References

  1. Aringhieri R., Hansen P., Malucelli F. A linear algorithm for the hyper-Wiener index of chemical trees. J. Chem. Inf. Comput. Sci. 2001, 41, 958-963. doi: 10.1021/ci0001536
  2. Ashrafi A., Došlić T., Hamzeh A. The Zagreb coindices of graph operations. Discrete Appl. Math. 2010, 158, 1571-1578.
  3. Basavanagoud B., Patil S. A note on hyper-zagreb index of graph operations. Iran. J. Math. Chem. 2016, 7, 89-92. doi: 10.22052/IJMC.2016.12405
  4. Borovicanin B., Das K.C., Furtula B., Gutman I. Bounds for Zagreb indices. MATCH Commun. Math. Comput. Chem. 2017, 78, 17-100.
  5. Das K.C., Gutman I. Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 2004, 52, 103-112.
  6. Das K.C., Gutman I. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50, 83-92.
  7. Dehgardi N., Sheikholeslami S.M., Soroudi M. On the leap Zagreb indices of graphs. (submitted).
  8. Diudea M. V., Parv B. Molecular topology. 25. HyperпїЅWiener index of dendrimers. J. Chem. Inf. Comput. Sci. 1995, 35, 1015-1018.
  9. Dobrynin A. A., Kochetova A. A. Degree Distance of a Graph: A Degree Analogue of the Wiener Index. J. Chem. Inf. Comput. Sci. 1994, 34, 1082-1086.
  10. Došlić T. Vertex-weighted Wiener polynomials for composite graphs. Ars Math. Contemp. 2008, 1, 66-80.
  11. Eliasi M., Iranmanesh A., Gutman I. Multiplicative versions of first zagreb index. MATCH Commun. Math. Comput. Chem. 2012, 68, 217-230.
  12. Eliasi M., Raeisi G., Taeri B. Wiener index of some graph operations. Discrete Appl. Math. 2012, 160, 1333-1344.
  13. Gutman I. Multiplicative zagreb indices of trees. Bull. Soc. Math. Banja Luka 2011, 18, 17-23.
  14. Gutman I. Selected Properties of the Schultz Molecular Topological Index. J. Chem. Inf. Comput. Sci. 1994, 34, 1087-1089.
  15. Gutman I., Furtula B., Vukićević K., Popivoda G. On Zagreb indices and coindices. MATCH Commun. Math. Comput. Chem. 2015, 74, 5-16.
  16. Gutman I., Linert W., Lukovits I., Dobrynin A. A. Trees with extremal hyper-Wiener index: Mathematical basis and chemical applications. J. Chem. Inf. Comput. Sci. 1997, 37 (2), 349-354. doi: 10.1021/ci960139m
  17. Gutman I., Rucčič B., Trinajstić N., Wilcox C.F. Graph theory and molecular orbitals. XII. acyclic polyenes. J. Chem. Phys. 1975, 62, 3399-3405. doi: 10.1063/1.430994
  18. Gutman I., Trinajsti N. Graph theory and molecular orbitals. total $\pi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. doi: 10.1016/0009-2614(72)85099-1
  19. Hosoya H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 4, 2332-2339.
  20. Ilić A., Zhou B. On reformulated Zagreb indices. Discrete Appl. Math. 2012, 160 (3), 204-209.\\ doi: 10.1016/j.dam.2011.09.021
  21. Khalifeh M.H., Yousefi-Azari H., Ashrafi A.R. The hyper-Wiener index of graph operations. Comput. Math. Appl. 2008, 56, 1402-1407.
  22. Klavžar S., Žigert P., Gutman I. An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons. MATCH Commun. Math. Comput. Chem. 2000, 24, 229-233.
  23. Lukovits I. Formulas for the hyper-Wiener index of trees. J. Chem. Inf. Comput. Sci. 1994, 34, 1079-1081.
  24. Milićević A., Nikolić S., Trinajstić N. On reformulated zagreb indices. Mol Divers. 2004, 8 (4), 393-399. doi: 10.1023/b:modi.0000047504.14261.2a
  25. Pattabiraman K., Vijayaragavan M. Hyper zagreb indices and its coindices of graphs. Bull. Int. Math. Virtual Inst. 2017, 7, 31-41.
  26. Sarala D., Deng H., Ayyaswamy S.K., Balachandran S. The Zagreb indices of graphs based on four new operations related to the lexicographic product. Appl. Math. Comput. 2017, 309, 156-169.
  27. Wiener H. Structural determination of paraffin boiling points. J. Amer. Chem. Soc. 1947, 69, 17-20.
  28. Xu K., Das K.C. Trees, unicyclic, and bicyclic graphs extremal with respect to multiplicative sum zagreb index. MATCH Commun. Math. Comput. Chem. 2012, 68, 257-272.
  29. Xu K., Das K.C., Tang K. On the multiplicative zagreb coindex of graphs. Opuscula Math. 2013, 33, 191-204.
  30. Xu K., Hua H. A unified approach to extremal multiplicative zagreb indices for trees, unicyclic and bicyclic graphs. MATCH Commun. Math. Comput. Chem. 2012, 68, 241-256.
  31. Yan W., Yang B-Y., Yeh Y-N. The behavior of Wiener indices and polynomials of graphs under five graph decorations. MATCH Commun. Appl. Math. Lett. 2007, 20, 290-295.