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ON COMPARISON OF THE PRINCIPLES OF EQUIVALENT UTILITY AND ITS
APPLICATIONS

An insurance premium principle is a way of assigning to every risk, represented by a non-
negative bounded random variable on a given probability space, a non-negative real number. Such
a number is interpreted as a premium for the insuring risk. In this paper the implicitly defined
principle of equivalent utility is investigated. Using the properties of the quasideviation means,
we characterize a comparison in the class of principles of equivalent utility under Rank-Dependent
Utility, one of the important behavioral models of decision making under risk. Then we apply this
result to establish characterizations of equality and positive homogeneity of the principle. Some
further applications are discussed as well.
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homogeneity, risk loading.
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1 INTRODUCTION

Assume that Xy is a family of risks, represented by non-negative bounded random vari-
ables on a non-atomic probability space (€}, F, P). An insurance premium principle is a way
of assigning to every X € X, a non-negative real number H(X). The number H(X) is in-
terpreted as a premium for insuring X. There are many methods of defining the principles.
In what follows we deal with the principle of equivalent utility. The principle, postulating a
fairness in terms of utility, has been introduced in [2]. Under the Expected Utility model the
premium for a risk X € X is defined through the equation

Efu(w + H(gu) (X) = X)] = u(w), @)

where w € [0, ) is an initial wealth level and © : R — R is a continuous and strictly increasing
function such that #(0)=0. In general, (1) has no explicit solution. However, in some cases the
premium can be expressed in an explicit way. In particular, if u is linear, then

H(w,u)(X) = E[X] for X e X+,

i.e. the principle of equivalent utility becomes the net premium principle. If u(x) = a(1 —e™ %)
for x € R, with some a,c > 0, then from (1) we deduce that the principle of equivalent utility
reduces to the exponential principle

Hi) (X) = %lnE[e"X] for X e X,.

YAK 519.812
2010 Mathematics Subject Classification: 91B16, 91B30, 39B22.

@ Chudziak M., 2019



ON COMPARISON OF THE PRINCIPLES OF EQUIVALENT UTILITY AND ITS APPLICATIONS 241

Note that in both cases the premium for a given risk does not depend on an initial wealth
level. Some properties of the principle of equivalent utility defined by (1) can be found e.g
in[1,2,6,13].

In this paper we deal with the principle of equivalent utility under Rank-Dependent Utility,
one of the behavioral models of decision making under risk. In this setting the principle has
been introduced and investigated in [7]. In order to define it, recall that if g : [0,1] — [0,1]
is a probability distortion function, that is a non-decreasing function such that ¢g(0) = 0 and
g(1) = 1 then, for any bounded random variable X on (2, F, P), the Choquet integral with
respect to g is given by

0 %)
E[X] = lw(g(P(X > 1) 1) dt—l—/o 2(P(X > 1)) dt. @)

The premium for a risk X € X under the Rank-Dependent Utility model is defined as a
solution of the equation

Eg[u(w + H(w,u,g)(X) - X)] = u(w)' (3)
It is known (cf. [4, Remark 1]) that if g is a continuous probability distortion function and u :
R — R is a continuous strictly increasing function with #(0) = 0 then, for every X € X, the
number H, , o)(X) is uniquely determined by (3). Some properties of the premium defined
by (3) have been investigated in [7] under the assumption that g is convex and u is concave and
differentiable.

The main result of this paper provides a characterization of a comparison in the class of the
principles of equivalent utility. Applying this result we establish characterizations of further
natural properties of the principle, namely equality and positive homogeneity. Some results
concerning the risk loading property of the principle of equivalent utility are presented as
well.

It turns out that an effective tool for dealing with this issue is a notion of a quasideviation
mean. Therefore, in the next section we present a definition of the mean and a result concern-
ing a comparison of quasideviation means.

2 QUASIDEVIATION MEANS

The notion of the quasideviation mean has been introduced in [10]. In order to recall the
notion, assume that I C R is an open interval. A function D : | 2 3 Riscalled a quasideviation
if it satisfies the following three conditions:

(i) D(x,x) =0forx € Iand (x —y)D(x,y) > 0for x,y € I with x # y;
(ii) forevery x € I, the function I 5 t — D(x, t) is continuous;

D(y.t)
D(x,t)

(iii) for every x,y € I, with x < y, the function (x,y) > t — is strictly increasing.

Let
Ay :=1[0,00)"\ {0}.
In [10] it has been proved that, if D : I> — R is a quasideviation, then for every n € N,
X =(x1,..,xn) € "and A = (Aq, ..., Ay) € Ay, equation

i AZ‘D(XZ‘, i') =0 (4)
i=1
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has a unique solution ty. Moreover
min{x;:i € {1,..,n}} <to <max{x;:i€{l,.,n}}

Thus, equation (4) defines a mean, called a D-quasideviation mean of X weighted by A. Fol-
lowing [10], we denote the mean by 9p(x; ). Several properties of quasideviation means
have been proved in [11]. In our considerations we will need the following result, which is a
particular case of [11, Theorem 7].

Theorem 1. Assume that I C R is an open interval and D1, D5 : I? > R are quasideviations.
Then the following statements are equivalent:

(1) Mp, ((x1,x2); (A, 1= A)) <Mp,((x1,%2); (A, 1= A)) forxy, x2 € I, A € [0,1];
(ii) there exists a function A : I — (0,00) such that

Dy(x,y) < A(y)Da(x,y) for x,y €.

3  PRELIMINARY REMARKS

Remark 1. Let ¢ be a probability distortion function. It is known (cf. [5, Proposition 5.1])
that the Choquet integral is monotone and positively homogeneous. Furthermore, for every
bounded random variable X on (Q), %, P), we get

E¢[X+c] = Eg[X] +c for c€R (5)

and
Eg[—X] = —Eg[X], (6)

where g : [0,1] — [0,1], given by
glp) =1-g(l—p) for pe[01], (7)
is the probability distortion function conjugated to g.

Remark 2. Note that if g is the identity on [0, 1] then E¢[X] = E[X] for every bounded random
variable X on (Q), %, P). Therefore, applying [5, Proposition 5.2 (iii)], we conclude that:

o ifg(p) < p forp € [0,1] then E¢[X] < E[X] for every bounded random variable X on
(Q,%,P);

o ifg(p) > p forp € [0,1] then E¢[X] > E[X] for every bounded random variable X on
(Q,%,P).

Remark 3. Let g be a continuous probability distortion function. Since the Choquet integral is
monotone, for every X € X, the function

R>t— Eglu(w+t—X)] —u(w)

is nondecreasing. Furthermore, H (w,1,9) (X) is its unique zero.
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Remark 4. In view of (3) the premium for a given risk depends only on a probability distribu-
tion of the risk. Thus, we identify the risks with their probability distributions. Note also (ct.
e.g. [12, Lemma 2.71]) that, as the probability space (), %, P) is non-atomic, for every x,y € R,
with x < y, and every p € (0,1), there exists a random variable X on (), %, P) such that
P(X = x) = pand P(X = y) = 1 — p. Denote any such a random variable by (x,y;1 —p, p).
Furthermore, let X?) be a family of all such random variables and

XJ(FZ) = {(x,;1—p,p) € @ :x >0}
Remark 5. If X = (x,x2;1 — p, p) € X2 then, in view of (2), we get (cf. [8])

Eo[X] = (1—g(p))x1 +g(p)xa.

Remark 6. Assume that w € [0,00), g is a continuous probability distortion function and
u : R — R is a strictly increasing continuous function such that u(0) = 0. Then, taking

X=(x,y,p1-—p) € XE), we obtain

u(w + H(w,u,g)(X) - X) = <(u(w + H(w,u,g)(X> - y)/u(w + H(w,u,g)(X> - x>>; 1-p, P>~

Therefore, applying Remark 5, from (3) we derive that H(,, , o(X) is a unique solution of the
equation

(1 - g(p))(u(w + H(w,u,g)(X) - ]/) +g(p)u(w + H(w,u,g)(X) - x) = u(w)- (8)

4 RESULTS

The following theorem is the main result of this paper.

Theorem 2. Let wq, w; € [0,00). Assume that g is a continuous probability distortion function
and u,v : R — R are strictly increasing continuous functions such that u(0) = v(0) = 0. Then
the following statements are pairwise equivalent:

(i)

Hiuy9)(X) < Hipyug)(X) for X € X%, 9)
(i)
Hy,0)(X) < Hiupug)(X) for X € Xy; (10)
(iii) there exists ¢ € (0,0) such that
u(x) <co(x +wy —wy) +u(wy) —co(wy) for x € R. (11)
Proof. Let Dy, Dy : (0,00)? — R be given by
Di(x,y) =v(w1) —v(wy +y—x) for x,y € (0,0), (12)

and
Dy(x,y) = u(wy) —u(wy +y—x) for x,y € (0,00), (13)
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respectively. Then, as one can easily check, D1 and D, are quasideviations. Furthermore, since
¢ is continuous with ¢(0) = 0 and g(1) = 1, for every A € (0,1) there exists (not necessarily
unique) p, € (0,1) such that

g(pa) = A. (14)

First we show that (i) = (iii). Assume that (9) holds. Let x;,x, € (0,00) and A € [0,1].
We claim that
Mp, ((x1,x2); (A, 1= A)) <Mp, ((x1,x2); (A, 1 —A)). (15)

If x; = xp or A = 1, then both sides of (15) are equal to x;. Moreover, if A = 0, then both
sides of (15) are equal to xp. So, assume that A € (0,1) and x; # xp, say x; < xp. Let

X = (x1,x2;p1, 1 — pa), where p, € (0,1) satisfies (14). Then X € XJ(FZ) whence, taking into
account (8) and (12), we get
AD1(x1, H(w,,0,6) (X)) 4 (1 = A)D1(x2, H(qp,,0,) (X))
=g(pa)(v(w1) — v(w1 + H(gy,,0,9)(X) — x1))+(1 — g(pa)) (0(w1) — v(w1+H g, 0,6)(X) —x2))
=v(w1) — ((1 = g(pa))v(w1 + Hw,0,6)(X) — x2) + g(pa)v(w1 + H(w,0,6)(X) — x1)) = 0.

Thus

H,,0,6)(X) = Mp, ((x1,x2); (A, 1 = A)).
The similar arguments show that
H(wyu,g)(X) = Mp, ((x1,x2); (A, 1= A)).

Hence, in view of (9), we get (15). In this way we have proved that (15) holds for every x1, x; €
(0,00) and A € [0,1]. Therefore, applying Theorem 1 and making use of (12)-(13), we obtain
that there exists a function A : (0,00) — (0, o0) such that

v(wy) —v(wy +y—x) < A(y)(u(wp) —u(wy, +y —x)) for x,y € (0,00).

Since 1 and v are strictly increasing with u(0) = v(0) = 0, replacing in the last inequality x by
y —x, we get

v(wy) —ov(wy +x) < A(y)(u(wy) — u(wy +x)) for x € R, y € (max{0, x},c0).

Thus " .
u(wy ) — u(w- x
v(wy) — v(wy + x) < AW for x € (0,00), y > x (16)
and o) s 41 1
u(wy) —u(wy + x . N
o(wy) — v(wy + x) = A(y) for x € (—00,0], y € (0,00) (17)

Hence, taking

c:= sup{ﬁ Yy € (O,OO)},

we conclude that 0 < ¢ < co. Moreover, it follows from (16) that the inequality

u(wy 4+ x) < co(wy + x) + u(wy) — co(wy) (18)
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holds for all x € (0,00). Furthermore, taking in (17) the supremum over all y € (0,0), we

obtain . (wy) (w03 + )

u(wy ) — u{wyr X

FToP {@ Ve (O'oo)} : v(w:) —v(w: + x)

which implies (18) for x € (—o0,0]. Therefore, (18) holds for all x € R. Replacing in (18) x by

x — wy, we obtain (11). So, (i) = (iif).

Now, assume that (11) is satisfied. Then, as the Choquet integral is monotone and positively

homogeneous, in view of (3) and (5), for every X € X, we have

for x € (—o0,0],

Eg[u(w2 + H(wl,v,g)(X) - X)] - u(w2) < C(E[U(wl + H(wl,v,g)(X) - X)] - v(wl)) =0.
Moreover, according to Remark 3, for every X € &', the function
R >t — Eglu(wy +t — X)] — u(w,)

is nondecreasing and Hy, , o) (X) is its unique zero. Hence, (10) is valid. In this way we have
proved that (iii) = (ii).
The implication (ii) = (i) is obvious. O
From Theorem 2 we derive the following characterization of equality in the class of princi-
ples of equivalent utility under the Rank-Dependent Utility model.

Corollary 1. Letwy, w; € [0,00). Assume that g is a continuous probability distortion function
and u,v : R — R are strictly increasing continuous functions such that u(0) = v(0) = 0. Then
the following statements are pairwise equivalent:

(i)

Hwn0)(X) = Hgug)(X) for X € X?; (19)

wa,u,8

(i)
H(wl,v,g)(X) = H(wz,u,g)(X) for X € X+,‘

(iii) there exists c € (0,00) such that

u(x) =co(x +wy —wy) + u(wy) —co(wy) for x € R. (20)

Proof. Assume that (19) holds. Then, according to Theorem 2, there exist ¢, & € (0, o0) such that
(11) is valid and

v(x) <cu(x+wy—wy)+v(wy) —cu(wp) for x € R.
Hence
u(x) —u(wy) < clo(x+wy —wy) —ov(wy)) < éc(u(x) —u(wp)) for x € R.
Therefore, since v is strictly increasing, we get ¢ = 1 and so (20) is valid. This proves that
(i) = (iii).
If (20) holds then, replacing x by x 4+ wy — wy, we get
v(x) = %u(x +wy —wy) +v(wy) — %u(wz) for x € R. (21)

Taking into account (20) and (21), from Theorem 2 we derive (19). Thus (iii) = (ii). Obviously,
we have also (ii) = (i). O
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Applying Corollary 1 we are going to characterize the positive homogeneity of the principle

of equivalent utility. Recall that the principle H, , ¢) is positively homogeneous provided, for
every X € X4 and A € (0, 00), it holds
H(w,u,g) ()‘X) = )‘H(w,u,g)(X)' (22)

If (22) holds for every X € Xf) and A € (0,0), then the principle H(y,, o)

tively homogeneous on Xf). The positive homogeneity of Hy,,, ¢) in the case w = 0 has been
characterized in [7]. It is proved there that if g is convex and u is concave and differentiable
then Hg , o) is positively homogeneous if and only if u is linear.

is said to be posi-

Theorem 3. Assume that w € [0,00), g is a continuous probability distortion function and
u : R — R is a strictly increasing continuous function with u(0) = 0. Then the following
statements are pairwise equivalent:

(1) H(w,u,g) is positively homogeneous on X’ ).
(i1) H(qy,u,q) is positively homogeneous;

(iii) there exista,b,r € (0,00) and v € R such that

—a(w —x)"+q for x € (—oo,w),

u(x) = { b(x —w) +v  for x € (w,c0). @3)
Proof. Assume that (i) holds. For every t € (0,0), define u; : R — R as follows
ur(x) =u(w+tx) —u(w) for x €R. (24)

Then, taking into account (3) and (5), for every X < XE) and t € (0, ), we get

Eg[ut(H(w,u,g)(X) - X)] = Eg[u(w + tH(w,u,g)(X) - tX)] - u(w)
= Eglu(w 4 Hy ) (tX) — tX)] —u(w) = 0 = uy(0) = Eglus(H gy, 4)(X) — X)].

Therefore,
2
Hipu,0)(X) = Higug)(X) for X e X, t e (0,00)

and so, applying Corollary 1 with w; = 0, w; = w and v = u, we conclude that for every
t € (0,00) there exists c(t) € (0,00) such that

u(x) =c(t)ur(x —w) + u(w) for x € R.

Hence, replacing x by x + w, in view of (24), we get

up(x) = —uy(x) for x €R, t € (0,00).

c(t)

Moreover, it follows from (24) that

ur(x) = u1(tx) for x € R, t € (0,00).
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Thus, we have
1
uy(tx) = C(—t>u1(x) for x e R, t € (0,0). (25)

Since u1(x) > 0 for x € (0, 0), applying (25) with x = 1, we obtain

c(t) = (1) for t € (0,00).

up (t)
Hence (25) becomes
i(tx) = a(t)i(x) for x €R, t € (0,00), (26)
where ii : R — R is given by
_ up (x)
(x) = for x € R. 27
( ) ul(l) ( )

Note that as u is strictly increasing and continuous, so is 7. Moreover, it follows from (26) that
i(tx) =u(t)i(x) for x,t & (0,00).
Thus, according to [9, Theorem 13.3.8], there exist 8,7 € (0, 00) such that
i(x) = Bx" for x € (0,00).

Furthermore, replacing in (26) x and t by —1 and —x, respectively, we get

i(x) =a(—-1)ia(—x) for x € (—o0,0).
Therefore, as u(0) = 0 and, in view of (24),

u(x) = uj(x —w) +u(w) for x €R,

taking into account (27), we obtain (23) with a := —Buy(—1) > 0, b := Buy(1) > 0 and
v := u(w). In this way we have proved that (i) = (iii).

If u is of the form (23) with some a,b,r € (0,00) and ¢ € R then, for every x € R and
A € (0,00), we have

u(w+Ax) =ANu(w+x)+ 1 —=A)y=Nu(w+x)+ (1 —A)u(w).

Thus, as the Choquet integral is positively homogeneous, in view of (3) and (5), for every
X e Xy and A € (0, ), we obtain

Eglu(w 4+ AHy,,6)(X) = AX)] = A Eglu(w + H(y ) (X) — X)] + (1 — A")u(w)

=Au(w) + (1 = Au(w) = u(w) = Eglu(w + Hy ) (AX) — AX)].
Hence
H(w,u,g)(AX> = AH(w,u,g)(X) for X € X+, AE (0, OO)
This means that Hy, ,, ) is positively homogeneous and shows that (iii) = (ii).
The implication (ii) = (i) is obvious. O

Corollary 2. Assume that w € [0,00), ¢ is a continuous probability distortion function and
u : R — R is a strictly increasing continuous function with u(0) = 0. Then the following
statements are pairwise equivalent:
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H(wfu,g)(X) > Eg[X] for X e XJ(FZ);

H(w,u,g)(X) > Eg[X] for X € X+,’ (28)
(iii) there exists ¢ € (0,0) such that
u(x) <c(x —w)+u(w) for x €R. (29)
Proof. Let v be the identity on IR. Then, taking into account (3) and (5)-(6), for every X € X,
we get
w = v(w) =Eg[v(w + H(w,v,g)(X) — X)]
:Eg[w + H(w,z,,g)(X) — X] =w+ H(w,z,,g)(X) — Eg-[X]
which implies that
H(w,v,g)(X> = Eg[X] for X e X,.
Therefore, applying Theorem 2, we get the assertion. O
The next result concerns the risk loading property of the principle of equivalent utility
under the Rank-Dependent Utility model. Let us recall that the principle H(y, , ) has the risk
loading property, provided
H(w,u,g)(X) > E[X] for X € X+. (30)

Corollary 3. Assumethatw € [0,00) and u : R — R is a strictly increasing continuous function
with u(0) = 0. Let g be a continuous probability distortion function such that

glp) = p for pe[01]. (31)
If the premium principle Hy,, o) has the risk loading property, then there exists ¢ € (0, )
such that (29) holds.

Proof. It follows from (7) and (31) that g(p) < p for p € [0,1]. Therefore, if H y,,¢) has the risk
loading property then, applying Remark 2, we get (28). Hence, according to Corollary 2, (29)
is valid with some ¢ € (0, ). O

Remark 7. Suppose that g(p) < p forp € [0,1]. Then g(p) > p for p € [0, 1] and so, according
to Remark 2, we have
Hence, if (29) is valid, then using a monotonicity of the Choquet integral, in view of (3) and
(5)-(6), for every X € X, we get
E¢[u(w + E[X] — X)] < Eglu(w + E¢[X] — X)] < ¢(Eg[Eg[X] — X]) + u(w) = u(w).

Therefore, applying Remark 3, we conclude that (30) holds, that is H y,, ¢) has the risk loading
property.

We complete the paper with a result which is a direct consequence of Corollary 3 and
Remark 7. In fact, it is a slight generalization of [3, Theorem 7].

Corollary 4. Assume that w € [0,c0), ¢ is the identity on [0,1] and u : R — R is a strictly
increasing continuous function with u(0) = 0. Then the premium principle H,,, . has the
risk loading property if and only if there exists ¢ € (0, 00) such that (29) holds.
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[TpyHIMIT cTPaxoBOi BUHATOPOAY € CIOCOO0M IOCTABUTH Y BiATIOBIAHICTD KOXXHOMY PU3MKY, 30-
6paxkeHOMy 3a AOIIOMOTOIO HeBiA €éMHOI 06MeXXeHOI BUIIaAKOBOI BEAMUNHI Ha 3aAQHOMY JIMOBipHi-
CHOMY IIPOCTOpi, AesKe AiVicHe HeBip'eMHe umcAo. Taxe umcAo MOXHa iHTepIpeTyBaT! SIK BMHA-
TOPOAY 3a CTPaxOBWii pU3MK. Y Hilf CTaTTi AOCAIAXKEHO HesIBHO 3aAaHMV MPMHLIMII eKBiBaAeHTHOI
KOPMCHOCTI. BMKOPMCTOBYIOUM BAACTMBOCTI CepeAHbOTO KBa3iBiAXMAEHHS MM XapaKTepM3yeMO II0-
PiBHSIHHS B KAACi IPMHILMIIB eKBiBaA€HTHOI KOPMCHOCTI 33 paHI-3aAeXHOK KOPMCHICTIO, OAHIEO 3
BaXKAMBMX MOBEAIHKOBMX MOAEAEV MPUIHSTTS PillleHHsI B YMOBax pU3MKYy. Mmu BUKOPMCTOBYyeMO
1LIeVi pe3yAbTaT AASI BCTAHOBAEHHSI PiBHOCTI i AOAQTHOI OAHOPiAHOCTI IIbOro IpyHIyITY. TaxoX Bu-
CBiTA€HO AesIKi iHIIIi 3aCTOCYBaHHSI.

Kntouosi cnioea i ppasu: cTpaxoBa BUHAropoaa, CepeAHe KBa3iBiAXMAeHHS, IOPiBHSIHHS, PiBHICTS,
AOAMATHA OAHOPIAHICTD, PU3MK.



