ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2019, 11 (2), 335-344 KapmaTcbki MmaTem. my6a. 2019, T.11, Ne2, C.335-344
doi:10.15330/cmp.11.2.335-344

(L)

JAWAD F., KARPENKO H., ZAGORODNYUK A.

ALGEBRAS GENERATED BY SPECIAL SYMMETRIC POLYNOMIALS ON /¢,

Let X be a weighted direct sum of infinity many copies of complex spaces ¢; @ ¢;. We consider
an algebra consisting of polynomials on X which are supersymmetric on each term ¢; @ ¢;. Point
evaluation functionals on such algebra gives us a relation of equivalence ‘~” on X. We investigate the
quotient set X/ ~ and show that under some conditions, it has a real topological algebra structure.
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INTRODUCTION AND PRELIMINARIES

Let X be a complex Banach space and (P,) a family of continuous complex valued polyno-
mials on X. Often, it is interesting to consider algebras of analytic functions on X, generated
by the family of polynomials (see e. g. [6,12,16]). If the family (P,) does not separate points of
X, then the same is true for any function, generated by (Py). So, we have a natural relation of
equivalence on X: z ~ w if and only if Py(z) = Py(w) for every a. If X is finite-dimensional,
then from the Algebraic Geometry is well known that the quotient set X/ ~ is dens in an alge-
braic variety. The same is true for infinite-dimensional case, if the family (P,) is finite [2]. But
in the general case, the situation may be more complicated.

Let S be the group of all permutations on the set of natural numbers IN. A polynomial
P: {1 — Cissaid to be symmetricif P(c(x)) = P(x) for every X € {1 and ¢ € S.Itis known [15]
that polynomials

F(X)= Y« k=12..,
n=1

form an algebraic basis in the algebra of all continuous symmetric polynomials Ps(¢7 ). In other
words, {F;}{> ; are algebraically independent and Ps(¢; ) is the minimal unital algebra contain-
ing {F}7> ;. In [1] it was shown that two vectors with finite supports x,y € /; are equivalent
in the means Fy(x) = Fi(y) for every k, if and only if x = o(y) for some o € S. Some algebraic
operations on ¢1/ ~ which form a semi-ring structure [4] were considered in [5,7]. Composi-
tion operators, associated with these operations, on analytic functions were investigated in [8].
Algebras of analytic functions generated by symmetric polynomials on ¢, were investigated
in[1,3,5-7,13,14].
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Let X = {1 @ ¢1. We represent each element z of X by z = (y|x), x,y € ¢1. Let us consider
polynomials T;,,: X — C,

Tn(z) = Fu(x) — Fu(y) = Z(X;(n — Y-

Polynomials Ty, m € IN are algebraically independent and form an algebraic basis on the
algebra of supersymmetric polynomials on X. In [11] the algebra of supersymmetric polynomials
was investigated and a commutative ring structure on the corresponding quotient set X/ ~
was described.

For a given complex Banach space E with an unconditional basis {e,; } 3> , we denote by ¢ gE)

a Banach space defined by the following way. If x € EgE), then
X = (x(o),x(l), oo ), (1)

where each x(") = (xgn), .. .,x,E"), ...) €fyand

[e ]
Z Hx(")Hglen €E with Hxﬂggﬂ = n)”gle”

E
(E)

A polynomial P on ¢, is separately symmetric [10] if for every sequence of permutations on
N, o = (00,01,-.-,0n,...),0n € Swe have P(c(x)) = P((ro(x(o)),...,Un(x(”)),...) = P(x) for

all x € ZgE). Polynomials
Flx) =Y )y, jezy, meN

are separately symmetric and algebraically independent.

In this paper we consider a complex Banach space X which is a weighted direct sum of
infinity copies of /1 @ ¢; and polynomials which are supersymmetric on each term of this sum.
We show that under some assumptions, X/ ~ is a real locally convex algebra which contains a
normed subalgebra. This is an extension of results on supersymmetric polynomials, obtained
in [11]. For details about analytic mappings on Banach spaces we refer the reader to [9].

1 THE RING MY

Let w be a positive number, 0 < w < 1. We denote by £y, a “weighted” version of the
space (£. Namely, if x € ¢, then

1,007
x = (x©, 20,y = () e gy
and

]l = llx[le , = max (Z w" |3 Hzl,sup 2" I) :

We denote by A{’ the direct sum of two copies of £¢’
will be denoted by (y]x) y ey

Toor AT = €1 @ {7 - Elements of AY
x € 4y, and || (y|x )l = 1Yl + llx[[ee_ - In other words,

1,007
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any element z € A“ can be represented as

y,(co) .ygo) | xgo) .x,EO).
z=(ylx) = n " n n
...y](()...yg) | xg). .x,E)
| .
or o o o
=L Y+ L Y e, @)
n=0k=1 n=0k=1
where
0...0 | 0...0..
e =1 0.0 ] 0..0x"0...
0.0 | 0...0..
|
and
.0...0 ] 0...0
yMe M) = 0y 0...0 | 0...0..
.0...0 | 0...0..

Note that the expansion (2) is formal, that is, the series on the right is not convergent in general.
We denote by A" and A{'~ subspaces {(0[x): x € ¢} and {(y[0): y € £} respec-

tively. If z = (y|x) we will use also notations z; = x and z_ = y when it will be convenient.
Let us define the following polynomials on A{’

Ty (y]x) = Z ")) _ Z w"F,gqn)(y(")
e Q
n
Z Z Z w" Z(yk )", (y|x) € AY.
n=0 k=1 n=0 k=1
Proposition 1. For every m € IN the polynomial Ty is continuous on A{’ and || T, || = 1.

Proof. Let [|(y]x)]| < 1. Then [ly]le + [|x]le < 1, and |x{"| < 1and [y{"| < 1forallk € N
and n € Z4. Thus

Tl < Lo L (17" + ") < B o L (7] i) < 1l
n=0 k=1 n=0 k=1
So || T|| < 1. Let now (y|x) be such that y = 0, x(©) = (1,0,0,...), x(") = 0 for n > 0. Then

|(y|x)|| = 1and T, (y|x) = 1. Thus || Ty || = 1. O

Definition 1. Let us say that a polynomial P: Ay — C is w-supersymmetric if it is an algebraic
combination of polynomials Ty, m € IN. We denote by Py’ = P’ (AY’) the algebra of all w-
supersymmetric polynomials on AY’ .
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Theorem 1. Let w = 1/N for some N € IN, N > 1. For every number a € R there exists
z(qy € AY such that

2 = la| ifla| > 1
{a} 1 iflal <1

and Ty} (z(,,) = a for every m € IN.

Proof. Leta > 0. Then we can write
v
—= 4
; NG (4)

that is, ap = [a] the integer part of 4 and (0.414; . ..)N is the representation of a — [a] in the
positional base N numeral system. Let z;,} be of the form z;,, = (0]x {a}), Where

v L)
Xy =) x{Z}
n=0

and

0 = (L., 1,0,0,. ) = el el n=012,....

Then for |a| > 1,

HZ{H}llzmaX(ZNn,) Z =Ty (z()) =a, mEN

n

and |[z(g || = 1for |a| < 1.1f a < 0 we can consider b = —a > 0. By the same way, using (4)
for b, we can find the vector x(;,. Let us define now zy,, = (x(4;(0). Then

Iz = w=la|l ifla| >1,
{a} 1 ifla <1,

and T}/ (z(,)) = a for every m € N. O

Let us recall that two operations on ¢; “e” and “¢” which preserve symmetric polynomials
were introduced in [7] and [5]. Namely, let x = (x1,x2,..., %k, ...) and x = (y1,¥2,-- -, Yk, - - -)
are in /1, then

xoy = (X1,Y1,%X,Y2, -, Xy Yr - - -)
and x oy is the resulting sequence of ordering the set {x;y;: i,j € IN} with one single index
in some fixed order. It is easy to check that for every symmetric polynomial P on ¢; and
fixed y € ¢1, polynomials P(x e y) and P(x ¢ y) are symmetric. In [11] these operations were
extended to ¢; @ ¢1 with preserving supersymmetric polynomials. Now we propose natural
extensions of these operations to A{’.

Definition 2. Letz = (z_|zy) andr = (r_|ry) are in AY. We say that h = z er if h =

2" o ") and h(f) = zgf) o r(f) forevery n € Z.. We also say thats = z o r if

s(f) = (z(f)or(ﬁ) ° (z(j) orf_l)) o -0 (zgf) <>r(+0)) ° (z@ <>r(f)) ° (z(j) <>r(f_1)) o -0 (z(f) or(f)))
and
s(,") = (ng)or(,n)) ° (zgrl)or(,n*l)) o -0 (zgf)or(,o)) ° (z@ <>r(+”)) ° (z(}) orgflfl)) o -0 (z(") <>r(+0)).
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Proposition 2. Ty (zer) = Ty (z) + Ty (r) and Ty (zor) = Ty (2) Ty (r) for all z,r € A and
m € IN.

Proof. The first equality directly follows from the definition of T}, (3). Also, in [5] it is proved
that F,(x oy) = Fu(x)Fn(y), x,y € ¢1, m € IN. So, using (3) and Definition 2, we have for
s=zor

T (s) = Ty (zor) Z w”F ) - Z w”F,gf)(s(f)

n=0 j=0 j=0
e} n . n
e (Z FO D) ESD () 4 3 ED (0 ) (_n—n))
n=0 j=0 j=0
e ( E OVESD (D) 1 3 E ) F(nn(r(n])))
=0  \j=0 =0
_ <Z wnFr%n)(z(ﬁ)) y wnFr(nn)(Z”))> (Z w”Fr(nn)(r@) y w”F,Ef)(r”))>
n=0 n=0 n=0 n=0

Corollary 1. Let P(z) € P’. Then, for every fixedr € A{’ polynomials P(zer) and P(zor) are
in Py,

For a given z = (y|x) € A{ we denote z~ = (x|y). Clearly, the map z — z~ is a continuous
involutioninr € A{ and Tj (z7) = —T;. (2).

Let us introduce the following relation of equivalence on A{’. We say that z ~ r if and only

if Ty (z) = Ty (r) for every m € IN. Let us denote by M® the quotient set A{’/ ~ and by [z]
the class of equivalence which contains z.

Proposition 3. The following operations [z| + [r] := [z e 1], [z][r] := [zo7], z,v € A}, of addi-
tion and multiplication are well-defined on M“ x M% and (M%,+, -) is a unital commutative
ring.

Proof. Letz’ € [z] and " € [r]. By Proposition 2 and the definition of the equivalence we have
that for every m € IN,

T (2) + T (r) = T,(2) + T, (r') = T, (2 o ')
and
T (2) Ty (r) = Ty () T (r') = Ty (2 o 7).
So the operations on M® do not depend on representatives. Let [u] = [z|([r] + [s]) and [v] =
[z][r] + [z][s]. Since for every m € IN

T (u) = T (2)(Ty (r) + T (5)) = T (2) Ty (r) + T (2) T (5) = T (0),
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so [u] = [v] and we have the distributive law. Clearly that the associativity and commutativity
of the addition and multiplication can be proved by the same way. Also, —[z] = [z7] and

I= [ego)] is the identity. Thus M is a unital commutative ring. O

Forany A € C and z € M we set A x [z] = [Az]. Since, Tr (Az) = A"T%(z), the operation
“x” is well defined on C x M%. But (M%, 4, x) is not a linear space. Indeed, if z € A{’ and
z # 0, then [z] + [z] = [z @ z] # 2 * [z] because Ty ([z  z]) = 2T (z) but T¥ (2z) = ZmT“’( ).

2 OPERATORS AND SEMINORMS ON M1/N

For a given z = (y|x) € A{’, we denote by supp z the support of z, that is, the following pair
of sets of indexes

suppz = ({i e N,j € Zy: y £ 0}, {ke N,n e Z,: 2" £0}).
Let us define the following maps on A%/ N,

5;(’1/”1) (z) = (z — x}({”)el((”)) . (xISM)eI((M) o .- o (xlgm)elgm))

Nm—n

and

") = - ye ™) o (1 e, " 00 (e ™)

NI’H*H

4

wherem > nand z = (y|x) € A%/N forsome N € N, N > 1. Letc: N — IN be a permutation.
We denote by S;r @ and S, @ linear operators on Al/ N such that

Si(i)(e,((j)) Ul() K ifi =jand SH )( jE(])) = e,f(j) otherwise,
and ‘ . . ‘ _ _

S;(l)(ek_(z)) = e;((kl)) ifi = jand S;(l)(eki(])) = eki(]) otherwise.

1/N
Al

Lemma 1. Foreveryz = (y|x) € , permutation 0 onIN and m > n we have

2] = [s5(2)] =[5, V(2)] = 17 "™ (2)] = [s; "™ (2)).

Proof. The proof follows from the definitions and direct calculations. O
Proposition 4. Let z = (y|x) € A%/N for some N € IN, N > 1 and z has a finite support.
If [ ] [O] then there is a number ] € IN and a composition S of a finite set of mappings
{S (n.m) } defined above such that
0...0 | 0...0
..0...0 | 0...0... &
S(z) = (V') = U R 3 x e+ Z ve 6
/A T I S =
...0...0 | 0...0
|

and x;((j ) = y;((j ) for every k € IN.
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Proof. Let j be a minimal number such that x]((j ) = 0and y,((j ) for every k € IN. Using a finite

+(n,m)

number of mappings S,
So, for every m € IN

and Lemma 1 we can find 2’ = (v/|x’), 2/ ~ z which satisfies (5).

i @;{(;‘))’“ _ i (x;jf))m.

1
From [1] it follows that vectors <y;<(j )) . and < i
(/)

)k coincide up to a permutation o of coordi-

‘G _ 0

nates (x1,..., %, ...). So, applying S5/’ to z’ we have x,”’ =,/ for every k € IN. O

Corollary 2. Letz = ( |x) € Al/N forsome N € IN, N > 1, and z has a finite support. Then
there is an element z = (y E4 ) € AN such thatz ~ 7' and 7’ has the following property:
1(7)
i

1fyl #0, thenxk 7éy forallk e IN,n € Z.
Proof. To get a proof it is enough to apply Proposition4tozez'~ = (yex'|xey’). O

Due to Theorem 1, we can introduce an alternative multiplication by real constants in M,
at least for the case w = 1/N, N € N, N > 1.

Theorem 2. Let N € N, N > 1. Then M'/N js a real linear commutative unital algebra with
respect to the operations of addition and multiplication defined in Proposition 3 and the fol-
lowing multiplication by constants:

alz] :== [zgn]lz] = [z 02|, a €ER,
where z(,) is as in Theorem 1.

Proof. Note first that from Theorem 1 and Proposition 2 it follows that for every m € IN,
Ti (z{ay ©2) = aTy/(z). So I = z(yy is the unity in MYN and Z(ay+ar}] = [Z{a}] + [Z{an}],
a1, a2 € R. Thus,

a(z] +[r]) = alz] +alr]  and (a1 +a2)[z] = a1[z] + a2[z],
where a,a;,a, € R and [z], [r] € MVN, O

Let us denote by () the class of functions v: C — C such that the mappings ®,: Ay — AY’
defined by

|
) =@y = | |
|

are well defined and z ~ z’ implies ®,(z) = ®,(z’). Such class is nonempty, for example,

y(t) =t" e Q,meN.

Theorem 3. Lety € Q. Then ®., generates a linear operator ®.,,: MYN — M'/N defined by
Do ([2]) = Py (2).
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Proof. From the definition of () it follows that &DV is well defined. Also, it is clear
337([2] +[r]) = Py(zor) = Dy (z) 0Dy (1) = &)v([z]) + &)7([;/]),

Z,1 € A%/N. Let now z,y = (¥{a}|¥{4)) be as in Theorem 1, that is,

o ay o dp
=L 14", yw=0ifa>0 and yu=) )", xm=0ifa<o,
n=0i=1 n=0i=1
where
> q
— 1
|a| —];) N aj € N

Ifa > 0, then [z(,)][z] = afz], a € R,z = (y|x) € AN and

D@ (21 02) = Py ((z0...02)0e; '0...0(z0.. . 0z)0e 0. )

= (Dy(z)0...0D,(2)) 0cV ..o (Dy(z)e...00,(2) ) 0el 0. = 20y 0 D, (2).

[\ /

ap an

If a < 0, we have to replace eg") by e;("), n € Zi.So ®,(alz]) = ad,([z]). Therefore, ®, isa
linear operator. O

Let us denote 7, ([z]) = T N(z), [z2] € MYN, m € N. Clearly, 7, are complex valued
real-linear and multiplicative functions, that is, 7, are homomorphisms from M/N o C. By
the definition of M!/N we have that functionals T,: m € IN separate points of M/N. Let
us denote by z = ®,(z), where y(f) = f is the complex conjugate of t. It is easy to check

that 7, ([z]) = ©u([z]) and so (t) = f belongs to Q. So [z] — T,([2]) is a complex valued
functional for every m € IN. Thus T, + Ty, and —i(T, — Tp) are real valued linear functionals
on M/N,

Corollary 3. Ify € Q is multiplicative, then ®., is an algebra homomorphism.

Proof. Let [z],[r] € MYN,

(ool e ] [o o luNe o]

2= 5 5 5 5

n=0 k:l n=0 k:].
and

r= X:Okzlrgfk)e,((") +) Zr(_rllge,:(”).
n=0k=

n=0k=1
Since @, (z(f]ze,((n)) =75 (zgfk))el((n), we have
n) +(n i) £(j n) (j)\ x(n +
0 (L o) = e o0

k,i € N,n,j € Z.From the linearity and multiplicativity of 7 it follows
T (o ([2])) T (B3 ([1])) = Te (P ([2]) D ([1])) = Ton (@ ([2][1]))

Since it is true for every m, we have

&, ([2)) @y ([r]) = &4 ([2][r])
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Proposition 5. Let v € Q) and y(0) = 0. Then the following formula defines a seminorm on

MU/N;
i) = ik 3 5 & (1) + )

Proof. Since the infimum is taken over all representations (y|x) € [z], the norm is well defined.
It is easy to check that p, is nonnegative and satisfies the triangle inequality and is homoge-
neous. U

Definition 3. Let us define the following seminorms on M'/N:

pu([2]) = o ([2]) for yn(t) = £",

It is clear that |7 ([z])| < pm([2]), 2] € MY/N and so, if [z] # 0, then there is m € N such
that py ([z]) > 0.

Let us denote (MY, (p,,)) the linear space M!/N endowed with the projective topology,
generated by seminorms (p,,). So we have the following proposition.

Proposition 6. The space (MY, (p,,)) is a locally convex metrisable topological vector space
and each functional T, is continuous on (./\/ll/ N, (pm))

Let us denote by D the following subset of M1/N:
D= {u e MYN. thereis z € u such that ‘zlgn)‘ <l,ne”Z,ke ]N}.

Theorem 4. D is a subalgebra in M'/N and the restriction of the topology of (MN, (p,)) to
D is generated by a norm on D.

Proof. From the definition of addition and multiplication in M!/N it follows that u +v € D
and uv € D forallu,v € D. Also, forevery a € R, [z(,,] € D and so au = [z(,,]u € D. Hence,
D is a subalgebra in M!/N_ Note that for every u € D and m € N, py(u) < p1(u). Also, py is
anorm on D. Indeed, if u # 0, then there is m € N such that 7, (1) # 0. So

07 |Tu(u)| < pm(u) < pr(u).

So (D, p1) is a normed space and all p,, are continuous with respect to p;. So the restriction of
topology of (M'N (p,)) to D coincides with the norm topology of (D, p1). O
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Hexait X — 3BakeHa mpsiMa CyMa HeCKiHYEHHOI KiABKOCTi KOIIJ KOMIIA€KCHOTO IIPOCTOPY
{1 @ ¢1. Myt posrasiaaeMo aATebpy, sika CKAAAAETHCS 3 TIOAIHOMIB Ha X, KOTpi € CyIepCMeTpUIHN-
MU Ha KOXHOMY AOAaHKY ¢ @ ¢1. yHKIIOHaAM 3HaUeHb B TOUKaX Ha IIilf aATeOpi 3aAal0Th BiAHO-
IIIeHHST eKBiBaAeHTHOCTi ‘~’ Ha X. Y poboTi AocAiaXkeHO dpakTop-MHOXMHY X/ ~ i MoKas3aHoO, 1o
3a AeSIKMX YMOB Ha ILIilf MHOXMHI € CTPYKTypa AiliCHOI TOIIOAOTiUHOI aATeOpIL.

Kntouosi cosa i ppasu: cMeTpuUHi i cymepcuMeTpuyHi TOAIHOMM Ha 6aHaXOBMX IMPOCTOPaXx, aA-
rebpy aHaAITHUHMX (PYHKIIIN Ha 6aHAXOBMX MPOCTOpaX, CIIEKTPY aArebp aHaAITHIHMX (PyHKIII.



