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DRON’ V.S.1, IVASYSHEN S.D.2, MEDYNS’KYI I.P.3

PROPERTIES OF INTEGRALS WHICH HAVE THE TYPE OF DERIVATIVES OF
VOLUME POTENTIALS FOR ONE KOLMOGOROV TYPE ULTRAPARABOLIC
ARBITRARY ORDER EQUATION

In weighted Holder spaces it is studied the smoothness of integrals, which have the structure
and properties of derivatives of volume potentials which generated by fundamental solutions of
the Cauchy problem for one ultraparabolic arbitrary order equation of the Kolmogorov type. The
coefficients in this equation depend only on the time variable. Special distances and norms are used
for constructing of the weighted Holder spaces.

The results of the paper can be used for establishing of the correct solvability of the Cauchy prob-
lem and estimates of solutions of the given non-homogeneous equation in corresponding weighted
Holder spaces.

Key words and phrases: ultraparabolic Kolmogorov type arbitrary order equation, an integral
which have the type of derivatives of the volume potential, weight Holder norm, Holder space of
increasing functions.

1 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine

2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,7 Peremogy av., 03056, Kyiv, Ukraine

3 Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine

E-mail: vdronQukr.net (Dron’VS.), ivasyshen.sd@gmail.com (IvasyshenS.D.),
i.p.medynsky@gmail.com(Medyns’kyil.P)

INTRODUCTION

Properties of the corresponding volume potentials are very important when the fundamen-
tal solution is being constructed and investigated, correct solvability of the Cauchy problem is
being established and estimates of solutions for parabolic equations are being obtained. Such
properties have been established for parabolic equations in the sense of Petrovsky and for 2b-
parabolic equations in the sense of Eidelman without any degenerations in works [5, 6,8] and
for equations with degenerations on the initial hyperplane in works [6,7,10,12,13]. Volume
potentials for the degenerated arbitrary order parabolic equations of the Kolmogorov type
(ultraparabolic equations of the Kolmogorov type) were studied in [1-4, 6] and properties of
volume potentials with density from Holder spaces of bounded functions which are increasing
as |x| — oo were established only for the second order equations.

It is convenient to obtain such properties if the statements about properties of integrals
which have the type of derivatives of volume potentials are proved first at all. These properties
are described by belonging such integrals to corresponding functional spaces according to the
type of spaces which density and kernel of the integral belong to. Statesments of such type are
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proved in works [6,8,9,11] for parabolic equations in the sense of Petrovsky and for parabolic
equations in the sense of Eidelman. By the way they have their own value.

In this paper there is an attempt to prove the corresponding statements in case of the Kol-
mogorov type parabolic equations. The major part of these equations are parabolic in the sense
of Petrovsky with respect to basic indepedent variables.

1 NOTATIONS AND ASSUMPTIONS

Let b, ny, ny, n3 be given positive integer numbers such that 1 < nz < ny; < ny, n =
N1+ np + ns; x := (x1,x2,x3) € R", x:= (xll,...,xln],) € R", 1 € L:={1,2,3}; Tisa positive

number; if ky := (kq1,...,kin,) € Z'! is a n-dimensional index, then |kq| := ki1 + ... + k1,
kl . kll klnl
Oy i= 0yl ... axlnl.

The paper is concerned with the study of properties of integrals of the type

t
%) = / it / M(t, %7, &) (T, E)dE, (%) € g = (0,T] x R™. (1)
0 n

The kernel M is a complex-valued function which has properties of the derivatives of the
fundamental solution G of the Cauchy problem for the equation

%) ns
— Z xljaxzj — Z XZjaij - Z l}lkl axi ) f(t, x), (t, x) € H(O,T]' (2)
j=1 j=1

k1| <2b

In the equation (2) oy — Y ay, (t )8],2 is parabolic by Petrovsky differential expression, and
ky|<2b
coefficients ay, are cont1r|1uous on [0, T] functions.

The equation (2) belongs to a class of ultraparabolic equations arbitrary order 2b and it gen-
eralize known equation of A.N.Kolmogorov of diffusion with inertia. In [6] it was established
a structure and properties of the function G and its derivatives.

Let us describe properties of the kernel M of integral (1). For the purpose we denote:

g :=2b/(2b —1), N := (n1 + (2b + 1)ny + (4b + 1)n3)/(2b), AY f(t,x) := f(t,x) — f(t,x'),
nq ny ns
p(t, x,¢) 1:’517‘7_21|x1j—§1j|q + 2 _Zl |9 + b1 — G| T+ #1737 .Z |3 4 bxgj + 2712wy — Gy,
]:

d(x;x’) — |xl N x/|1/(2b(l—1)+1)’ dl(x;x’;A) — |x1 _ x1|/\ + Z |x |(A+1)/(2b(l—1)+1),

l

1l LMw

dy (x; x5 M) X — x1|A + |xp — é|()\+1)/(2b+1 + |x3 — |(A+2b+1)/(4b+1)’ if t € (0,T],
{x,x/,&} C ]R” A€ (0,1].
Note, that if d(x; x') < 1, then

dy(x; 2 A) < dp (x5 A) <477 ()Y, {x, 2’} C R, A € (0,1].

As the kernel of the integral (1), let us take the function M, which can be represented in the
form
Mt xT, &)= (t—-1) " Nt 51,8, 0<T<t<T {x,& CR", (3)

where v € (0,2b 4 1/(2b)], and the function (), with the values in C, is continuous and it
satisfies the conditions below with some numbers ¢ > 0 and y € (0, 1]:
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A V{t,t} C (0, T], T <t Vx e R":

/Q(t,x;r,g)dg —0 forve (1-1/(20),1],
IR}'l

/ Q(t, %7, 8)dE2dEs = 0 forv € (1,1+1/(2b)], @)

]Rn2+n3

/ Q(t,x;7,8)dé = 0 forv e (1+1/(20),2b +1/(2b)];
R™3
Ay, AC > 0V{t,t} C (0,T], T < t, V{x,&} CR":

1Q(t, x;7,8)| < Cexp{—cp(t —1,%,(}; 5)
A3.3C > 0V{t, T} C (0,T], T < t, V{x, &/, &} CR", d(x;x') < (t — 7)1/ () .
870t 37,8)] < Cld(52))7(t — 1)~ exp{—cp(t —7,%,)}. ©

The definition of the function M contains the number v, ¢, and 7, which assume are consid-
ered to be given. By M(v, ¢, y) we denote a set of all functions M determined by formula (3),
in which the function Q) satisfies conditions A; — A3 with giveny € (0,1], v € (0,2b+1/(2b)],
c € R;.

It should be noted that for v € [1,2b + 1/(2b)] integral (1) with the function M € M (v, c, )

is treated as the limit
t—h

}113(1) dT/M(t,x;T,é)f(T,g',‘)dé‘,
0 R¢

which exists for suitable f, because of condition A;.

Let us define spaces to which the functions f and u belong. They are the spaces of functions
which are continuous or satisfy Holder condition and which have certain restrictions as |x| —
co. Their behavior as |x| — co will be described by the functions

3

p(t,x) :=exp Y_ki(t,a)|x|7
i1

or

3
P(t,x) :=exp Y s/(t)|x]7, t €[0,T], x € R".
=1

Here for a fixed number cj from the interval (0,c), where c is the constant from conditions

Ap and As, and for a set a := (aj1,ap,43) of non-negative numbers a;, | € L, such that T <
min(co/a;) @1/ @(1-1)+1)
leL

ki(t,a;) = com (31 — a%bfltzb(lfl)ﬂ)l’q, leL;

s1(t) == ky(t, 1) + 27 Wiky(t, a0) + 27 2429k5(t, a3),
Sz(t) = 2q71k2(t, 1}12) +4’771t’7k3(t, 613>, Sg(t) = 4q71k3(t, Elg), t e [0, T].
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The functions k(t) := (k1 (t,a1), k2 (t,a2),k3(t,a3)) and s(t) := (s1(¢),s2(¢),s3(t)), t € [0, T],
have the following properties [6]:

k(O) =a,aq < kl(T,ﬂl) < kl(t,al) < Sl(t), 0<t<t<T, lel (7)
kl(t—T,kl(T,ﬂl>> Skl(t,ﬂll), 0<t<t<T, lel; (8)
3 3 3
—cop(t =7, %,8) + Y al|&l" < Y kit a)|m(H)|T <Y si(t)]x]f,
1=1 I=1 1=1
0<t<t<T{x¢} CR", 9)

where %;(t) := (%1(t), X2(t), -, X1, (t)), 1 € L; %1(t) == x1, ] € {1,...,m}; %(t) 1= xpj +
txl]-,j S {1, ceey Vlz},‘ fg,]'(t) = X3; + i'X2]' + 2_1t2X1j,j € {1, ceey Vl3}.
From these properties it is follows that

¢(T, X1(t = 7)) < (8, Xa(t)) < p(t %),

exp{—cop(t —7,x,&) }o(7,8) <y(t,x), 0<T<t<T, {x,¢} CR", (10)
where X (t) := (1(t), %2(t), X3(1)).
For a given number A € (0,1] we denote by C°, C;}, C{\, o and Cé\, spaces of continuous

functions u : IT7) — C, for which the corresponding norms ||u||9, Hqu = HuH?P + [u]é,
ullg = lullg + [ult, and [[ull3, := [|ull§ + [u]3,, where
u(t, x)|
lully = sup ,
¢ (t,x)eH[O,T] (t’ x)

A% u(t, x)|
[u]} = sup ,
P e @) (ol 2) + gl )
(t)# (1)

A u(t, )]
[u]t, = su ,
i DA () + 9E, )
(tx)#(tx")

|AY u(t, x)|
Wy i=  sup
o {(£0), (64"} Mg gy dy (x;x'; A) (p(t, x) + o(t, x'))
(Ex) (1)

are finite.

Except these spaces we will use the space Cfl‘,. The definition of this space is obtained if in
the definition of the space Cg the function ¢ replace by the function .

2 MAIN THEOREM

Let us formulate the main results of this paper.
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Theorem. Let M € M (v, c,y) and function u is determined by formula (1). Then the following
statements are valid:
a)ifv <1—-1/(2b) and f € CO thenu € Cg and

[lully < ClIfIl; (11)

b)ifv € (1—-1/(2b),1] and f € C}, A € (0,1], then withv + (v — A)/(2b) < 1 we have
ue Cg and

[lullf < ClIA1lG, (12)
and withv + (y —A)/(2b) > 1 we haveu € C$ and
[lully < ClIfllg; (13)
oifve (1,1+1/(2b)] and f € Cl(P,A € (0,1], then withv + (y —1—A)/(2b) < 1 we
have u ECIZ and
[lull§, < ClIfI1 g (14)

and withv+ (y —1—A)/(2b) > 1 we haveu € CI)IE and

[l < ClIfI1 g (15)

d)ifve (1+1/(2b),2b+1/(2b)] and f € CQ\(P,A € (0,1], then withv+1—-2b+ (y —1—
A)/(2b) < 1 we haveu € Cg and
ully, < ClIf112,4/ (16)

and withv+1—2b+ (y—1—A)/(2b) > 1 we haveu € C@ and

[ullf < ClIf115,- (17)

The constants C in inequalities (11)—(17) depend only on the constant C from conditions A;
and A3, and also they depend on the numbers n1, nz, n3, b, v, ¢, v and A.

Proof. Below various constants we will denote by same letters if we have no interest in con-
stant’s values.
a) Using the equality [6]

/(t — 1) Nexp{—cp(t —7,x,8)}dé =C, 0<t<t<T,x€R", >0, (18)
]Rn

with the help of (3), (5), (10) and of the definition of the norm ||| |9P we have

u(t,x)| < C/(t v Ndr/exp{ co(t —7,x,8)Hf(T,8)|dE = C/ )V Ndr
0 R"
[ expt=contt = %, o)L expl— (e~ copte — 7,21} 1)

Rn

t
< Cy(t,x / (t =) vdr||flly = Cyp(t, )| fIfg, (¢ x) € Mg .
0
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Let x and x’ be arbitrary fixed points from R" and d := d(x; x"). Let us estimate the differ-
ence A;‘/u
When d?’ > t, with the help of estimate (19) we obtain

[AF ut, 2)] < Jult,x)| + Ju(t, )| < C(t,x) + (e, NI

/ INYY $1—v—7/(2b) 0 / n (20)
< C(y(t,x) + 9t x"))(d(x; x7)) 7t || fllp, t€(0,T], {x,x'} CR", v € (0,1].
Let us consider the case d%’ < t. We have
t
AT u( / / AY M(t,x;7,8)| |f (T, &)|dE, te (0,T], {x,x'} CR". (21
O n
Let us prove for the difference AM := A§/M(t, x; 7, ) the inequality
IAM| < Cd(t — )77/ )V "Nexp{—co(t — T,x,¢)}. (22)

We shall distinguish the following cases: 1) d?? >t —1,2) d* < t — 1.
In the first case, we obtain estimate (22) immediately from (3), (5) and from the inequality
|AM| < |M(t,x;7,8)| + [M(t,x";T,)|. In case 2) note that

AM = (t — 1)V NAYQ(t, x; 7, 8).

Because of (6) we have estimate (22) in case 2).
With the help of (10), (18), (21) and (22) we get
AT u(t,x)] < C(p(t,x) + (e, x))d e ==/ @O £|[E, (23)
te (0,T], {x,x'} CR", vy € (0,1—1/(2b)].

From (20) and (23) the estimate
[uly, < ClIfIG

follows and by this result and (19) the estimate (11) holds.
b) Let v € (1 —1/(2b), 1]. Because of the first condition from (4) we represent integral (1)
in the form

t
u(t,x) = / dt / M(t % T, O8O f(,0)de, (1,x) € g, (24)
0 n

where X1 (t) := (%1(t), %2(t), X3(t)) as in (10).
With the help of (3), (5) and (7)—(10) we get

u(t,0)] < C [ (¢ =) Nar [ exp{—(c~ co)p(t — 7,%,8)} exp{—cop(t — T, %)}
0

R~

AXl (t—7) ,
R

0
x /eXP{—(C —co)p(t — 7,2, &) }(d(&, X (t — 7)) dEy(t, 1) [flg.

R~

a¢ < C/(t — 1) Ndr
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Now let us use the inequality [6]
(d(g, X (t =)  exp{—cp(t = 7,%,8)} < C(t =DM P exp{—cip(t — 7,%,0)},

0<t<t<T, {x,¢}CR",0<¢ < Ae(0,1] )
For ¢ = ¢ — cp with the help of (18) we have
t
u(t, )] € [(t=1) NN @har [expi-eip(t —7,x,)Hzy(t, )]}
0 t R" (26)
/ A D) gr — Cy(t, x)v]g);tl—v-i-/\/(Zb)’ (t,%) € TTo7.
0
Then
[lully < Clflg- (27)

Let us estimate the difference A§/u. If d?° > t, where d := d(x;x’), then under condition
(26) we have the estimate

AT u(t,x)| < C((t,x) +(t, X)) [flpt )t e (0,T], {x,¢} CR".
We obtain
AT u(t, )] < C(p(t,x) + (e, x)) [flpd
< C(p(t,x) + (1, x)d* [l t € (0, T), {x,&} CR";
and with v+ (y —A)/(2b

AT u(t,x)| < C(p(t,x) + (kX)) [flgt' D/ @0/ 20)

< C(p(t,x) + (8, x) [flpt! v D/ 0 (29)

< C(p(t,x) +9(t,x")d"[fly, t € (0,T], {x,&} CR".

(28)

) < 1 we receive

It is sufficient to consider the case, where d?’ < t. By the first condition from (4) like (24)

we write
tidzb

A u(t x) = / dt / Y Mt %7, )R f(x, 8)de

0 R”

t
+ / dT/M(t,x;r,g’,‘)A?l(t_T)f(T,§)d§

d% R

t
o 3
- / dt / Mt x5, AN T f(z,8)dE = Y Ky,
f—g2b  Rn I=1
where X/ (t) 1= X1 ()] y—y'-
Using (3), (6), the second inequality from (9), (10), we get
t—d?

Kil<C [ (t=0) 7 Nar [(@dna)) Tt =) exp{—cp(t — 7,%,8))
0

R”
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|AX1tTf(T€ v N—v/(2b
x(p(n8) +o(t Xt —D) ey < € / —v=N=7/(2b) g

X /llﬂ(f,x) exp{—(c—co)p(t — 7, x,&) }(d(& X1 (t — 7)) dgd" [f];-
R~

Now let us use the inequality (25) and equality (18). We get
t—d?b
Kil < Cdv [ (e 7)o @y, )£, (30)
0
If v+ (y —A)/(2b) < 1, then from (30) we obtain

|Ka| < CdVip(t, ) [f](t — 7)1 (=000

T=t—d?b
= Cp(t, x)[fl (#1770 — 2O < cdryp(t, ) [,
If v+ (y —A)/(2b) > 1, then from (30) we obtain

[Ka| < Cap(t, x)[f]5(t — 7)== (=M GO — (s, x) ] (a2 011

_tl—v—('y—/\)/(Zb)) < Cde(l—v)—i-/\lP(t’x)[f]/(}) _ Cd/\l[J(i', x) [f]g
Let us estimate K. With the help of (3), (9), (10) and (25) we obtain

Kol <C [ (t= 1) Nar [(@d@Xa(t - 1) exp{—cplt — 7,%,0))

e R

<(9(r,8) + p(r, Xt~ )dElfly <€ [ (1) Nar

t—d2b

x /(d(é; X1 (t = 1)) exp{~(c — co)p(t — 7, x,6) }p(t, x)dZ[f];,
R7

R~

<C [ (t-m) NN @ar [exp{-eip(t - 7,0 bp(t 2)azlf]].
42b

Using (18) with ¢’ = ¢;, we have

Kol < C / M @yt x)[ ;.

t—d2b

Since —v + A/(2b) > —1, we obtain

K| < C(t =)V @B ) [ = Ca (10 (s, ) [f]) G1)

and thus, we have

[Ko| < Ca*d®Vy(t, x)[f]}, < Cd*y(t, x) [fg,
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if v+ (y—A)/(2b) > 1. In case, where v+ (7 — A)/(2b) < 1, we receive from (31) the
following inequality

[Ko| < CaYd® 002" p(t, 2)[f] < CdTy(t, x)[fg.

By the similar way we obtain

[Ks| < Caty(t,x')[f]y

in case, where v € (1 —1/(2b), 1], and

|Ks| < Cdp(t,x') 1]

in case, where v € (1 —1/(2b),1Jand v — (y — A)/(2b) < 1.

From (27), (28), (29) and from the estimates for Kj, I € L, the estimates (12) and (13) follow
withv € (1—-1/(2b),1].

o) Letv € (1,1+1/(2b)]. Because of the second condition from (4) we represent integral
(1) in the form

t
utx) = [ar [ (] =07 N mT o8R0 (0 dedz ) e,
0 RM  RM+n3

(t,x) € o,

(32)

where X;(t) := ({1, X2(t), %3(t)), with %;(t), | € {2,3}, which were determined in (9).
With the help of (3), (5) and (7)—(10) we get

u(tx)| < C [(t=7) 7 Nar [exp{—(c ~co)p(t — 7,%,0))
0 R”
AR f (2, )]
7,0) + (T, Xalt 7))

< exp{—cop(t = 1,5,0)}(p(r,8) +(r, Xalt ~ 1) dé

t

< C [(r= 1) Nar [ exp{—(c — co)p(t — 1,38}y (&5 Kot — T A)EY(E, ) [f1}
0 R"

The inequality below follows from definitions of d, d; and Xj.

3
& (& Xa(t— 1) A) = Y |8 — &) (t — 7)|AFD/ 2001+
=2

3 A+1
=C <Z 61— xi(t = T)I”(Zb(l_l)“> = C(d(&Xa(t = 7)),
1=2

0<t<t<T, {x¢}CR", Ae€(01].
Here C > 0 is some constant. Then taking into account inequality (25) we have
(& Xa (= T); A) exp{—p(t —T,%,8)} < CLA(E Xa(t — 7)) exp{—cp(t — 7,%,8)}
< C(t —1)1FN/ @Y exp{ —c1p(t — 7, x, &)},

0<t<t<T, {x,¢}CR", 0<ec1<¢ Ae(0,1]
(33)
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For ¢ = ¢ — cg with the help of (18) we have

t
u(t,x)| < / —v=N+(14+1)/ (Zb)dr/exp{—c‘lp(t—T,x,g)}dglp(t,x)[f]i\,q)
O ]Rﬂ
; 34
= C‘/’(tfx)[f]i\,q, /(t — )~V (2b) g (34)
0

= Cl/](t, x)[f]i\,(ptl_v—i_(l—i_/\)/(%)/ (t/ x) € H(O,T]'

Then
[|ull§ < CLAIR,- (35)

Let us estimate the difference Ai/u. If d2 > t, where d := d(x; x"), then under estimate (34)
we have the inequality

[AF u(t,x)] < Clp(t,x) + 9 (t, x) [} 't~/ @)
< C(y(t,x) + (1, X)) d [f)14, t € (0,T], {x,5} C R,
and withv + (v —1—A)/(2b) < 1 we receive
|A§c(’u( )| < C(p(t,x) + Pt x/))Lf]{\,(Ptl—v—(W—l—/\)/(Zb)t’Y/(Zb)
< C(P(t,x) + (b, ) [fI] 'V (36)
(

< C(y(t, ) + (1, 2)d" )14, t € (0,T], {x,¢} CR™

It is sufficient to consider the case, where d?” < t. By the second condition from (4) like (32)
we write
t—d?

83 ut,x) = / ar [ (] sM(xnoaR T fn odzdz ) e

R"  R"2*713

- / dr [ (] MexmaR T f(r 0 dcds ) e ®)

t— de R”l Rn2+?13

3
- / ar [ (] Ml oal T edzdes ey =LK

t—d2t R™M  R"2t3
where X}, (t) := X ()] y=y'-
Using (3), (6), the second inequality from (9), (10), we get
t—d?

Kil<C [ (t=m) Nt [(@dna) (e =) expl—ep(t — 7, %,8))
0

R7

\A?Zt “f(T o)l —v—N—7/(2b)
X (9(1,8) + 9(5,Xalt = 1) ot T e < C [ (=m0

< [ 9l expi—(c = co)plt = 7,%,8) by (& Xa(t — 7); )" [f]1.
Rn
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Now let us use the inequalities (33) and equality (18). We get

t—d?
K| < Cd / (t — 1)~V N=7/(20)+(1+4)/(2b) g7 / ¥(T,x) exp{—c1p(t — T, x,&) }dE
0 n
t—d?
demf? — CdY / (t— T)*U*('Y*lfft)/(Zb)dTw(t’x)[f]{\l(P_
0

Ifv+(y—1—A)/(2b) > 1, then

K| < Cavp(t, x)[fI, (¢ — 1) 7= =N/ @OEAR — Cavp(r, x)[f]], (@077

=

_tl—v—('Y—l—)\)/(Zb)) < Cde(l_V)+1+/\lP(t1x)[f]i\,go < Cd/\llj(t'x)[f]i\,go'
Ifv+(y—1-A)/(2b) <1, then

[Kq| < Cdp(t,x)[f];

,(P(t _ T)lfvf(fyflfA)/(Zb) 0 = Cdp(t, X)[f] o

T=t—d? —

« (tl—v—('y—l—A)/(Zb) N de(l—v)—'y+1+/\) < Cd7¢(t,x)[f]i\¢.

Let us estimate K. With the help of (3), (9), (10) and (33) we obtain

Kl <C [ (t—0) 7 Nar [ (@ Xa(t - 7);A) expl—colt — ,%,0)}
)

t—d2b

t

<(9(r,8) + 9(r, Xalt —))E[f, <C [ (t—7)Nar

t—d2b

x /dl(ﬁ; Xa(t = 1);A) exp{—(c —co)p(t — 7, &)}y (t, )dS[f13,

R”

<C / —v=N+(1+A)/ (Zb)dr/exp{—c_lp(t - T,X §)}lp(t,x)d§[f]{\,¢

t—d2b R"

Using (18) with ¢/ = ¢;, we have

Kyl <C / SN @y (1, 2)[f]},.

t—d2b

Sincev — (1+ A)/(2b) < 1, we obtain
_ _ b B
|Kp| < C(t =)' IVt x) (1T, = Ca* 0T Ay (1, 1) [f]7

The estimate

IK5| < CdVde(lfv)+1+Af’Y¢(t,x)[f]{\,go < Cd%,l)(t,x)[f]{‘,?
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follow from (38) if v + (v — 1 — A)/(2b) < 1, and the estimate

[Ky| < Cara?* =0 g (8, 2)[fh,, < Caly(t, ) [f]7,,

ifv+(y—1-A)/(20) > 1.
By the similar way we obtain

[Ks| < Cdp(t, x)[f13,

in case, where v+ (y —1—A)/(2b) < 1, and

[Ks| < Catp(t, x)[f1,

in the case, where v+ (y —1—A)/(2b) > 1.

From (35), (36), (37) and from estimates for K/, | € L, the estimates (14) and (15) follow.

d) This case can be proved by the similar way as the case ¢). We must use the third equality
from (4); representation of the integral (1) in the form

t
u(t, x) = O/ dr [ ([0 Vot s sl U pr e e, (%) € g,

]Rnl +ny R"3

where X3(t) := (&1, &2, %3(t)), with %3(t), which was determined in (9); and estimates

02 (& X5 (t — ); A) exp{—cp(t — T,x,&)} < C(A(& X3t — 1)) "2 exp{~p(t — 7,%,8)}
< C(t =) P exp{—crp(t — 1,x,8)},
0<Tt<t<T, {x,¢} C R",
0<e<eg, A e (0,1].

These estimates are obtained in the same way as estimates (33). O
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Po3rAsSIAQIOTBCST iHTErpaam, sIKi MalOTh CTPYKTYPY Ta BAACTMBOCTI, MOAIGHI AO MOXiAHMX Bia
06’eMHIX MTOTeHIIiaAiB, MOPOAXKeHNX PYHAAMEHTAABHMM PO3B’si3koM 3aaaui Kot aast yabTpara-
paboaiuroro pisHsHHS Ty KoaMoroposa aosiabHOTO mopsiaky. KoedpirieHTn 11poro piBHSHHS
3aAeXaTh TIABKM BiA YacOBOi 3MiHHOI. BCcTaHOBAIOEThCSI HAAEXHICTD IYIX iHTErpaAiB AO BiATIOBIAHIX
BaroBux Mpocropis I'eabaepa, 3aA€XHO BiA TOTO, AO SIKMX IIPOCTOPIiB HAA€XMUTD I'yCTMHA Ta SAPO
iHTerpana.

Anst mobya0BM IpocTOpiB I'eAbaepa BUKOPWCTOBYIOTBCS CIIelliaAbHI BiACTaHi Ta BaroBi HOpMIL.
BiacraHi BpaxoBYIOTh aHi30TPOMNHICTh 3a IPOCTOPOBUMM 3MIHHVMIL PiBHSIHHSI, sIKe IIOPOAXYE iHTe-
TpaAm, IO PO3TASIAAIOTECS. BaroBumm (pyHKIISIMI € €KCTTOHEHTH, sIKi HeOOMeXXeHO 3pOCTaloTh Ipy
|x| — ©o i THII IX 3pOCTaHHS CIEiaABHMM CIIOCOB0M 3aAEXKUTD Bia 3MIHHOI £.

PesyabTaTyi po60TH MOXYTH 6y TV BUKOPWCTaHi AASI BCTAHOBAEHHS KOPEKTHOI pO3B’SI3HOCTI 3a-
Aaui Ko Ta oIiHOK po3B’sI3KiB AAHOrO HEOAHOPIAHOTO PiBHSHHS Yy BiAIIOBIAHIMX BaroByX IIPOCTO-
pax I'eabaepa.

Kntouosi croea i ppasu: yapTpamapaboiiune piBHsHHS Ty KoAMOroposa AOBIABHOTO TTIOPSIAKY,
iHTerpaa TUITy MOXiAHMX Bia 06’€éMHOrO IOTeHIIiaAy, BaroBa reabAepoOBa HOpMa, IpocTip I'eabaepa
3pocTarounX yHKIII.



