References

  1. Bausov L.I. Linear methods of summation of Fourier series with prescribed rectangular matrices. I. Izv. Vyssh. Uchebn. Zaved. Mat. 1965, 55 (6), 3-17. (in Russian)
  2. Hrabova U.Z. Approximative properties of the threeharmonic Poisson integrals on the H\"older classes. Journal of Automation and Information Sciences 2018, 50 (8), 77-86. doi: 10.1615/jautomatinfscien.v50.i8.70
  3. Hrabova U.Z., Kal'chuk I.V., Stepanyuk T.A. Approximation of functions from the classes $W^{r}_{\beta}H^{\alpha}$ by Weierstrass integrals. Ukrainian Math. J. 2017, 69 (4), 598-608. doi: 10.1007/s11253-017-1383-x
  4. Hrabova U.Z., Kal'chuk I.V., Stepaniuk T.A. Approximative properties of the Weierstrass integrals on the classes $W^{r}_{\beta}H^{\alpha}$. J. Math. Sci. (N.Y.) 2018, 231 (1), 41-47. doi: 10.1007/s10958-018-3804-2
  5. Hrabova U.Z., Kal'chuk I.V., Stepaniuk T.A. On the approximation of the classes $W^r_{\beta}H^{\alpha}$ by biharmonic Poisson integrals. Ukrainian Math. J. 2018, 70 (5), 719-729. doi: 10.1007/s11253-018-1528-6
  6. Kal'chuk I.V. Approximation of $(\psi,\beta)$-differentiable functions defined on the real axix by Weierstrass integrals. Ukrainian Math. J. 2007, 59 (9), 1342-1363. doi: 10.1007/s11253-007-0091-3
  7. Kal'chuk I.V., Kharkevych Yu.I. Complete asymptotics of the approximation of function from the Sobolev classes by the Poisson integrals. Acta Comment. Univ. Tartu. Math. 2018, 22 (1), 23-36. doi: 10.12697/ACUTM.2018.22.03
  8. Kharkevych Yu.I., Kal'chuk I.V. Approximation of $(\psi,\beta)$-differentiable functions by Weierstrass integrals. Ukrainian Math. J. 2007, 59 (7), 1059-1087. doi: 10.1007/s11253-007-0069-1
  9. Kharkevych Yu.I., Pozharska K.V. Asymptotics of approximation of conjugate functions by Poisson integrals. Acta Comment. Univ. Tartu. Math. 2018, 22 (2), 235-243. doi: 10.12697/ACUTM.2018.22.19
  10. Kharkevych Yu.I., Stepanyuk T.A. Approximation properties of Poisson integrals for the classes $C^{\psi}_{\beta}H^{\alpha}$. Math. Notes 2014, 96 (5-6), 1008-1019. doi: 10.1134/S0001434614110406
  11. Kharkevych Yu.I., Zhyhallo T.V. Approximation of functions from the class $\widehat{C}^{\psi}_{\beta,\infty}$ by Poisson biharmonic operators in the uniform metric. Ukrainian Math. J. 2008, 60 (5), 769-798. doi: 10.1007/s11253-008-0093-9
  12. Kharkevych Yu.I., Zhyhallo T.V. Approximation of $(\psi,\beta)$-differentiable functions defined on the real axis by Abel-Poisson operators. Ukrainian Math. J. 2005, 57 (8), 1297-1315. doi: 10.1007/s11253-005-0262-z
  13. Stepanets A.I. Classification and approximation of periodic functions. Kiev: Naukova Dumka, 1987. (in Russian)
  14. Stepanets A.I. Methods of Approximation Theory. Part 1. Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, 2002. (in Russian)
  15. Zhyhallo K.M., Kharkevych Yu.I. Approximation of conjugate differentiable functions by their Abel-Poisson integrals. Ukrainian Math. J. 2009, 61 (1), 86-98. doi: 10.1007/s11253-009-0196-y
  16. Zhyhallo K.M., Kharkevych Yu.I. Approximation of $(\psi,\beta)$-differentiable functions of low smoothness by biharmonic Poisson integrals. Ukrainian Math. J. 2012, 63 (12), 1820-1844. doi: 10.1007/s11253-012-0616-2
  17. Zhyhallo K.M., Kharkevych Yu.I. On the approximation of functions of the Holder class by triharmonic Poisson integrals. Ukrainian Math. J. 2001, 53 (6), 1012-1018. doi: 10.1023/A:1013364321249
  18. Zhyhallo T.V., Kharkevych Yu.I. Approximation of functions from the class $C^{\psi}_{\beta,\infty}$ by Poisson integrals in the uniform metric. Ukrainian Math. J. 2009, 61 (12), 1893-1914. doi: 10.1007/s11253-010-0321-y
  19. Zhyhallo T.V., Kharkevych Yu.I. Approximation of $(\psi,\beta)$-differentiable functions by Poisson integrals in the uniform metric. Ukrainian Math. J. 2009, 61 (11), 1757-1779. doi: 10.1007/s11253-010-0311-0
  20. Zhyhallo T.V., Kharkevych Yu.I. Approximating properties of biharmonic Poisson operators in the clasess $\widehat{L}^{\psi}_{\beta,1}$. Ukrainian Math. J. 2017, 69 (5), 757-765. doi: 10.1007/s11253-017-1393-8