References
-
Bausov L.I.
Linear methods of summation of Fourier series with prescribed rectangular matrices. I.
Izv. Vyssh. Uchebn. Zaved. Mat. 1965, 55 (6), 3-17. (in Russian)
-
Hrabova U.Z.
Approximative properties of the threeharmonic Poisson integrals on the H\"older classes.
Journal of Automation and Information Sciences 2018, 50 (8), 77-86.
doi: 10.1615/jautomatinfscien.v50.i8.70
-
Hrabova U.Z., Kal'chuk I.V., Stepanyuk T.A.
Approximation of functions from the classes $W^{r}_{\beta}H^{\alpha}$ by Weierstrass integrals.
Ukrainian Math. J. 2017, 69 (4), 598-608.
doi: 10.1007/s11253-017-1383-x
-
Hrabova U.Z., Kal'chuk I.V., Stepaniuk T.A.
Approximative properties of the Weierstrass integrals on the classes $W^{r}_{\beta}H^{\alpha}$.
J. Math. Sci. (N.Y.) 2018, 231 (1), 41-47.
doi: 10.1007/s10958-018-3804-2
-
Hrabova U.Z., Kal'chuk I.V., Stepaniuk T.A.
On the approximation of the classes $W^r_{\beta}H^{\alpha}$ by biharmonic Poisson integrals.
Ukrainian Math. J. 2018, 70 (5), 719-729.
doi: 10.1007/s11253-018-1528-6
-
Kal'chuk I.V.
Approximation of $(\psi,\beta)$-differentiable functions defined on the real axix by Weierstrass integrals.
Ukrainian Math. J. 2007, 59 (9), 1342-1363.
doi: 10.1007/s11253-007-0091-3
-
Kal'chuk I.V., Kharkevych Yu.I.
Complete asymptotics of the approximation of function from the Sobolev classes by the Poisson integrals.
Acta Comment. Univ. Tartu. Math. 2018, 22 (1), 23-36.
doi: 10.12697/ACUTM.2018.22.03
-
Kharkevych Yu.I., Kal'chuk I.V.
Approximation of $(\psi,\beta)$-differentiable functions by Weierstrass integrals.
Ukrainian Math. J. 2007, 59 (7), 1059-1087.
doi: 10.1007/s11253-007-0069-1
-
Kharkevych Yu.I., Pozharska K.V.
Asymptotics of approximation of conjugate functions by Poisson integrals.
Acta Comment. Univ. Tartu. Math. 2018, 22 (2), 235-243.
doi: 10.12697/ACUTM.2018.22.19
-
Kharkevych Yu.I., Stepanyuk T.A.
Approximation properties of Poisson integrals for the classes $C^{\psi}_{\beta}H^{\alpha}$.
Math. Notes 2014, 96 (5-6), 1008-1019.
doi: 10.1134/S0001434614110406
-
Kharkevych Yu.I., Zhyhallo T.V.
Approximation of functions from the class $\widehat{C}^{\psi}_{\beta,\infty}$ by Poisson biharmonic operators in the uniform metric.
Ukrainian Math. J. 2008, 60 (5), 769-798.
doi: 10.1007/s11253-008-0093-9
-
Kharkevych Yu.I., Zhyhallo T.V.
Approximation of $(\psi,\beta)$-differentiable functions defined on the real axis by Abel-Poisson operators.
Ukrainian Math. J. 2005, 57 (8), 1297-1315.
doi: 10.1007/s11253-005-0262-z
-
Stepanets A.I.
Classification and approximation of periodic functions.
Kiev: Naukova Dumka, 1987. (in Russian)
-
Stepanets A.I.
Methods of Approximation Theory. Part 1.
Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, 2002. (in Russian)
-
Zhyhallo K.M., Kharkevych Yu.I.
Approximation of conjugate differentiable functions by their Abel-Poisson integrals.
Ukrainian Math. J. 2009, 61 (1), 86-98.
doi: 10.1007/s11253-009-0196-y
-
Zhyhallo K.M., Kharkevych Yu.I.
Approximation of $(\psi,\beta)$-differentiable functions of low smoothness by biharmonic Poisson integrals.
Ukrainian Math. J. 2012, 63 (12), 1820-1844.
doi: 10.1007/s11253-012-0616-2
-
Zhyhallo K.M., Kharkevych Yu.I.
On the approximation of functions of the Holder class by triharmonic Poisson integrals.
Ukrainian Math. J. 2001, 53 (6), 1012-1018.
doi: 10.1023/A:1013364321249
-
Zhyhallo T.V., Kharkevych Yu.I.
Approximation of functions from the class $C^{\psi}_{\beta,\infty}$ by Poisson integrals in the uniform metric.
Ukrainian Math. J. 2009, 61 (12), 1893-1914.
doi: 10.1007/s11253-010-0321-y
-
Zhyhallo T.V., Kharkevych Yu.I.
Approximation of $(\psi,\beta)$-differentiable functions by Poisson integrals in the uniform metric.
Ukrainian Math. J. 2009, 61 (11), 1757-1779.
doi: 10.1007/s11253-010-0311-0
-
Zhyhallo T.V., Kharkevych Yu.I.
Approximating properties of biharmonic Poisson operators in the clasess $\widehat{L}^{\psi}_{\beta,1}$.
Ukrainian Math. J. 2017, 69 (5), 757-765.
doi: 10.1007/s11253-017-1393-8