] for every right I'-hyperideal R and every leftI'-hyperideal L of S.
Proof. It is immediately followed by Theorem 3 and Theorem 6. O

Theorem 7. An ordered I'-semihypergroup (S,T, <) is intra-regular if and only if for every
right I'-hyperideal R, every left I'-hyperideal L and every bi-I'-hyperideal B of S, we have
RNBNLC (LTBTR].

Proof. The proof is similar to the proof of Theorem 5. O
By routine verification we have the following theorem.

Theorem 8. An ordered I'-semihypergroup (S,T, <) is both regular and intra-regular if and
only if for every right I'-hyperideal R, every left I'-hyperideal L and every bi-I'-hyperideal B of
S, we have RNBN L C (BI'RTL).

Our main aim in the following is to introduce and study the notion of simple ordered I'-
semihypergroups. Also, we characterize this type of ordered I'-semihypergroups in terms of
I'-hyperideals.

Definition 7. An ordered I'-semihypergroup (S,T, <) is said to be left (resp. right) simple if S
has no proper left (resp. right) I'-hyperideals. S is called a simple ordered I'-semihypergroup if it
does not contain proper I'-hyperideals, i.e., for any I'-hyperideal I # @ of S, we have I = S.
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Lemma 8. Let (S, T, <) be an ordered I'-semihypergroup. Then, the following assertions hold:
(1) S is left simple if and only if (STa] = S, for alla € S.
(2) S is right simple if and only if (aI'S] = S, for alla € S.
Proof. (1): Suppose that S is a left simple ordered I'-semihypergroup and a € S. We have
ST'(STa] = (S|T'(STa] C (ST(ST'a)] = ((ST'S)T'a)] C (STa.

Now, suppose that x € (ST'a] and y € S such that y < x. Since x € (STa], it follows that x < u
for some u € STa. Since y < x and x < u, we gety < u. So, we have y € (STa|. Hence, (ST'a] is
a left hyperideal of S. Since S is a left simple ordered I'-semihypergroup, we have (STa] = S.

Conversely, suppose that (ST'a] = S forall a € S. Let L be a left hyperideal of S and x € L.
By assumption, we have (SI'x] = S. If s € S, thens € (STx]. So, s < v for some v € ST'x C L.
Since L is a left I'-hyperideal of S, we have s € L, and so L = S. Therefore, S is a left simple
ordered I'-semihypergroup.

(2): The proof is similar to the proof of (1). d

Theorem 9. If (S,T, <) is a left (right) simple ordered I'-semihypergroup, then S is a simple
ordered I'-semihypergroup.

Proof. 1t is straightforward. O

Theorem 10. An ordered I'-semihypergroup (S,T, <) is left and right simple if and only if for
every a € S, we have (ST'al'S] = S.

Proof. Let S be left and right simpleand a € S. By Lemma 8, a € (ST'a] and a € (aI'S]. We have
a € (a'S] C ((STa|I'S] C (STal's|,

and so S C (ST'aTl'S]. Thus, (STal'S] = S.
Conversely, suppose that (STal'S] = S for every a € S. Let I be a I'-hyperideal of S such
that I & S. Let x € I. By assumption, we have s < suxAs for every s € Sand y, A € T'. We have

suxAs C STITS C (STITS] C (I] = 1.

Then, S C I, a contradiction. Therefore, S has no proper left and right I'-hyperideals. This
completes the proof. O

In what follows, we characterize simple ordered I'-semihypergroups in terms of bi-I'-hyper-
ideals.

Theorem 11. An ordered I'-semihypergroup (S,T, <) is left and right simple if and only if S
does not contain proper bi-I'-hyperideals.

Proof. Suppose that S is a left and right simple ordered I'-semihypergroup and B a bi-I-
hyperideal of S. We claim that S C B. Consider s € S and x € B. Since S is left simple,
we get S = (x U ST'x]. We can consider the following two cases:

Case 1. If s < x, then we have s € B.

Case 2. Lets € (uyx] for some u € S and ¢ € I'. By hypothesis, S is a right simple or-
dered T'-semihypergroup. Then, we have S = (x UxI'S]. Since u € S, we have u < x or
u € (xéw| for some w € Sand é € I'. By Lemma 8, we have S = (xI'S] = (ST'x], and so
x € (xI'S] = (xI(STx]] € (xI'STx]. Then, S is a regular ordered I'-semihypergroup. Thus,
there exists a2 € S and &, § € I such that x € (xaaBx]. If u < x, then we have
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(uyx] C (xyx] C (xyxaapx] C (BI'STB] C B,
and sos € B. If u € (xéw], then we have
(uy] C (xéwyx] C (BTSTB] C B,

and so s € B. Therefore, S C B.

Conversely, suppose that S does not contain proper bi-I'-hyperideals. Let L be a left I'-
hyperideal of S. Then, L is a bi-I'-hyperideal of S. By assumption, we have S = L. Therefore,
S is a left simple ordered I'-semihypergroup. Similarly, we can show that S is a right simple
ordered I'-semihypergroup. O

In the following, we study some properties of bi-I'-hyperideals and minimal bi-I'-hyper-
ideals in ordered I'-semihypergroups.

Definition 8. An ordered T'-semihypergroup (S,T, <) is said to be B-simple if S does not con-
tain any proper bi-I'-hyperideals. A bi-I'-hyperideal C of S is called a minimal bi-I'-hyperideal of
S if C does not properly contain any bi-I'-hyperideal of S.

Theorem 12. Let B be a bi-I'-hyperideal of an ordered T'-semihypergroup (S,T,<). Then,
(uI'BI'v] is a bi-T'-hyperideal of S for every u,v € S. In particular, (uI'ST'v] is a bi-I'-hyperideal
of S for every u,v € S.

Proof. The proof is similar to the proof of Theorem 2.2 in [8]. O

Corollary 6. Let (S,T, <) be an ordered I'-semihypergroup. Then, S is B-simple if and only if
(uI'STu] = S forallu € S.

Proof. The necessity is obvious. For the sufficiency, let (uI'STu] = S for all u € S. We have
(uI'STu] C (STu] C Sand (uI'STu] C (uI'S] C S.

By assumption, we have (ST'u| = S and (uI'S] = S for all u € S. Now, let B is a bi-I'-hyperideal
of Sand b € B. Then, (STb] = S = (bI'S]. So, we have

S = (bI'S] = (bI'(bI'S]] C (bT'STH] C (BI'SI'B] C (B] C B.
This completes the proof. O

Corollary 7. Let (S,T, <) be an ordered I'-semihypergroup. If C is a minimal bi-T'-hyperideal
of S and B a bi-T-hyperideal of S, then C = (cI'BI'd] for every c¢,d € C.

Proof. By Theorem 12, (cI'BT'd] is a bi-I'-hyperideal of S. Since C is a minimal bi-I'-hyperideal
of S and (cT'BId] C (CTBTC] C (CT'STC] C (C] € C, we obtain C = (cT'BI'd]. 0

At the end of the paper, we prove the following theorem.

Theorem 13. Let B be a bi-T'-hyperideal of an ordered I'-semihypergroup (S,T’, <). Then, B is
a minimal bi-I'-hyperideal of S if and only if B is B-simple.
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Proof. Let B be a minimal bi-I'-hyperideal of S. Then, B is a sub I'-semihypergroup of S. Now,
let C be a bi-T-hyperideal of B. Then, CTBTC C C. Put K = (CI'BI'C|¢. Then, @ # K C C C B.
Now, we prove that K is a bi-I'-hyperideal of S. Let k1,k, € K, x € Sand 7,6 € I'. Then,
ki < craqbiBic) and ky < coanbaBacy for some cq, ¢, c2,¢h € C, by, by € Band ay, B1, a2, B2 €T
So, we have

kivks < cio1 (b1 Brciycanabr)Bach

and

kyyxdky < cqaq(byBrcyxdeannbs)Bach.

Since by B1c}yconby C BISIB C B, it follows that kyyk, € KITK C CI'C C C. So, k17kz
(CTBI'C]c = K. Hence, K is a sub I'-semihypergroup of S. Since by B1¢}yxdconbp C BISTB
B, we get

c101 (b1 Bic)yxdcanaby)Bacy, C CIBIC C C.

Since C is a bi-I'-hyperideal of B and k;yxdk, C KI'STK C BI'STB C B, we obtain kyyxdk; C C.
So, we have k1yxdk, C (CT'BI'C]c = K. Therefore, KITSTK C K. Now, lety € (K]. Then, y < k
for some k € K. Since k € K, there exist ¢,c’ € C,b € Band yu,A € T such that k < cubAc’.
Since cubAc’ C CI'BI'C C C C B and B is a bi-I-hyperideal of S, we get k € B. Since B is a
bi-I'-hyperideal of S, we have y € B. So, y < z for some z € cubAc’ C CI'BI'C C C. Since C
is a bi-I'-hyperideal of B, we have y € C. So, we have y € (CI'BI'C]c = K. Therefore, K is a
bi-I'-hyperideal of S. Since B is a minimal bi-I-hyperideal of S, it follows that K = B. So, we
have C = B. Therefore, B is B-simple.

Conversely, assume that B is B-simple. Let C be a bi-I'-hyperideal of S such that C C B.
Then, BNC # @. Let c € BN C. By Theorem 12, (¢I'BI'c] is a bi-T-hyperideal of B. Since B is
B-simple, we obtain (cI'BTc] = B. Now, we have

B = (cI'BI'c] C (CI'BI'C] C (CI'SIC] C (C] = C.
Hence, C = B. Therefore, B is a minimal bi-I'-hyperideal of S. O
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IMonsarrs I'-HamiBrineprpym € y3araAbHeHHIM HaIliBIPYII, y3araAbHEHHSIM HaIliBrineprpyr i ysa-
raAbHeHHSIM [-HamiBrpym. Y aaHilt pob0Ti AOCAIAXY€ETBCs IOHSTTS 6i-I'-rimepiaanis y Bmopsiako-
BaHMX |-HamiBrineprpymax i AOCAIAXYIOTBCSI Aesiki BAacTMBOCTi mmx 6i-I'-rinepiaeanis. Takox mu
BM3HAYAEMO i BUKOPMCTOBY€EMO IIOHSTTSI PETYASIPHO BIIOPSIAKOBAHMX [-HaIiBrineprpyn AAsl BUBYe-
HHSI AeSIKMX KAACMUHMX Pe3yAbTaTiB i BAACTMBOCTEN Y BIOPSIAKOBaHMX ['-HamiBrineprpymnax.

Kntouosi cnosa i ¢ppasu: ynopsiakosasi I'-Hamisrimeprpymm, I'-rimepiaeann, bi-I'-rimepiaeaan.



