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ON INVERSE SUBMONOIDS OF THE MONOID OF ALMOST MONOTONE
INJECTIVE CO-FINITE PARTIAL SELFMAPS OF POSITIVE INTEGERS

In this paper we study submonoids of the monoid A4 (N) of almost monotone injective co-
finite partial selfmaps of positive integers IN. Let 7% (N) be a submonoid of yAd (IN) which con-
sists of cofinite monotone partial bijections of IN and 4y be a subsemigroup of 75 (IN) which is
generated by the partial shift n — #n + 1 and its inverse partial map. We show that every automor-
phism of a full inverse subsemigroup of 4 (IN) which contains the semigroup %y is the identity
map. We construct a submonoid IINL%] of 75 (N) with the following property: if S is an inverse
submonoid of Joz/ (IN) such that S contains I]NL%] as a submonoid, then every non-identity congru-
ence € on S is a group congruence. We show that if S is an inverse submonoid of yAe (N) such
that S contains 4y as a submonoid then S is simple and the quotient semigroup S/€mg, where
Cmg is the minimum group congruence on S, is isomorphic to the additive group of integers. Also,

we study topologizations of inverse submonoids of A4 (IN) which contain 43y and embeddings of
such semigroups into compact-like topological semigroups.
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1 INTRODUCTION AND PRELIMINARIES

In this paper all spaces will be assumed to be Hausdorff. Furthermore we shall follow the
terminology of [14, 16, 20, 35, 39]. We shall denote the set of all positive integers by IN, the first
infinite ordinal by w and the cardinality of the set A by |A|. If A is a subset of a semigroup S,
then by (A) we shall denote a subsemigroup of S generated by the elements of the set A.

An algebraic semigroup S is called inverse if for any element x € S there exists a unique
x~1 € S such that xx !x = x and x 'xx~! = x71. The element x ! is called the inverse of
x € S. If S is an inverse semigroup, then the function inv: S — S which assigns to every
element x of S its inverse element x~! is called an inversion.

A congruence € on a semigroup S is called non-trivial if € is distinct from universal and
identity congruences on S, and a group congruence if the quotient semigroup S/ is a group. If
¢ is a congruence on a semigroup S then by ¢ we denote the natural homomorphism from S
onto the quotient semigroup S/¢.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is
an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) a as
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band (or the band of S). Then the semigroup operation on S determines the following partial
order < on E(S): e < fif and only if ef = fe = e. This order is called the natural partial order
on E(S). A semilattice is a commutative semigroup of idempotents.

An inverse subsemigroup T of an inverse semigroup S is called full if E(S) = E(T).

By (Z<w(A),U) we shall denote the free semilattice with identity over a set of cardinality
A > w,ie, (P<w(A),U) is the set of all finite subsets (with the empty set) of A with the
semilattice operation “union”.

If S is a semigroup, then we shall denote the Green relations on Sby Z, ., ¢, % and ¢
(see [16]). A semigroup S is called simple if S does not contain proper two-sided ideals and
bisimple if S has only one Z-class.

A (semi)topological semigroup is a topological space with a (separately) continuous semi-
group operation. An inverse topological semigroup with continuous inversion is called a topo-
logical inverse semigroup.

A topology T on a semigroup S is called:

semigroup if (S, T) is a topological semigroup;

semigroup inverse if S is an inverse semigroup and (S, T) is a topological inverse semigroup;

shift-continuous if (S, T) is a semitopological semigroup.

The bicyclic semigroup (or the bicyclic monoid) € (p, q) is the semigroup with the identity 1
generated by two elements p and ¢, subject only to the condition pg = 1.

The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a
group congruence. Moreover, every homomorphism / of the bicyclic semigroup is either an
isomorphism or the image of %(p,q) under h is a cyclic group (see [16, Corollary 1.32]). The
bicyclic semigroup plays an important role in algebraic theory of semigroups and in the the-
ory of topological semigroups. For example a well-known Andersen’s result [1] states that a
(0-)simple semigroup with an idempotent is completely (0-)simple if and only if it does not
contain an isomorphic copy of the bicyclic semigroup. The bicyclic monoid admits only the
discrete semigroup Hausdorff topology. Bertman and West in [13] extended this result for the
case of Hausdorff semitopological semigroups. Stable and I'-compact topological semigroups
do not contain the bicyclic monoid [3, 33]. The problem of embedding of the bicyclic monoid
into compact-like topological semigroups was studied in [5, 6, 28]. Independently to Eberhart-
Selden results on topolozabilty of the bicyclic semigroup, in [41] Taimanov constructed a com-
mutative semigroup 2, of cardinality x which admits only the discrete semigroup topology.
Also, Taimanov [42] gave sufficient conditions for a commutative semigroup to have a non-
discrete semigroup topology. In the paper [23] it was showed that for the Taimanov semigroup
2, from [41] the following conditions hold: every T;-topology T on the semigroup 2, such that
(x, T) is a topological semigroup is discrete; 2 is closed in any T;-topological semigroup con-
taining A, and every homomorphic non-isomorphic image of 2 is a zero-semigroup.

Non-discrete topologizations of some bicyclic-like semigroups were studied in [7, 8, 9, 10,
11, 12,22, 25, 34, 36, 40]. In particular in [21] it is proved that the discrete topology is the unique
shift-continuous Hausdorff topology on the extended bicyclic semigroup 47z. We observe that
for many (0-)bisimple semigroups S the following statement holds: every shift-continuous Haus-
dorff Baire (in particular locally compact) topology on S is discrete (see [15, 24, 26, 27, 29, 30]).

Let ., denote the set of all partial one-to-one transformations of a set X of cardinality A
together with the following semigroup operation:

x(aB) = (xa)B if x € dom(ap) = {y € doma | ya € dom B}, for a,pe . g).
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The semigroup .7, is called the symmetric inverse semigroup over the set X (see [16]). The sym-
metric inverse semigroup was introduced by Wagner [43] and it plays a major role in the theory
of semigroups.

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup 6, which
is generated by partial transformations « and 3 of the set of positive integers IN, defined as
follows:

doma =N, rana=N\{1}, (n)a=n+1

and
dompB=IN\{1}, ranf=N, (n)p=n-1

(see Exercise IV.1.11(ii) in [38]).

Let IN be the set of all positive integers. We shall denote the semigroup of monotone, non-
decreasing, injective partial transformations ¢ of IN such that the sets N \ dom ¢ and IN \
rank ¢ are finite by % (N). Obviously, 7% (N) is an inverse subsemigroup of the semigroup
Zw. The semigroup N4 (IN) is called the semigroup of cofinite monotone partial bijections of IN.

In [29] Gutik and Repovs studied the semigroup 4 (N). They showed that the semigroup
IL (IN) has algebraic properties similar to the bicyclic semigroup: it is bisimple and all of its
non-trivial group homomorphisms are either isomorphisms or group homomorphisms. Also,
they proved that every locally compact inverse semigroup topology T on L (IN) is discrete
and described the closure of (.#% (N), T) in a topological semigroup.

Doroshenko in [18, 19] studied the semigroups of endomorphisms of linearly ordered sets
IN and Z and their subsemigroups of cofinite endomorphisms Oy;,(IN) and Of;,(Z). In [19]
he described the Green relations, groups of automorphisms, conjugacy, centralizers of ele-
ments, growth, and free subsemigroups in these subgroups. Especially in [19] it is proved that
the group of automorphisms consists only of the identity mapping, whereas the groups of au-
tomorphisms of O¢;,(Z) is isomorphic to the semigroup of integers with operation of addition
and consist only of inner automorphisms. In [18] there was shown that both these semigroups
do not admit an irreducible system of generators. In their subsemigroups of cofinite functions
all irreducible systems of generators are described there. Also, here the last semigroups are
presented in terms of generators and relations.

A partial map a: IN — IN is called almost monotone if there exists a finite subset A of IN such
that the restriction a [\ 4: IN'\ A — IN is a monotone partial map.

By e (IN) we shall denote the semigroup of monotone, almost non-decreasing, injective
partial transformations of IN such that the sets N \ dom ¢ and N \ rank ¢ are finite for all
P € 75" (N). Obviously, " (N) is an inverse subsemigroup of the semigroup .#, and the
semigroup 7% (N) is an inverse subsemigroup of 7 (N) too. The semigroup I (N) is
called the semigroup of co-finite almost monotone partial bijections of IN.

In the paper [15] the semigroup e (IN) is studied. It was shown that the semigroup
yAd (N) has algebraic properties similar to the bicyclic semigroup: it is bisimple and all of
its non-trivial group homomorphisms are either isomorphisms or group homomorphisms.
Also it was proved that every Baire shift-continuous Tj-topology T on e (N) is discrete,
described the closure of (ﬂozf (N), T) in a topological semigroup and constructed non-discrete
Hausdorff semigroup topologies on yAe (N).
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A partial transformation a: (X,d) — (X, d) of a metric space (X, d) is called isometric or a
partial isometry, if d(xa, ya) = d(x,y) for all x,y € domua. It is obvious that the composition
of two partial isometries of a metric space (X, d) is a partial isometry, and the converse partial
map to a partial isometry is a partial isometry. Hence the set of partial isometries of a metric
space (X, d) with the operation of composition of partial isometries is an inverse submonoid
of the symmetric inverse monoid over the set X.

Let IIN, be the set of all partial cofinite isometries of the set of positive integers IN with
the usual metric d(n, m) = |n —m|, n,m € IN. Then IIN with the operation of composition of
partial isometries is an inverse submonoid of .7,,. The semigroup IIN of all partial co-finite
isometries of positive integers is studied in [32]. There we describe the Green relations on
the semigroup IN, its band and proved that IIN is a simple E-unitary F-inverse semigroup.
Alsoin [32], the least group congruence €mg on IN is described and proved that the quotient-
semigroup INe /Cmg is isomorphic to the additive group of integers Z(+). An example of a
non-group congruence on the semigroup mathbfIINe is presented. Also we proved that a
congruence on the semigroup IIN« is group if and only if its restriction onto an isomorphic
copy of the bicyclic semigroup in IIN is a group congruence.

In this paper we show that every automorphism of a full inverse subsemigroup of I% (N)
which contains the semigroup 4y is the identity map. We construct a submonoid INY of
I (N) with the following property: if S be an inverse subsemigroup of I (N) such that
S contains INY as a submonoid, then every non-identity congruence ¢ on S is a group con-
gruence. We show that if S is an inverse submonoid of e (N) such that S contains % as
a subsubmonoid then S is simple and the quotient semigroup S/€ng, where €y is the mini-
mum group congruence on S, is isomorphic to the additive group of integers. Also, we study
topologizations of inverse submonoids of 75 (IN) which contain %y and embeddings of such
semigroups into compact-like topological semigroups.

2 MAIN ALGEBRAIC RESULTS

We recall for a semigroup S a homomorphism ®: S — S is called an endomorphism of S
and every bijective endomorphism (isomorphism) ®: S — S is called an automorphism of S.
We observe that in the case when S is a monoid with the unit 1g, then an endomorphism
®: S — S with (15)® = 15 is called a monoid endomorphism. 1t is obvious that (15)® = 15 for
any automorphism ®: S — S of a monoid with the unit 1.

Recall [37] a semigroup S is combinatorial if it has no non-trivial subgroups. A regular (an
inverse) semigroup S is combinatorial if all its #-classes are singleton. It is obvious that any
subsemigroup of a combinatorial semigroup is combinatorial.

Lemma 1. Let ¥Y: S — S be an automorphism of a combinatorial inverse semigroup S. If
(e)¥Y =eforalle € E(S), then ¥ is the identity map.

Proof. Fix an arbitrary s € S\ E(S). Then (ss™1)¥ = ss~! and (s7!s)¥ = s~!s. Since in
any inverse semigroup the following condition hold: x.#y if and only if xx~! = yy~! and
xlx = y‘ly (see [35, Section 3.2, p. 82]), we have that

($)¥(s HY = (ss )Y =557} and (s"HY¥ ()Y = (s 1s)¥ =57 15,

and hence (s)¥.#s. Since S is a combinatorial inverse semigroup, (s)¥ = s. O
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For any positive integer i by (i) we denote the identity map of the set IN'\ {i}. It is obvious
that ¢(i) € E(IINw ) for any positive integer i.

Lemma 2. Let S be a full inverse submonoid of fof (N) and ®: S — S be an automorphism.
Then (e(1))® = ¢(1).

Proof. Since ®: S — S is an automorphism, (I)® = I. Suppose to the contrary that (e(1))® #
g(1). Since the restriction ®[gsy\ 1y E(S) \ {I} — E(S) \ {I} of the automorphism & onto
E(S) \ {I'} is an automorphism, there exist (not necessary distinct) idempotents ,v € S\
{IL e(1) } such that (¢(1))® = v, (1)® = ¢(1) and [N \ domv| = |IN \ dom| = 1.

We shall show that 1 € dom ¢ Nran ¢ and moreover (1)¢ = 1 for any ¢ € ((a)®, (B)D).
Our assumption implies that (1)) = pa and hence

D)(B)® =1 = (1)(f)¥ = (1)) = (1)1 = 1.

This implies that 1 € dom(a)® and 1 € dom(B)®P. If (1)(B)P # 1, then the monotonicity of B
implies that 1 ¢ dom(a)®, and hence 1 ¢ dom(ap)® = IN, a contradiction. Since « is inverse
of B in S, the equality (1)(B)® = 1 implies that 1 = (1)(Ba)® = ((1)(B)P)(x)¥ = (1)(a)D.
This implies that (1)(B'a/)® = 1 for all non-negative integers i and ;.

By Remark 1, («, B) is a submonoid of I (IN) which is isomorphic to the bicyclic monoid,
and since ®: S — S is an automorphism, ((«)®, (B)P) is isomorphic to the bicyclic monoid,
too. By Lemma 2.6 of [29] for every idempotent ¢ € .75 (IN) there exists a positive integer
such that ¢ - f"a" = p"a" for any positive integer n > n.. Then there exists a positive integer
n, such that ("a" = f"a" and hence (1f"a")® = (f"a")P for all n > n,. Since (1)® = fa we
have that (1"a™)® = (1)®(p"a")D = ¢(1)(B"a")® and hence 1 ¢ dom Ba for all n > n,. This
contradicts the previous part of the proof. The obtained contradiction implies the statement of
the lemma. O

Lemma 3. Let S be a full inverse submonoid of fof (N) and ®: S — S be an automorphism.
Then (B'a/)® = Bia/ for all non-negative integers i and j.

Proof. By Lemma 2, (Ba)® = (¢(1))® = ¢(1) = pa and since (I)® = I, we have that
(B)P(a)® = pa and (0)®(B)® =1

By Proposition 2.1(iii) from [29] the semigroup .#% (IN) is combinatorial and hence S is com-
binatorial, too. Then the arguments presented in the proof of Lemma 1 imply that (8)® = B
and («)® = a. Therefore we get

(Ba)® = (B)0(a) = ((B)®) ((2)®) = p'o/
for all non-negative integers i and ;. ]

Lemma 4. Let S be a full inverse submonoid of fof (N) and ®: S — S be an automorphism.
Then (¢)® = ¢ for each idempotent ¢ € S.

Proof. Since the restriction ®|g(g)\ qry: E(S) \ {I} — E(S) \ {I} of ® onto E(S) \ {II} is an
automorphism, the equality (1)® = v for ,v € E(S) \ {I,¢(1)} implies that [N \ domv| =
|IN \ dom|. Fix so elements 1, v € E(S) \ {I,&(1)} with [N\ domv| = [N\ dom(| = 1. Then
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there exist positive integers k and ! such that v = e(k) and ¢ = ¢(I). Suppose to the contrary
thatt # v. If k > | > 1 then,

Bla' = (Ba")® = (Bla’ - e(1))® = pla’ - (e(1))@ = B'a’ - (e(1))® = pla’ - e(k) # p'a
Ifl > k> 1, then

it = (pfa) @™ = (B'a" (k)@ = prat - (e(k)) @7
= pa - (e(k) @71 = Brat (1) # prat.
The obtained contradictions and Lemma 3 imply that (1)® = ¢ for every : € E(S) with
N\ dom:| = 1.
By Proposition 2.1 of [29] for every idempotent ¢ & IL (IN) there exists a finite subset

{ny, ..., ny} of positive integers such that ¢ is the identity map of N \ {ny, ..., n;}. This implies
that e = e(nq) - - - €(ny). Hence we get that

(&)@ = (e(m1) -~ - e(11g) )P = (e(m))® - -+ (e(e) )P = e(m) - -~ emg) = ¢,
which completes the proof of the lemma. O

It is well known that every automorphism @ of the bicyclic semigroup % (p,q) is trivial.
i.e., @ is the identity map of € (p,q). The following theorem shows that every full inverse
subsemigroup of L (IN) which contains the semigroup % has such property.

Theorem 1. Let S be a full inverse submonoid of .75, (N) which contains the semigroup 6.
Then every automorphism of S is the identity map.

Proof. By Lemma 4 for each automorphism ®: S — S the band E (ff (N)) is the set of fixed
points of ®. By Proposition 2.1 of [29], L (IN) is combinatorial inverse semigroup, and hence
by Proposition 3.2.11 of [35] so is S. Next we apply Lemma 1. O

Theorem 1 implies the following two corollaries.
Corollary 1. Every automorphism of the semigroup N4 (IN) is trivial.
Corollary 2. Every automorphism of the semigroup IIN, is trivial.

Remark 2. By Lemma 1.1 from [15] the band of the monoid 4 (IN) is isomorphic to the free
semilattice (Z«,(w),U). Next we identify IN with w. Then every bijective transformation
of IN extends to an automorphism of the free semilattice (%<, (w),U). This implies that the
monoid .75, (IN) contains a full inverse subsemigroup which has ¢ distinct automorphisms.

An example of a non-group congruence on the semigroup IIN is presented in [32]. Later
we shall establish what submonoids of .75 (N (N) admit only a group non—identity congruence.
For an arbitrary positive integer 19 we denote [ng) = {n € IN: n > ng}. Since the set of all
positive integers is well ordered, the definition of the semigroup .7 4 (IN) implies that for every
n € I P/‘(]N) there exists the smallest positive integer n¢ € doma such that the restriction
alr,a [nd) of the partial map a: N — N onto the set [nd) is an element of the semigroup %y i.e.,

0c|[ 9) is a some partial shift of [nd). For every a € 7 (N) we put @ = oc|[ng), ie.

dom @ = [ng) , (x)@ = (x)a forall xedom @  and ran @ = (dom @) a.
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Also, we put

nd =min{j € N: j € doma} for ac 75 (N),

and
d

ﬁ“:max{jedom(x:j<ng} for ocefoz/(N)\‘gN.
It is obvious that nd < nd when & € e (N) and nd <7 < nd whena € fozf(]N) \ én-
The following theorem is proved in [32].

Theorem 2 ([32, Theorem 9]). Let € be a congruence on the semigroup INe. Then the follow-
ing conditions are equivalent:

(1) € isa group congruence;

(2) there exists a subsemigroup S of N« which is isomorphic to the bicyclic semigroup and
S contains two distinct €-equivalent elements;

(3) every subsemigroup of IIN«, which is isomorphic to the bicyclic semigroup, has two
distinct €-equivalent elements.

The following lemma completes the statements of Theorem 2.

Lemma 5. Let € be a congruence on the semigroup IN, ¢ € E(éN),t € E(IN&) \ E(éN) and
t < e. Then €€ implies that € is a group congruence on IINc.

Proof. The assumptions of the lemma imply that n < nd. Put €parr: N —~Nandeq: N —

N are identity maps of the sets [nf! +-1) and [n{), respectively. It is obvious that e,q ,1,€,4 €
E(éN),

€pd = EpdEpd g =& L= Epa g1 and €pdy1 = Epdyq " &

and hence ¢ 4 ;C¢, 4. Then Theorem 2 and Corollary 1.32 [16] imply that € is a group congru-
ence on INe. 0

Definition 1. Put I]N(%] = {(x € ﬂof (IN): the restriction a|y o\ {nd} is a partial isometry ole}.

It is obvious that I]Ng is an inverse submonoid of the inverse monoid fof (N), INy is an
inverse submonoid of IN& and E(IN) = E(I]N(%]) = E(fof (N)) = E(foz/‘(]N)).

Lemma 6. Let S be an inverse subsemigroup of foz/ (N) such that S contains I]Nc%} as a sub-
(1]

monoid. Let € be a congruence on S such that two distinct idempotents ¢ and 1 of INg' are
C-equivalent. Then € is a group congruence on S.

Proof. 1f € and  are idempotents of the subsemigroup ¢ of yAe (N), then the statement of
our lemma follows from Theorem 2. Hence, we assume that at least one of idempotents € and
1 does not belong to ¢ .

We consider two cases: 1) nd = n4; and  2)nd #nd.

Suppose case nd = nd holds. Since ¢ # ¢ without loss of generality we may assume that
there exists a positive integer 7y < nd such that ng € dome \ dom:. Then g = nd — (k +1)
for some positive integer k.
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For every positive integer j < nd — 1 we define a partial bijection aj: IN — IN in the follow-
ing way:

domogz{j}U{nGlN:n}nS}, ranocj:{j—l—l}u{neN:n}ng}

and

(n)a; = { n, ifn>nd;

n+1, ifn=j.

Simple verifications show that

pr— _1 .« .. _1 _1 .« ..
‘c’ng—l - ang,Q Xo+1%ng E&nong+1 ang—Z
and
€4 = Aty = o Ly = =a g oot a g e
nd = By g = By 1B Hngtno+1 — -0 — nd—2 ng+1%ng “Anolny+1 nd—2
are identity maps of the sets {n € N: n >nd — 1} and {n € N: n > nd}, respectively, and

hencee,q_; and ¢4 are distinct €-equivalent 1dempotents of the subsemigroup % in .75 4 (N).
By Theorem 2 all 1dempotents of the sebsemigroup IIN,, are €-equivalent, and hence € is a
group congruence on the semigroup S, because E(IN) = E(S) = E(Ix 7 (IN)).

Suppose case nd # nd holds. Without loss of generality we may assume that nd > nd.
Putea ;2 IN — N is the identity map of the set {n € N: n > nd —1}. Simple verifications
show that e, 4 ; = €,4_,€and T = €,4_t are distinct €-equivalent idempotents of the sub-

semigroup %]N in .7 I7(]N). By Theorem 2 all idempotents of the sebsemigroup IIN, are ¢-

equivalent, and hence € is a group congruence on the semigroup S, because E(IN«) = E(S) =

E(Sf (N)). 0
1]

Theorem 3. Let S be an inverse subsemigroup of e (N) such that S contains INg' as a
submonoid. Then every non-identity congruence € on S is a group congruence.

Proof. Let « and 8 be two distinct €-equivalent elements of the semigroup S.
We consider two cases:

(i) a/Bin S;
(ii) « and B belong to distinct two .7#’-classes in S.

Suppose that a.7’B in S. Then Proposition 1.1(ix) of [15] and Proposition 3.2.11 of [35]
imply that doma = domp and rana = ranf, and hence there exists a positive integer
ng € domua such that (ng)a # (n9)B. Let €yy: IN — IN be the identity map of the set
{no}U{n € N: n>mp}, where my € doma is an arbitrary positive integer such that my >
ng + nd. By Proposition 3(i) of [32] and Proposition 3(i) of [15], E(IN«) = E(Fw V(]N)) and
hence ¢,, € E(S ). Since S is an inverse semigroup Proposition 2.3.4 from [35] and a€p imply
that a~1¢B~1, and hence we have that (a~le,,,a)€(B ey, B). Then the definition of ¢,,, implies
that a~le,, 0 and B~ e, B are distinct idempotents of the semigroup S, and hence by Lemma 6,
¢ is a group congruence on S.

If case (ii) holds then at least one of the following conditions holds

wat £ BB or o ta £ BB
Then by Proposition 2.3.4 of [35] the semigroup S has two distinct ¢-equivalent idempotents.
Next we apply Lemma 6. O
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Every inverse semigroup S admits the least group congruence €mg (see [38, Section III]):
$Cmgt if and only if there exists an idempotent e € S such that se = te.
Later we shall describe the least group congruence on any inverse subsemigroup S of
e (IN) such that S contains %}y as a submonoid.
Definitions of inverse semigroups %, e (IN) and the congruence €ng imply the follow-

ing lemma.

Lemma 7. Let S be an inverse subsemigroup of I (N) such that S contains 6\ as a sub-
monoid. Then the following conditions hold:

(i) ochg7 foreverya € S;
(ii) if x and B are elements of S such thatx = « and p = F, then aCmgp if and only if
(n)a = (n)pB for alln € doma N dom B.

Theorem 4. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. Then the quotient semigroup S/€ng is isomorphic to the additive group of integers

Z(+).

Proof. We define a map §: S — Z(+), a — i, in the following way. Put i, = (n)7 -,
where n € dom @. Simple verification implies that so defined map § is correct and it is a
homomorphism. Also, Lemma 7 implies that «€ngf if and only if (a)§ = (B)F fora, p € S. O

Theorems 3 and 4 imply the following corollary.

Corollary 3. Let S be an inverse subsemigroup of I (N) such that S contains I]NL%] as a
submonoid. Then for any non-injective homomorphism §: S — T into an arbitrary semigroup
T there exists a unique homomorphism $): Z(+) — T such that the following diagram

7

Chng
Z(+)

T

commutes.

The semigroups %N, Y4 (N) and 5 (IN) are bisimple (see [16], [29], [15]). But the semi-
group IIN is not bisimple whereas it is simple. A very amazing property about some inverse
subsemigroups of 77 (N) illustrates the following theorem.

Theorem 5. Let S be an inverse subsemigroup of e (N) such that S contains ¢\ as a sub-
monoid. Then S is simple.

Proof. Since « = all = llx for any element « of S, it is sufficient to show that for every p € S
there exist 7y, 6 € S such that y56 = 1.
. . : . L = == —
Fix an arbitrary element 8 in S. Simple verifications show that = = f B~ and B B

is an idempotent of S, where B ~!is inverse of B in S, because B and B ~! are elements of
the sebsemigroup % in S. Next we define a partial maps y: IN — IN in the following way

domy = 1NN, ran’y:{neN:n>n$} and (i)'y:i—l—l—n'jYl for i€ domvy.

Then ’yﬁ(?’l’y*l) =1L O



ON INVERSE SUBMONOIDS OF THE MONOID 305
3 ON SHIFT-CONTINUOUS TOPOLOGIES ON INVERSE SUBSEMIGROUPS OF foz/‘(]N)

A subset A of a topological space X is said to be co-dense in X if X \ A is dense in X.
We recall that a topological space X is said to be:

compact if every open cover of X contains a finite subcover;
countably compact if each closed discrete subspace of X is finite;
feebly compact if each locally finite open cover of X is finite;

pseudocompact if X is Tychonoff and each continuous real-valued function on X is
bounded;

locally compact if each point of X has an open neighbourhood with the compact closure;

Cech-complete if X is Tychonof and there exists a compactifcation cX of X such that the
remainder ¢X \ ¢(X) is an Fy-set in ¢X;

a Baire space if for each sequence Aj, A, ..., A;, ... of nowhere dense subsets of X the
union |J72; A; is a co-dense subset of X.

According to Theorem 3.10.22 of [20], a Tychonoff topological space X is feebly compact if and
only if X is pseudocompact. Also, a Hausdorff topological space X is feebly compact if and
only if every locally finite family of non-empty open subsets of X is finite. Every compact
space is countably compact and every countably compact space is feebly compact (see [4]).
Also, every compact space is locally compact, every locally compact space is Cech-complete,
and every Cech-complete space is a Baire space (see [20]).

By the Eberhart-Selden theorem every Hausdorff semigroup topology on the bicyclic semi-
group is discrete. It is natural to ask: Do there exists non-discrete semigroup topology on the semi-
group INe?

Theorem 6. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. Then every Baire shift-continuous Hausdorff topology T on S is discrete.

Proof. If no point in S is isolated, then since the space (S, T) is Hausdorff, it follows that {a}
is nowhere dense for all « € S. But, if this is the case, then since the semigroup S is countable
it cannot be a Baire space. Hence the space (S, T) contains an isolated point u. If v € S is
arbitrary, then by Theorem 5, there exist a, € Ssuch thata -7y -p = y. The map f: x —
& - X - B is continuous and so the full preimage ({¢})f~! is open. By Proposition 1.2 from [15]
for every a, B € ﬂozf(N), both sets {x € A (N) |a-x=pB}and {x € fozf(lN) | x-a = B}
are finite, and hence the same holds for the subsemigroup S of 75 (IN). This implies that the
set ({u})f~! is finite and since (S, T) is Hausdorff, {7} is open, and hence isolated. O

Since every Cech complete space (and hence every locally compact space) is Baire, Theo-
rem 6 implies Corollary 4.

Corollary 4. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-

monoid. Then every Hausdorff Cech complete (locally compact) shift-continuous topology T
on S is discrete.
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The following example shows that there exists a non-discrete Tychonoff inverse semigroup
topology Ty on the semigroup INe.

Example 1. We define a topology Ty on the semigroup INe as follows. For every a € IIN
we define a family

PBw () = {Uy(F) | F is a finite subset of domua},

where
Uy(F) = {p € INw | domB C domw and (x)B = (x)a forall x € F}.

It is straightforward to verify that {ZBy(«)}
semigroup IINe.

el (Z) forms a basis for a topology Ty on the

Proposition 1. (IN«, Tiy) is a Tychonoff topological inverse semigroup.

Proof. Let « and B be arbitrary elements of the semigroup IINo,. We put v = a - § and let
F = {ny,...,n;} be a finite subset of dom~. We denote m; = (n1)a,...,m; = (n;)a and
ki = (n1)7y,...,ki = (n;)7y. Then we get that (mq1)B = ki, ..., (m;)B = k;. Hence we have that

Ux({n1, ..., ni}) - Ug({my, ..., mi}) S Uy({ny, ..., ni})
and
(Uy({n,oooni}) T C U (T, K}
Therefore the semigroup operation and the inversion are continuous in (IN, T ).

Let N = N U {a} for somea ¢ IN. Then NV with the operation composition is a semigroup
and the map ¥: INs — NN defined by the formula

@ = {

(x)a, if x € domu;
a, if x ¢ doma

is a monomorphism. Hence NV is a topological semigroup with the product topology if N has
the discrete topology. Obviously, this topology generates topology Tty on IINe. Therefore by
Theorem 2.3.11 from [20] topological space N¥ is Tychonoff and hence by Theorem 2.1.6 from
[20] so is (INe, Tyy). This completes the proof of the proposition. O

Theorem 7. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. Let T be a Ty semitopological semigroup which contains S as a dense discrete sub-
semigroup. If = T\ S # @ then I is an ideal of T.

Proof. By Lemma 3 [31], S is an open subspace of the topological space T.

Fix an arbitrary elementy € I. If x-y = z € I for some x € S then there exists an
open neighbourhood U(y) of the point y in the space T such that {x} - U(y) = {z} C S. By
Proposition 1.2 from [15] the open neighbourhood U (y) should contain finitely many elements
of the semigroup S which contradicts our assumption. Hence x -y € [ forallx € Sand y € I.
The proof of the statement that - x € [ forall x € Sand y € I is similar.

Suppose to the contrary that x - y = w ¢ I for some x,y € I. Then w € S and the separate
continuity of the semigroup operation in T yields open neighbourhoods U(x) and U(y) of the
points x and y in the space T, respectively, such that {x} - U(y) = {w} and U(x) - {y} = {w}.
Since both neighbourhoods U(x) and U(y) contain infinitely many elements of the semigroup
S, equalities {x}-U(y) = {w} and U(x) - {y} = {w} donothold, because {x}- (U(y) NS) C L.
The obtained contradiction implies that x - y € I. O
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Theorem 7 implies the following corollary.

Corollary 5. Let T be a T1 semitopological semigroup which contains IIN as a dense discrete
submonoid. If | = T \ IN« # &, then I is an ideal of T.

Proposition 2. Let S be an inverse subsemigroup of e (N) such that S contains 6| as a
submonoid. Let T be a Hausdorff topological semigroup which contains S as a dense discrete
subsemigroup. Then for every y € S the set

Dy={(x¢) €SxS|x-¢=7}
is a closed-and-open subset of T x T.

Proof. Since S is a discrete subspace of T by Lemma 3 [31] we have that D,, is an open subset
of T x T.

Suppose that there exists v € S such that D,, is a non-closed subset of T x T. Then there
exists an accumulation point (¢, 8) € T x T of the set D.,. The continuity of the semigroup
operation in T implies that « - = . But S x S is a discrete subspace of T x T and hence by
Theorem 7, the points & and B belong to the ideal I = T\ S and hence w - B € T \ S cannot be
equal to 7. O

Theorem 8. Let S be an inverse subsemigroup of e (N) such that S contains 6| as a sub-
monoid. If a Ty topological semigroup T contains S as a dense discrete subsemigroup then the
square T x T cannot be feebly compact.

Proof. By Proposition 2, for every c € S the square T x T contains an open-and-closed discrete
subspace D.. If we identify the elements of the semigroup 4y with the elements the bicyclic
monoid % (p, q) by anisomorphism h: € (p,q) — én, then the subspace D, contains an infinite
subset

{ (@, () : 1 € No}

and hence the set D, is infinite. This implies that the square S x S is not feebly compact. [

A topological semigroup S is called I'-compact if for every x € S the closure of the set
{x, xZ,x3, .. .} is compact in S (see [33]). The results obtained in [3], [5], [6], [28], [33] imply the
following

Corollary 6. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. If a Hausdorff topological semigroup T satisfies one of the following conditions:

(i) T is compact;

(ii) T is I'-compact;
(iii) T is a countably compact topological inverse semigroup;
(iv) the square T x T is countably compact;

(v) the square T x T is a Tychonoff pseudocompact space,
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then T does not contain the semigroup S and for every homomorphism j: S — T the image
(S)b is a cyclic subgroup of T. Moreover, for every homomorphism y: S — T there exists a
unique homomorphism uy: Z(+) — T such that the following diagram

b

S
Qg“gl %

Z(+)

T

commutes.

Recall [17] that a Bohr compactification of a topological semigroup S is a pair (B, B(S)) such
that B(S) is a compact topological semigroup, f: S — B(S) is a continuous homomorphism,
and if g: S — T is a continuous homomorphism of S into a compact semigroup T, then there
exists a unique continuous homomorphism f: B(S) — T such that the diagram

P B(S)
N

commutes. Then Corollary 6 and Proposition 2 from [2] imply the following:

S

Corollary 7. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. The Bohr compactification of the discrete semigroup S is topologically isomorphic to
the Bohr compactification of discrete group Z(+).
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Y mpalli BUBYArOThCSI iHBEpCHI MiAMOHOIAM MOHOIAA JOZ/ (IN) Marke MOHOTOHHUX iH'€KTMBHIX
KOCKIHUEHHMX YaCTKOBMX MEePeTBOPEeHb MHOXIMHY HaTypaabHux umceA IN. Hexaii V4 (N) — mia-
MOHOIA B .7} (IN), sIKmMit CKAAQAQETBCS 3 KOCKIHUEHHMX MOHOTOHHMX YaCTKOBMX Oi€KITi MHOXMHM
N i ¥n — miaMoHOIA B 75 (N), sxy1 HOPOAXKEHMIT YaCTKOBMM 3CyBOM 1 +— 1 + 1 HaTypaab-
HIIX 9yCeA i AO J10r0 06epHEHMM YacTKOBYMM BipOOpakeHHSIM. AOBeAEHO, III0 KOXKeH aBTOMOPpdi3m
TIOBHOI iHBepCHOI ITiAHAMiBrpyIM MOHOIAA fof (IN), sKv MiCTUTD HaMiBIPYIy 6N € TOTOXHIM Bia-

obpaxeHHsIM. [1o6yArOBaHO MiAHAMIBIPYITY I]N([}o] MOHOIAA fozf (N) 3 TakoK0 BAACTUBICTIO: SIKILIO

[

S — iHBepcHa MiAHaIIBrpyma B JOZ/ (]N), IO MiCTUTH HaMiBrpyIy I]No% , SIK TIIAMOHOIA, TO KOXHa
BiAMiHHa BiA TOTOXHOI KOHTpyeHHist ¢ Ha S € rpynoBoo. AOBeAeHO, SIKIIIO S — iHBepCHa ITiAHAIIiB-
rpymna B 75 (IN), 1o MicTUTh 6N SIK IMAMOHOIA, TO HAIIBIPYIIa S € MPOCTOIO 1 pakTOp-HaIiBrpyIa
5/€mg, Ae Emg — HalIMEHIIIa IPyTIOBa KOHTPYeHIIisl Ha S, i30MOpdpHa aAMTUBHIl FPyYTIi IILAMX UMCeA.
TaxoX AOCAIAXYIOTbCSI TOIOAOTri3alii IHBepCHMX IMiAHAMIBIPYI HaiBIpyIm 75 (N), sk MicTsITD
HaIIBIPYIy %N i 3aHYpeHHS TakMX HaIliBIPYI y 6AM3bKi A0 KOMITAKTHMX TOIOAOTIYHI HalliBrPYIIN.

Kntouosi cniosa i ppasu: iHBepcHa HamiBTpyIIa, i30MeTpist, yacTKOBa OieKIIisl, KOHTpYeHIIis, 6imm-
KAiUHA HamMiBrpyIa, HaliBTOIOAOIIUHA HaMiBrpyIla, TOMOAOTIUHA HAIiBIpyMa, AMCKpeTHa TOIOAO-
rist, 3aHypeHHsI, KoMnakTudikarnis bopa.



