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TURCHYNA N.I., IVASYSHEN S.D.

ON INTEGRAL REPRESENTATION OF THE SOLUTIONS OF A MODEL
2h-PARABOLIC BOUNDARY VALUE PROBLEM

A general boundary value problem for Eidelman type %—parabolic system of equation with-
out minor terms in the equations and boundary conditions, and with constant coefficients in the
group of major terms is considered in the region {(t,x,...,x,) € R* |t € (0, T],x]- € R,je
{1,...,n—1},x, > 0}, T > 0,n > 2. Itis assumed that the boundary conditions are connected with
the system of equations by the complementing condition, which is analogous to the Lopatynsky
complementing condition. Integral representations of the solutions for such a problem are derived.
The kernels of the integrals from this representation form the Green’s matrix of the problem. It is
revealed that, in general, not all the elements of the Green’s matrix are ordinary functions. Some
of them contain terms that are linear combinations of Dirac delta functions and their derivatives.
This occurs in cases when the boundary conditions include derivatives with respect to the variables
t and x; of orders that are equal or greater than the highest orders of derivatives with respect to
these variables in the equations of the system. The obtained results are important, in particular, for
the establishing of the correct solvability and integral representation of solutions for more general

%-parabolic boundary value problems.
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lem, integral representation of solutions, Green’s matrix.
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INTRODUCTION

Nowadays, the general theory of boundary value problems for systems of equations that
are parabolic in the sense of I. G. Petrovsky and for more general systems parabolic in the
sense of V. A. Solonnikov is well known (see, for example, [2,3,5]). The parabolic boundary
problems are determined by the parabolicity condition of the system of equations and the
complementing condition for boundary differential expressions. We note that the conditions
for the parabolicity of a problem are specified only by the groups of the major in the parabolic
sense terms of the system of equations and the boundary conditions.

The theorems of the correct solvability in Holder and Sobolev-Slobodetskii spaces for
parabolic boundary value problems, in the framework of their general theory, (Schauder’s
theory and L,-theory) are proved. It turned out that the a priori estimates of the solutions
established in this case are necessary and sufficient conditions for the parabolicity of the prob-
lem.

An important step in the construction of the theory of parabolic boundary value problems
is a detailed study of the so-called model problems, namely the problems in a half-spaces with
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respect to the spatial variables in which systems of equations and boundary conditions contain
only the major terms in the parabolic sense, and their coefficients are constants.

If we consider the, so-called, %—parabolic systems defined in [2] by S. D. Eidelman, then the
orders of such systems are vectorial and the group of their major terms includes the derivatives
of different the highest orders with respect to different spatial variables, since spatial variables
are not equal. Therefore, it is perhaps impossible to construct a general theory of boundary
value problems for such systems, analogous to the above theory for the I. G. Petrovsky systems
and for V. A. Solonnikov systems, in which all spatial variables are equal. But for S. D. Eidel-
man systems, one can construct a theory of model boundary-value problems in a half-spaces
in which one of the spatial variables varies is in the interval (0, o), and all the others are in the
interval (—o0, 00).

In the works of the authors [4,6,7], for a parabolic in the sense of S. D. Eidelman system of
the first-order equations with respect to the time variable a model boundary-value problem in
a half-space is considered in which only the last spatial variable varies in the interval (0, o).
For such a problem, the complementary condition is formulated. The problem is correctly
posed when the boundary conditions satisfy this complementary condition. Thus, the defi-
nition of a model 2? -parabolic boundary-value problem (P problem) is given. For P problem
the Poisson kernel and the homogeneous Green’s matrix were constructed, their accurate es-
timates and the estimates of their derivatives were obtained, the divergent representation was
received. Using these results, a theorem of the correct solvability of P problem in anisotropic
Holder spaces is proved. In this article we obtain the integral representation of solutions of the
P problem and investigate the structures of the kernels of the integrals from the representation.
These kernels form the Green’s matrix of P problem.

1 P PROBLEM FORMULATION, ITS HOMOGENEOUS GREEN’S MATRIX AND POISSON
KERNELS

We will use the following notation: n,N, by,...,b, are given natural numbers; 27 =
(204, ...,2by); s is the least common multiple of numbers by, . . ., by; mj:=s/bj,j € {1,...,n};

7' is the set of all n-dimensional multi-indices k := (ky,...,ku); [[k| = i mik;, if k € Z";
j=1

k|| := 2sko + |||, if k := (ko, k), where kg € Z1,k € Z"; x := (x1,...,%1) € R", ¥’ :=
(x1,...,%5-1) € R"™LRL := {x € R"x, > 0}, ITF := {(t,x) € R""|t € (0, T}, x € R},
1% == {(t,x')|t € (0,T],x' € R" 1}, where T is given positive number; X := 82...8’;;;,
a’;,x = 81208';, if k = (ko,k), ko € Z.,k € Z",t € R'ix € R". Here, as usual, R" is the

al
= a_yl’

In the region ITF we will consider a boundary value problem:

n-dimensional real Euclidean space, and a]l/ : if  is a natural number and vy € RL.

A%(3t, 0y, 0, )u(t, x) == (InOr — Y adu(t,x) = f(t,x), (t,x) €L, (1)
Ikl|=2s

BO(3t, 0, 0, Ju(t, )|, —0:= Y bgdf cuu(t, x)|x,—0 = gj(t,¥'), (t,x') € TN, je{1,...,m},
=7

u(t, x)‘f:O = (P(x>/ x € RY, 3)
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where u, f and ¢ are matrix columns of height N; a; and bj;
and 1 x N respectively; Iy is a unit matrix of order N; g1, . .., gm are scalar functions; rq, ..., 7y
are non-negative integers.

We assume that the system of equations (1) is parabolic according to Eidelman [1]. The
number of boundary conditions m = b, N and these boundary conditions satisfy the comple-

menting condition from [6]. The problem (1)—(3) that satisfies these conditions, we will call a

1 are constant matrices of size N x N

model 27 -parabolic boundary value problem or P problem.

For P problem, we will give the definitions and the results of the studying of the homoge-
neous Green’s matrix and Poisson kernels from [4, 6] that are necessary for further investiga-
tion.

According to [2, 3], we define a homogeneous Green’s matrix and Poisson kernels of P
problem as a matrix Go(t,x,&),t € R'\{0},{x,&} C R" of the size N x N and matrices
Gj(t,x),t € R\ {0}, x € R" of the size N x 1 that are the solutions of the following prob-
lems:

A%(04,0,,0x,)Go(t, x, &) = Ind(t, x — ),

BY (9, 9y, 9x, ) Go(t, X, &)|v,=0 = 0, j € {1,...,m},
Go(t,x,&) =0 ast <0,
A°(9y, 9,1, 0x,)Gj(t, x) =0,

BY (94,0, 0x,)Gj(t, %) x,—0 = 0yi0(t,x'), 1€ {1,...,m},
Gi(t,x) =0 ast<0, je{l,...,m}

in spaces of generalized functions, where ¢;; is Kronecker symbol, (t,x — &) and d(t,x") is
Dirac delta functions with supports in points t = 0,x = ¢ and t = 0,x' = 0 respectively.
Wherein Gy (t, x, §) |0+ = INO(x — §).

From these definitions it follows that for an arbitrary smooth and finite functions f, g1, .. .,
gm and ¢ the solution of P problem (1)—(3) is represented in the form

u(t,x) = (Gof +Y_ Gigj + Gmr19)(t,x), (t,x) €Il

=1
where

(Gof) (¢, x) = /dr/cot—rng(rg)g 4)

(Gjgj)(t, x) /dr/ i(t—T1,x—¢")gi(t,8)de, je{l,...,m}, (5)

(Gusa9) () /Gotxc )dz. ©

The existence of matrices G]-, je{o0,1,..., m} and the correctness for their divergent repre-
sentations

G =L'(3,9,)G"”, je{01,...,m}, 7)
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where
n—1

L@, dv) =3 +a Y (~1)033,a >0

j=1

and r is any non-negative number were proved in [4,6] and for G ](r) the following estimates are
fulfilled

9 0EGY (%, ©)| < Cpt= MR/ I (1, x — ),

t>0,{x,¢} CRLkez" 17" ®

9F:G)" (1, )| < Gt~ MU IED/ @ (1, ), 9)
t>0,xeRkez™,je{1,...,m}.

In the estimates (8) and (9)

M := Z;lzl m]-/(ZS), M = Z;?:_ll m]-/(QS)’
E.(t, x) := exp{—c 2]7.’:1 p—1/(2bj=1) ’xj‘ij/(ij—l)}’

C, Cr and ¢ are some positive constants.

2 REPRESENTATION OF SOLUTION FOR P PROBLEM WITH HOMOGENEOUS INITIAL
CONDITION

Suppose that in the problem (1)-(3) f and g;j,j € {1,...,m} are sufficiently smooth func-
tions such that they together with their derivatives are bounded and equal to zero as t = 0
and ¢ = 0. Let us find a formula for the solutions of P problem with these right-hand sides,
namely for the following problem with zero initial condition:

A%(04, 0y, 0, )u(t, x) = f(t,x), (tx)€llf, (10)
B?(at,axz,axn)u(t,x)|xn:0 =gi(t,x"), (tx)elly, je{l,...,m}, (11)
u(t,x)|i=0=0, xeR. (12)

Consider the function
up(t,x) :==(Gof)(t,x), (tx)e€ Hlf. (13)

Based on the definition (4) of the operator Gy and the properties of the matrix Gy, the function
ug is a solution of system (10) that satisfies the condition (12). In addition, if the order r; of the
differential expression B;-)(at, 0,/,0x, ) is less than 2s, then

B?(af/ ax’/ axn )MO(tr x) ’xnzo
t
= [dv [ B(3n00,06,)Golt ~ 7% D)l -of (1,0 =0, (1,%') €T,
0 Rt

In the case when r; > 2s, it is impossible to apply the operation B? (0,04, 0y, ) and pass to the
limit as x,, — 0 under the sign of the integral. In this case, we proceed as follows.
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Consider Bo(p, io’,it) and A%(p,ic’,it), where i is the imaginary unit, as matrix polyno-

mials of T with fixed values of the parameters p and ¢’. Based on the %—parabohaty of system
(10), the determinant of the matrix, which is the coefficient at 2% in Ao(p, ic’,it), is non-
zero (see Remark 1 in [4]). Therefore, there exist such matrix polynomials C]-(p, io’,it) and
B]’-(p, io’,iT) that their degrees on T do not exceed ri— 2b, and 2b;, — 1 respectively, and they
fulfill the equality

B)(p,ic’,it) = Cj(p,ic’,it) A’(p,ic’, i) + Bi(p,ic’, it).
Turning to differential expressions, we obtain the equality
BY(31, 0y, 9x,) = C; (01,0, 9, ) A% (D1, 0, A, ) + B}(3, B, O, ), (14)

where C; and B]’- are expressions containing differentiations on x;, of order not higher than
rj — 2by and 2b, — 1, respectively.
For function (13), on the basis of equality (14) and the fact that AO(at, dy, 0y, )Uilg = f, we
now get
B?(atrax’raxn)”o‘xn:() = Cj(atrax’raxn )ﬂxnzo + B;(at’ax’/axn>u0‘xn:0

Using representation (7) and estimates (8) for Gy and integrating by parts, for a sufficiently
large r, we obtain

B(31, 3, s, )ttol,—0 / it / BL(31, 9y, 92, ) G (t — T,%, &) x,—0L" (9+, 0 ) £ (T, E)dE.

Based on (14) and on the fact that AO(at,ax/,axn)Ggr) = 0, we replace B]’- by B? in the last
integral. If we represent this integral as the limit of the integral over {¢ € R"|¢, > €},& > 0, as

e — 0, and then integrate by parts of the expression L (d,d) and use it to G(()r), then we get
that it is equal to zero. So,

B;')(atz ax’r axn)MO|xn:0 - C](at/ ax’/ axn)f|xn:O-

Note that C; = 0 if the highest order of derivatives with respect to x, in B? is less than 2b,,.
Thus, the function (13) is a solution to the problem (10)-(12), in which g; is replaced by
Cj(0t, 9y, 9x,) flx,=0,j € {1,...,m}. Moreover, if the function f is finite in I'T], then

Ci(01,9y,05,) flry—o =0, j€{1,...,m}.

If, in the conditions (11), the functions gj/] € {1,...,m}, such as indicated at the beginning
of this section, then using for G; the representation (7) and the estimates (9) just as in [5], we
prove that the function

t

up(t, x) := Z/dr / Gi(t—t,x—&")gj(t,g)de’, (t,x)ellf,

=10 je-t
is the solution to the problem

A%y, 0y, 0x, )ur (t, x) =0, (t,x) € I1f,
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B?(at,ax/,axn)ul(t,x)|xn:0 =gi(t,x"), (tx)elly, je{l,...,m},
ur(t,x)|=0 =0, xeRl.

Therefore, for the functions f and ISHAS {1,...,m} indicated at the beginning of Section 2,
the solution of problem (10)—(12) is determined by the formula

u(t,x) = (Gof)(t, x) + Z(Q]( Cj(9, 9y, 0, ) flx,=0)) (£, %), (t,x) €TI.  (15)

=
3 THE GENERAL CASE OF P PROBLEM

Suppose now that in the problem (1)-(3) functions f, g;,j € {1,...,m}, and ¢ are suffi-
ciently smooth in [T, IT}. and IR that are the closures of I}, IT; and R", respectively and
they together with their derivatives, are bounded and satisfy the corresponding matched con-
ditions as t = 0 and x,, = 0. Then, from the results of the paper [7], it follows that there exists
a unique smooth solution u of the general P problem, defined in I1} and bounded with all its
derivatives. Now we were find the integral representation of this solution u.

Let us choose the infinitely differentiable function {(t),t € R!, that is equal to 1 for t > 1
and is equal to 0 for t < 1/2, and the function vy (t,x) := {(t)u(t, x), (t,x) € I}, where
Cn(t) := C(t/h), h is a sufficiently small positive number. Obviously, v;, has the same smooth-
ness properties as the function u, and it is a solution to the problem

Ao(at,ax/,axn)vh(t,x) = Fyu(t,x), (tx) € ij,
B?(at, ax/, axn)’()h(f, X)|xn:0 = th(t, x’), (i’, X/) € IT, , ] € {1, .. .,m}, (16)
vp(t,x)|i=0 =0, x€RY,

where

Fon(t,x) == Cu(t)f (1, %) + V) (Du(t, x),
ko
Falt,x') o= Gu(Dg () + Y Y Ch by (001 u(t, x) 0, j € {L,...,m}.

| k|=r;v=0

Here and further C := kot _ g(") (t) := u(t),
0 vi(ko—v)!” °h dt
Since the problem (16) is a problem with zero initial condition, then according to the result
of Section 2, the representation of its solution could be written in the form (15), i.e.

2 (t0) = (GoFon) () + 16 (s = G002 )Pl 0))6, ), (1:5) €T (17)

Assuming that the point (¢, x) is fixed from I and € (0, t), we pass to the limitas & — 0
in (17). At the same time, we obtain u(¢, x) in the left-hand side. Further we find the limit of
the right side.

We have

Go(@uf)(t,x) = (Gof)(t,%) / dr [ Golt —,%,8) (@ () = VAT, g — (Gof)(t, )
IRH
(18)
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Taking into account the properties of the function {j and integrating by parts, we obtain

h

Gol@ W)t x) = [ dr [ Got—7,x8)g) (Tu(r o)
h/2 R
= /Go(t—h,x,g’f)u(h,g’f)dg (19)
R
h
~ [ dr [a(Golt = %, 8)u(r, )2 (D) — (i) (t,)
h/2 R

Similarly we have

(GE (6,0 = (G060 + T byd (60 enls, ot 13

H]_(H:r]
ko .
+ Z(—l)v_lczzo[ / oy (Gt — T, x — &) "0ku(t, &)le,—0)dE T (DT
v=1 R-1
h ) (20)
= e [ 3Gt —rx = 0 (e, Dle, 0 (| b (G151
h/2 ]Rnfl
+ Y by Z ey / UGt — T, x — &) 9ku (T, &) ey —0)dE o
HkH_r - Rn-1
(k0>0)
Now consider G;(C;(0t, 9y, 0x, ) Fon|x,=0). Using the record
C]‘(at, ax/, axn) = Z C]kat xr
[kl <<rj—2s

as above, using integration by parts, we obtain
(g]( ‘(at’ax ’axn>F0h’xn70>>(t x)

/df/ Fx— &) % 30 (09 £(n,8) + 2 (1)aku (T, ) e, _odE’

HkH<V

- L / dr / Gt — 7,3 — &) T (T, )y + (D)0 (T, ) g, -0)dE

Ikl <rj— n—1

The remaining terms are zero due to the properties of the functions ;, and G;. Integrating by
parts again and passing to the limitas & — 0, we get
t

(G/(C1{@1, 32,95, Fonly=0)) (1, 1) — 1 Jk( [ v [ aloct —,x— &)k f(x, e, o’

HkH<r 0 Rn—1
+ [ G0~ k()0 ).
Rn—1

(21)
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From (17)—(21) it follows the formula

u(t,x) = (Gof + ) Gi& + Gmr19) (£, x)
=1
t

+[ar [ ¥ Rlt-rx =)l —0dd + [ T Reltix—&)0kp(@)lg,0dd’

0  Re-1 Hk\|<ro Rri-1 [Kl<ro
Y ¥ Z )Gl b (Gt — T x — £ k() e, —0)dE oo, (8, 7) € T,
Rri-1 /=1 [K[=r;v=
(k0>0)
(22)
where
m
Ri(t,x) := Y Ryl(t, x), (23)
=1
Y cid*Gj(t,x), if k|| < r;—2s,
Ri(t, x) := ko< (rj—|lk||—=2s)/(2s) (24)
0, ifrj —2s < ||k|| <o,
ro :=max (0,7 —2s,..., 7y — 25), (25)

moreover Ry = 0, if the highest order of derivatives with respect to x, in B?(at, 0y,0x,), ] €
{1,...,m}, ngis less than 2b,,.

All terms of the right-hand side of (22), except for the last, include only the right-hand sides
of the problem (1)—(3). We transform the last term (denote it by D) in such way that it also will
include only the right-hand sides of the problem (1)—-(3). Note that the term D is absent if the
expressions B}) (0¢,04,0x,),j € {1,...,m}, do not include differentiation with respect to ¢.

Using the Leibniz formula and changing the order of summation, we get

m Pj—

k
p- | ZZ Z Y. Negbid? "Gyt — 7, x — )k (T, &) frmogu=0dE,  (26)
Rri-1 J=1#=0 ko= |[k|=r;—
]/l 1 725](0

where p; is the highest order of derivatives with respect to ¢ in the expression B? (0t,947,9x,),

and
ko

k 1
Newi= Y. (1) lcpclort,
v=ko—p

We will write the formula (26) in the form

po—1
D= / Z Z Q,‘uk(t —T,Xx— gl)aga]é'u(l—/ é) |T:0,§n=0d§/l (27)

Ri1 #=0 (K] <ro—2sm

where pg := max(p1, ..., Pm),

Quk(t, x) Z Qjuk(t, x), (28)



ABOUT INTEGRAL REPRESENTATION OF THE SOLUTION 201

ijk(t/ x) =
Y Nkoybj,-(alzofyflG]-(t,x),ifO <u<p—12u+ k|| < rj —2s,
u+1<ko<
=\ =(rj—lkll—2s)/(2s)

0, if pj < <po—1lorrj—2s <2su+ |kl <ro.

Using the system (1) and the condition (3) for # > 0 we obtain the representation

a?a’éu(r, §)|T=O = Z Aykvagq)(é) + Z Bykﬁaz,Cf(Tl §)|T=0/ (29)
vl =2sp+|Ik|| [7l1=2s(u—1)+Ik||
(ro<p—1)

where A, and By are constant matrices of the size N x N, wich compiled with coefficients
ag, || k|| = 2s, from the system (1). Substituting expression (29) into (27), changing the order of
summation and using the notation

Vv(tr x) = Z ka(tr x)Aykvr Wﬁ(tr x) = Z ka(t/ x>Byk17/ (30)
2sp+||k|[=]lv|| 2sp+||k[|=7|+2s
(1<po—1) (p=vo+1)

we get the following expression for D:

p- | L Vil =040l -odt
Rn-1 IV <rp
_ 31
s [T Wt £ 8 emog, o2 o

Rri-1 17l<ro—2s
(v<po—2)

Therefore, from formulas (22) and (31) it follows the following representation of the solu-
tion of the general P problem:

u(t,x) =(Gof +Y_Gi& + Gm+19)(t, x)
=1
t

+ [ar [ ¥ Rt —7x—)okf(r,0)lg,—ode

0 gt Ikl<ro

[ L Wit =809 (T ez, o (32)
Rri-1 [[kll<ro—2s
(ko<po—2)
[T Rultx =)+ Viltx — ) p(0)le, o
ria K=

=hL+DL+L+1L, (tx)ellf.

Now, we rewrite this representation in another form. To do this, first we transform the
addend I3 from formula (32). Using the formula

ko
W' f = Y (—1) 'Lt (3T W f),
1=0
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we get

po—2 ko

he f pE l |Z L ()G Wt~ T x 20 (, )y o) eodl
0=0 ||k||<rg— =0

Rt ~2s(kg+1)
R [ kool ko~ ok :
= [ Y, (-1l Wit = 3 = (5, ) o | dE
g1 =0 ko=1 ||k||<ro— =0
—2s(ko+1)
! po—2 | po—2 b d ko] L
= [ar [ X 0@ L X (1Rck bWt - 7 x — )3l olemodd’
R ko=1 ||kf|<ro—
—2s(ko+1)
t
:/dT/Gé’(t,x,T, Vf (T, &)dé,
0 R
where
po—2 po—2 .
GY(t,x;7,¢) : 25 Y Y (—nRtHc kWit — T x — &)ek) (&), (33)
ko=1[|k|| <ro—
—2s(ko+1)
where |k| := ki + - - - 4 ky, 60)(7) and 6(k»)(&,) are the derivatives of delta functions concen-

trated at points T = 0 and ¢, = 0 respectively.
Similarly transforming the addends I, and I4 from (32) and taking into account the defini-
tions (4)—(6), we write the representation (32) in the form

u(t, x) /dT/GOtxré T§d§+2/dr/ (t—1,x—¢")gi(t,&')de’
R R (34)
+ [ Cunlbx8e@dz, (1) €if,
R

where
Eio(t,x;r,g) = Go(t —1,%,8) + Gyt — T,x,&) + G (t, x; 7, ), (35)
Gmi1(t, %, &) := Go(t, x,8) + Gy(t, x, &) + +Gly i1 (t, x, ).
Here
Go(t,x,8) = Y, (~DMOER(t,x =)o) (&),
it x,8) = |k|2_r0<—1>"'a"ivk<t,x — &6 (), o
[[k[[<ro

and G is defined by the formula (33).
As a corollary we can get the following theorem from the results obtained above and from
Theorem 2 [7] about the correct solvability of the P problem in Holder spaces.
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Theorem 1. Any solution to the P problem (1)—3), that belongs to the Holder space
HZS“*A(l:I}L,CNl), where | is an integer, such that! > rop and A € (0,1), is represented in
the form (34). The kernels of this representation are defined by formulas (33), (35) and (36). In
these formulas Ry, Vi and Wy are defined by equalities (23)<25), (28) and (30). In all of these
formulas, Gy is a homogeneous Green’s matrix, and Gj,j € {1,...,m}, are Poisson kernels of
problem (1)«3). Moreover, Gy = Gy = G, | = 0if2spg + myung < 2s, where pg and ng are the
highest orders of derivatives with respect to t and x, in boundary conditions (2) accordingly,
and m, = s/b,.

Definition 1. The matrix composed of the elements of the matrices Go,G1,-..,Gp and G,y is
called the Green’s matrix of the problem (1)—3).

So, the article describes the structure of the Green’s matrix of the problem (1)—(3).
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Typunnza H.I., Isacyrent C.A. I1po inmeepanvte 306pasiceHHs po3s’a3Kie mMo0enoHOT qu-napa()bﬂiuuo'z' Kpa-
ifogoi 3a0aui // Kapmartceki MaTem. my6a. — 2019. — T.11, Nel. — C. 193-203.

B obnacti {(t,x1,...,x,) € Rt € (0,T],xj € R,je{l,...,n—1},x, > 0}, T > 0,n > 2,
PO3rASIAA€ETHCST 3araAbHa KpajioBa 3apava AAST %-napa60Ait1Ho'1' 3a ElfaeAbMaHOM CHCTEMM PiBHSIHB,
B SIKiif y piBHSHHSIX i KpalfOBMX yMOBax BiACYTHi MOAOAII UAeHM, a KoedpillieHTV IpyIm CTapIImx
uaeHiB crai. [TpumyckaeThbest, 10 KpalioBi yMOBM MOB’sI3aHi 3 CUCT@MOIO PiBHSIHbD YMOBOIO AOMOB-
HSIABHOCTI, IKa € aHAAOI'OM YMOBM AOIOBHSIABHOCTI AOIAaTMHCBKOTO. AAsl po3B’sI3KiB Takol 3apadui
BUBEAEHO iHTeTpaArbHe 306paxeHHs. Slapa iHTerpanis 3 mboro 306pakeHHs! YTBOPIOIOTH MaTPUIIIO
I'pina 3apaui. BusiBAaeHo, 110, B3araai Kaxxyw, He Bci exeMeHTH MaTpui [ piHa e 3Buuaiteymu pyH-
KIistMu. AesiKi 3 HMX MIiCTSITh AOAAHKY, SIKi € AIHITHMMM KOMbIHALIISIMY AeAbTa-PYHKIII Aipaka Ta
ix moxiaEmx. Lle BuHMKae y BUITaAKax, KOAM B KpaliOBi yMOBM BXOASITD ITOXiAHI 3a 3MiHHMMM f i X;
MIOPSIAKIB, piBHMX ab0 GiABIINX 3a HAVBUIIT] TIOPSIAKYM IIOXIAHVX 33 LMV 3MiHHVMIY B PiBHSIHHSIX CH-
cremn. OTpuMaHi pe3yAbTaTH € BaXKAMBMMY, 30KpeMa, AASL BCTAaHOBAEHHSI KOPEeKTHOI pO3B’SI3HOCTi
Ta iHTerpaABHOTO 300pa’keHHsI PO3B’SI3KiB 3araABHIIIMX 2b-TTapaboAIYHMX KpaifOBIX 3aAad.

Kntouosi cnosa i ppasu: 2b-mapaboaiuna 3a EifaeAbMaHOM crcTeMa piBHSIHD, KpalioBa 3apada, iH-
TerpaabHe 306paXkeHHsT po3B’sI3KiB, MaTpuist I piHa.



