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Let L be an algebra over a field F with the binary operations + and [·, ·]. Then L is called a left

Leibniz algebra if it satisfies the left Leibniz identity [[a, b], c] = [a, [b, c]]− [b, [a, c]] for all a, b, c ∈ L.

This paper is a brief review of some current results, which related to finite- dimensional and infinite-

dimensional Leibniz algebras
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Let L be an algebra over a field F with the binary operations + and [·, ·]. Then L is called a

left Leibniz algebra if it satisfies the left Leibniz identity

[[a, b], c] = [a, [b, c]]− [b, [a, c]]

for all a, b, c ∈ L.

Leibniz algebras appeared first in the papers of A.M. Bloh [5–7], in which he called them the

D-algebras. However, a real interest to Leibniz algebras rose after the paper of J.-L. Loday [25]

(see also [26, Section 10.6]), who rediscovered these algebras and used the term Leibniz algebras

since it was G.W. Leibniz who discovered and proved the Leibniz rule for differentiation of

functions.

Note that the Leibniz algebras have many connections with some areas of mathematics such

as differential geometry, homological algebra, classical algebraic topology, algebraic K-theory,

loop spaces, non- commutative geometry, and physics (see, for example, [8, 12, 13]).

The theory of Leibniz algebras has been developing intensively but very sporadic. On the

one hand, many analogues of important results from the theory of Lie algebras were proven

(see, for example, a survey [18]). On the other hand, many natural questions about the struc-

ture of Leibniz algebras are not considered. For example, we can note the situation about the

structure of finite-dimensional Leibniz algebras. The first natural step in the study of all types

of algebras is the description of algebras having small dimensions. Unlike the simpler cases

of 1- and 2-dimensional Leibniz algebras, the structure of 3- dimensional Leibniz algebras is

more complex, as well as it is more complex than the structure of 3- dimensional Lie algebras.

The study of Leibniz algebras, having dimension 3, has been conducted in the papers [1,2,9,11]
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for the fields of characteristic 0, moreover for the field C of complex numbers or algebraically

closed fields of characteristic 0. In [33], Yashchuk V.S. considered the opposite situation. She

described the structure of Leibniz algebras of dimension 3 over finite fields. In some cases, the

structure of such algebras essentially depends on the characteristic of the field. In other words,

it depends on the solvability of specific equations in the fields, and so on. It is also worth men-

tioning here that the description of Leibniz algebras of dimension 3 is very different from the

description of Lie algebras of dimension 3, which indicates a significant difference between

these types of algebras.

Note that if L is a Lie algebra, then [[a, b], c] + [[b, c], a] + [[c, a], b] = 0. It follows that

[[a, b], c] =− [[b, c], a]− [[c, a], b]

=[a, [b, c]] + [b, [c, a]]

=[a, [b, c]]− [b, [a, c]],

which shows that every Lie algebra is a Leibniz algebra.

Conversely, suppose that [a, a] = 0 for all elements a ∈ L. Then for arbitrary elements

a, b ∈ L we have 0 = [a + b, a + b] = [a, a] + [a, b] + [b, a] + [b, b] = [a, b] + [b, a]. It follows that

[a, b] = −[b, a]. Then

0 = [[a, b], c]− [a, [b, c]] + [b, [a, c]]

= [[a, b], c] + [[b, c], a]− [[a, c], b]

= [[a, b], c] + [[b, c], a] + [[c, a], b]

for all a, b, c ∈ L. In other words, Lie algebras can be characterized as Leibniz algebras in which

[a, a] = 0 for every element a ∈ L.

Recall some basic definitions.

A Leibniz algebra L is called abelian if [a, b] = 0 for all elements a, b ∈ L. Thus, an abelian

Leibniz algebra is a Lie algebra.

Let L be a Leibniz algebra over a field F. If A, B are subspaces of L, then [A, B] will denote

a subspace generated by all elements [a, b], where a ∈ A, b ∈ B. A subspace A of L is called a

subalgebra of L, if [x, y] ∈ A for every x, y ∈ A. It follows that [A, A] 6 A.

Let L be a Leibniz algebra over a field F, M be a non-empty subset of L, then 〈M〉 denote

the subalgebra of L generated by M.

A subalgebra A of L is called a left (respectively right) ideal of L, if [y, x] ∈ A (respectively

[x, y] ∈ A) for every x ∈ A, y ∈ L. In other words, if A is a left (respectively right) ideal, then

[L, A] 6 A (respectively [A, L] 6 A).

A subalgebra A of L is called an ideal of L (more precisely, two-sided ideal) if it is both a left

ideal and a right ideal, that is [y, x], [x, y] ∈ A for every x ∈ A, y ∈ L.

If A is an ideal of L, we can consider a factor-algebra L/A. It is not hard to see that this

factor-algebra also is a Leibniz algebra.
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Denote by Leib(L) the subspace, generated by the elements [a, a], a ∈ L. Note that Leib(L)

is an ideal of L, which is called the Leibniz kernel of algebra L.

The left (respectively right) center ζ le f t(L) (respectively ζright(L)) of a Leibniz algebra L is

defined by the rule:

ζ le f t(L) = {x ∈ L| [x, y] = 0 for each element y ∈ L}

(respectively,

ζright(L) = {x ∈ L| [y, x] = 0 for each element y ∈ L}).

It is not hard to prove that the left center of L is an ideal, but it is not true for the right center.

The right center is a subalgebra of L, and in general, the left and right centers are different.

Moreover, they even may have different dimensions as shows an example 2.1 from [19].

The center ζ(L) of L is the intersection of the left and right centers, that is

ζ(L) = {x ∈ L| [x, y] = 0 = [y, x] for each element y ∈ L}.

Clearly, the center ζ(L) is an ideal of L. In particular, we can consider the factor-algebra

L/ζ(L).

Now we define the upper central series

〈0〉 = ζ0(L) 6 ζ1(L) 6 . . . ζα(L) 6 ζα+1(L) 6 . . . ζγ(L) = ζ∞(L)

of a Leibniz algebra L by the following rule: ζ1(L) = ζ(L) is the center of L, and recursively,

ζα+1(L)/ζα(L) = ζ(L/ζα(L)) for all ordinals α, and ζλ(L) =
⋃

µ<λ
ζµ(L) for the limit ordinals

λ. By definition, each term of this series is an ideal of L. The last term ζ∞(L) of this series is

called the upper hypercenter of L. A Leibniz algebra L is said to be hypercentral if it coincides

with the upper hypercenter.

Let L be a Leibniz algebra. Define the lower central series

L = γ1(L) > γ2(L) > . . . γα(L) > γα+1(L) > . . . γδ(L)

of L by the following rule: γ1(L) = L, γ2(L) = [L, L], and recursively γα+1(L) = [L, γα(L)] for

all ordinals α and γλ(L) =
⋂

µ<λ
γµ(L) for the limit ordinals λ. For the last term γδ(L) we have

γδ(L) = [L, γδ(L)].

The introduced here concepts of the upper and lower central series for Leibniz algebras are

an analogous of others similar concepts, which became standard in several algebraic struc-

tures. They play an important role, for example, in Lie algebras and groups. Following

this analogy, we say that a Leibniz algebra L is called nilpotent, if there exists a positive in-

teger k such that γk(L) = 〈0〉. More precisely, L is said to be nilpotent of nilpotency class c if

γc+1(L) = 〈0〉, but γc(L) 6= 〈0〉.

We note that in [22] Kurdachenko L.A., Subbotin I.Ya. and Semko N.N. proved a series of

results, which connected with (locally) nilpotent and hypercentral Leibniz algebras. In partic-

ular, these results are analogues of well-known group-theoretical results.

It is a well-known that in nilpotent Lie algebras and nilpotent groups the lower and the

upper central series have the same length. The same result is also true for Leibniz algebras

(see, for example, [19]).
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Let L be a Leibniz algebra. Let us define the lower derived series

L = δ0(L) > δ1(L) > . . . δα(L) > δα+1(L) > . . . δν(L)

of L by the following rule: δ0(L) = L, δ1(L) = [L, L], and recursively δα+1(L) = [δα(L), δα(L)]

for all ordinals α and δλ(L) =
⋂

µ<λ
δµ(L) for the limit ordinals λ. For the last term δν(L) we

have δν(L) = [δν(L), δν(L)]. If δn(L) = 〈0〉 for some positive integer n, then we say that L is a

soluble Leibniz algebra.

One of the first questions that naturally arises in the study of any algebraic structure is

the question of the structure of its cyclic substructures. Unlike Lie algebras, associative al-

gebras, groups, etc., cyclic Leibniz algebras are no necessarily abelian. In [10, Theorem 1.1]

Chupordia V.A., Kurdachenko L.A. and Subbotin I.Ya. described the structure of such Leibniz

algebras. This description made it possible to obtain a structure of the Leibniz algebras, whose

proper subalgebras are Lie algebras. Such algebras are either Lie algebras, or nilpotent cyclic

algebras, or they can be represented as a direct sum of an abelian ideal (from the left center of

algebra) and Lie subalgebra of dimension 1 with some additional properties [10, Theorem 1.2].

As a corollary it was described Leibniz algebras whose proper subalgebras are abelian [10,

Corollary 1.1]. This result implies that a description of Leibniz algebras, whose proper sub-

algebras are abelian, can be deduced to the case of Lie algebras, whose proper subalgebras

are abelian. Such Lie algebras are either simple, or soluble. Soluble minimal non-abelian Lie

algebras (even soluble minimal non-nilpotent Lie algebras) were described in [16, 30, 31]. Sim-

ple minimal non-abelian Lie algebras were studied in [14, 15], but their complete description

remains an open problem.

Another natural question concerns the relationship of the subalgebras and ideals. In partic-

ular, what is a structure of Leibniz algebras, all of whose subalgebras are ideals? It is not hard

to prove that a Lie algebra, all of whose subalgebras are ideals, is abelian. For groups the sit-

uation is different: there exists non-abelian groups, all of whose subgroups are normal. Such

groups have been described in [3]. For Leibniz algebras the situation is quite diverse. Recall

that a Leibniz algebra L is called an extraspecial algebra if it satisfies the following condition:

ζ(L) is non-trivial and has dimension 1, and L/ζ(L) is abelian. It is important to observe that

there are extraspecial Leibniz algebras in which not every subalgebra is an ideal. In [20] Kur-

dachenko L.A., Semko N.N. and Subbotin I.Ya. proved that if L is a Leibniz algebra over a field

F, all of whose subalgebras are ideals and L is non-abelian, then L = E ⊕ Z where Z 6 ζ(L),

and E is an extraspecial subalgebra such that [a, a] 6= 0 for every element a 6∈ ζ(E).

Consider now some other natural questions of the general theory of Leibniz algebras. Note

that the relation “to be a subalgebra of a Leibniz algebra” is transitive. However, the relation

“to be an ideal” is not transitive even for Lie algebras. Therefore it is natural to ask the question

about the structure of Leibniz algebras, in which the relation “to be an ideal” is transitive. In

this context, the following important type of subalgebras naturally arises. A subalgebra A of

a Leibniz algebra L is called a left (respectively right) subideal of L, if there is a finite series of

subalgebras A = A0 6 A1 6 . . . 6 An = L such that Aj−1 is a left (respectively, right) ideal of

Aj, 1 6 j 6 n.

Similarly, a subalgebra A of a Leibniz algebra L is called a subideal of L, if there is a finite

series of subalgebras A = A0 6 A1 6 . . . 6 An = L such that Aj−1 is an ideal of Aj, 1 6 j 6 n.

We note the following property of nilpotent Leibniz algebras (see, for example [18]): if L is

a nilpotent Leibniz algebra over a field F, then every subalgebra of L is a subideal of L.
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A Leibniz algebra L is called a T-algebra, if a relation “to be an ideal” is transitive. In other

words, if A is an ideal of L and B is an ideal of A, then B is an ideal of L. It follows that

in a Leibniz T-algebra every subideal is an ideal. Lie algebras, in which a relation “to be an

ideal” is transitive have been studied by I. Stewart [28] and A.G. Gejn and Yu.N. Muhin [17].

In particular, soluble T-algebras and finite dimensional T-algebras over a field of characteristic

0 has been described. As in the mentioned above cases, the situation in Leibniz algebras is

much more complex and diverse than it was in Lie algebras (see, for examples [18]). The

description of Leibniz T-algebras has been obtained by Kurdachenko L.A., Subbotin I.Ya. and

Yashchuk V.S. in the paper [24].

Consider now some new approach in Leibniz algebra theory. Two ideals are naturally as-

sociated with each subalgebra A of a Leibniz algebra L: the ideal AL which is the intersection

of all ideals including A (that is an ideal, generated by A); and the ideal CoreL(A) which is

the sum of all ideals that are contained in A. A subalgebra A of L is called an contraideal of

L, if AL = L. From the definition it follows that the contraideals are natural antipodes to the

concepts of ideals. Therefore, the study of Leibniz algebras whose subalgebras are either ideals

or contraideals is very natural. The description of such Leibniz algebras was obtained by Kur-

dachenko L.A., Subbotin I.Ya. and Yashchuk V.S. in the paper [23]. As a corollary, the authors

obtained the structure of Lie algebras, whose subalgebras are either ideals or contraideals [23].

As we noted above, the fact that γc+1(L) = 〈0〉 is equivalent to the fact that ζc(L) = L, i.e.

the lower and the upper central series in nilpotent Leibniz algebras have the same length. The

next natural step is the consideration of the case, when the upper (respectively lower) central

series has finite length. For this case the question about the relationships between L/ζk(L) and

γk+1(L) naturally appears.

If L is a Lie algebra such that L/ζk(L) is finite-dimensional, then γk+1(L) is also finite-

dimensional [29]. A corresponding result for groups has been obtained early by R. Baer [4].

Kurdachenko L.A., Otal J. and Pypka A.A. in the paper [19] obtained the following analog of

these theorems: if L is a Leibniz algebra over a field F and codimF(ζk(L)) = d is finite for some

positive integer k, then γk+1(L) has finite dimension; moreover dimF(γk+1(L)) 6 2k−1dk+1.

An important specific case here is the case when the center of a Leibniz algebra L has finite

codimension. For Lie algebras the following result is well known (see, for example [32]). A

corresponding result for groups was proved much earlier: if G is a group and C is a subgroup

of the center ζ(G) such that G/C is finite, then the derived subgroup [G, G] is finite. In this

formulation, for the first time it appears in the paper of B.H. Neumann [27]. This theorem was

obtained also by R. Baer [4].

For Leibniz algebras the following analog of these results was proved by Kurdachenko L.A.,

Otal J. and Pypka A.A. in [19]: if L is a Leibniz algebra over a field F, codimF(ζ
le f t(L)) = d and

codimF(ζ
right(L)) = r are finite, then [L, L] has finite dimension; moreover, dimF([L, L]) 6

d(d + r).

In this connection, the following question appears: suppose that only codimF(ζ
le f t(L))

is finite. Is dimF([L, L]) finite? The Example 3.1 from [19] gives a negative answer on this

question. However, if L is a Leibniz algebra over a field F and codimF(ζ(L)) = d is finite, then

[L, L] has finite dimension; in particular, dimF([L, L]) 6 d2 [19]. Moreover, if L is a Leibniz

algebra over a field F and codimF(ζ(L)) = d is finite, then the Leibniz kernel of L has finite

dimension at most 1
2 d(d − 1) [19].

Finally, we note that in [21] Kurdachenko L.A., Semko N.N. and Subbotin I.Ya. introduced
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the concepts of anticenter of Leibniz algebras and antinilpotent Leibniz algebras. Let L be a

Leibniz algebra. Put

α(L) = {z ∈ L|[a, z] = −[z, a] for each element a ∈ L}.

This subset is called the anticenter of a Leibniz algebra L. Note that the anticenter is an ideal

of L. Note also that we must consider the case, when char(F) 6= 2, because in the case when

char(F) = 2 anticenter in general is not ideal [21].

For this concept the above authors proved some analogs of result from Leibniz algebra

theory. In particular, in [21] they proved that if L is a Leibniz algebra over a field F and the

anticenter of L has finite codimension d, then the Leibniz kernel of L has finite dimension at

most d2.

Starting from the anticenter, we define the upper anticentral series

〈0〉 = α0(L) 6 α1(L) 6 . . . αλ(L) 6 αλ+1(L) 6 . . . αγ(L) = α∞(L)

of a Leibniz algebra L by the following rule: α1(L) = α(L) is the anticenter of L, and recursively,

αλ+1(L)/αλ(L) = α(L/αλ(L)) for all ordinals λ,and αµ(L) =
⋃

ν<µ
αν(L) for the limit ordinals µ.

By definition, each term of this series is an ideal of L. The last term α∞(L) of this series is called

the upper hyperanticenter of L. A Leibniz algebra L is said to be hyperanticentral if it coincides

with the upper hyperanticenter. Denote by al(L) the length of upper anticentral series of L. If

L is hyperanticentral and al(L) is finite, then L is said to be antinilpotent.

If U, V the ideals of L, then we denote by (U, V) a subspace, generated by all elements

[u, v] + [v, u], u ∈ U, v ∈ V. Note that [u, v] + [v, u] ∈ ζ le f t(L) and (U, V) is an ideal of L [21].

Define the lower anticentral series of L

L = κ1(L) > κ2(L) > . . . κα(L) > κα+1(L) > . . . κδ(L)

by the following rule: κ1(L) = L, κ2(L) = (L, L), and recursively κλ+1(L) = (L, κλ(L)) for

all ordinals λ and κµ(L) =
⋂

ν<µ
κν(L) for the limit ordinals µ. For the last term κδ(L) we have

κδ(L) = (L, κδ(L)).

As we noted above in nilpotent Lie algebras and nilpotent groups the lower and the upper

central series have the same length. For antinilpotent Leibniz algebras Kurdachenko L.A.,

Semko N.N. and Subbotin I.Ya. [21] proved the analog of this statement: if L is an antinilpotent

Leibniz algebra, then the length of the lower anticentral series coincides with the length of the

upper anticentral series; moreover, the length of these two series is the smallest among the

lengths of all anticentral series of L.
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Нехай L – алгебра над полем F з двома бiнарними операцiями + та [·, ·]. Тодi L називати-

мемо лiвою алгеброю Лейбнiца, якщо вона задовольняє лiву тотожнiсть Лейбнiца [[a, b], c] =

[a, [b, c]]− [b, [a, c]] для всiх a, b, c ∈ L. Дана стаття є коротким оглядом деяких сучасних резуль-

татiв, пов’язаних зi скiнченновимiрними та нескiнченновимiрними алгебрами Лейбнiца.

Ключовi слова i фрази: алгебра Лейбнiца, циклiчна алгебра Лейбнiца, iдеал, субiдеал,

контраiдеал, центр, верхнiй (нижнiй) центральний ряд, скiнченновимiрна алгебра Лейбнiца,

нiльпотентна алгебра Лейбнiца, T-алгебра Лейбнiца, антицентр, антинiльпотентна алгебра

Лейбнiца.


