doi:10.15330/cmp.11.2.335-344

http://www.journals.pnu.edu.ua/index.php/cmp Карпатські матем. публ. 2019, Т.11, №2, С.335-344

JAWAD F., KARPENKO H., ZAGORODNYUK A.

ALGEBRAS GENERATED BY SPECIAL SYMMETRIC POLYNOMIALS ON ℓ_1

Let *X* be a weighted direct sum of infinity many copies of complex spaces $\ell_1 \oplus \ell_1$. We consider an algebra consisting of polynomials on X which are supersymmetric on each term $\ell_1 \oplus \ell_1$. Point evaluation functionals on such algebra gives us a relation of equivalence ' \sim ' on X. We investigate the quotient set X/\sim and show that under some conditions, it has a real topological algebra structure.

Key words and phrases: symmetric and supersymmetric polynomials on Banach spaces, algebras of analytic functions on Banach spaces, spectra algebras of analytic functions.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: farah.jawad@yahoo.com(Jawad F.), ganna.karpenko@gmail.com(Karpenko H.), azagorodn@gmail.com(Zagorodnyuk A.)

INTRODUCTION AND PRELIMINARIES

Let X be a complex Banach space and (P_{α}) a family of continuous complex valued polynomials on X. Often, it is interesting to consider algebras of analytic functions on X, generated by the family of polynomials (see e. g. [6, 12, 16]). If the family (P_{α}) does not separate points of X, then the same is true for any function, generated by (P_{α}) . So, we have a natural relation of equivalence on X: $z \sim w$ if and only if $P_{\alpha}(z) = P_{\alpha}(w)$ for every α . If X is finite-dimensional, then from the Algebraic Geometry is well known that the quotient set X/\sim is dens in an algebraic variety. The same is true for infinite-dimensional case, if the family (P_{α}) is finite [2]. But in the general case, the situation may be more complicated.

Let S be the group of all permutations on the set of natural numbers N. A polynomial $P: \ell_1 \to \mathbb{C}$ is said to be *symmetric* if $P(\sigma(x)) = P(x)$ for every $X \in \ell_1$ and $\sigma \in S$. It is known [15] that polynomials

$$F_k(X) = \sum_{n=1}^{\infty} x_n^k, \quad k = 1, 2, \dots,$$

form an algebraic basis in the algebra of all continuous symmetric polynomials $\mathcal{P}_s(\ell_1)$. In other words, $\{F_k\}_{k=1}^{\infty}$ are algebraically independent and $\mathcal{P}_s(\ell_1)$ is the minimal unital algebra containing $\{F_k\}_{k=1}^{\infty}$. In [1] it was shown that two vectors with finite supports $x, y \in \ell_1$ are equivalent in the means $F_k(x) = F_k(y)$ for every k, if and only if $x = \sigma(y)$ for some $\sigma \in S$. Some algebraic operations on ℓ_1/\sim which form a semi-ring structure [4] were considered in [5,7]. Composition operators, associated with these operations, on analytic functions were investigated in [8]. Algebras of analytic functions generated by symmetric polynomials on ℓ_p were investigated in [1, 3, 5–7, 13, 14].

УДК 517.98

2010 Mathematics Subject Classification: 46J15, 46J20.

The work was partially supported by Ministry of Education and Science of Ukraine Grant 0119U100063

Let $X = \ell_1 \oplus \ell_1$. We represent each element z of X by z = (y|x), $x, y \in \ell_1$. Let us consider polynomials $T_m \colon X \to \mathbb{C}$,

$$T_m(z) = F_m(x) - F_m(y) = \sum_{k=1}^{\infty} (x_k^m - y_k^m).$$

Polynomials T_m , $m \in \mathbb{N}$ are algebraically independent and form an algebraic basis on the algebra of *supersymmetric* polynomials on X. In [11] the algebra of supersymmetric polynomials was investigated and a commutative ring structure on the corresponding quotient set X/\sim was described.

For a given complex Banach space E with an unconditional basis $\{e_n\}_{n=0}^{\infty}$ we denote by $\ell_1^{(E)}$ a Banach space defined by the following way. If $x \in \ell_1^{(E)}$, then

$$x = (x^{(0)}, x^{(1)}, \dots, x^{(n)}, \dots),$$
 (1)

where each $x^{(n)} = (x_1^{(n)}, \dots, x_k^{(n)}, \dots) \in \ell_1$ and

$$\sum_{n=0}^{\infty} \|x^{(n)}\|_{\ell_1} e_n \in E \quad \text{with} \quad \|x\|_{\ell_1^{(E)}} = \left\|\sum_{n=0}^{\infty} \|x^{(n)}\|_{\ell_1} e_n\right\|_{E}.$$

A polynomial P on $\ell_1^{(E)}$ is *separately symmetric* [10] if for every sequence of permutations on \mathbb{N} , $\sigma = (\sigma_0, \sigma_1, \ldots, \sigma_n, \ldots)$, $\sigma_n \in S$ we have $P(\sigma(x)) = P(\sigma_0(x^{(0)}), \ldots, \sigma_n(x^{(n)}), \ldots) = P(x)$ for all $x \in \ell_1^{(E)}$. Polynomials

$$F_m^{(j)}(x) = \sum_{k=1}^{\infty} (x_k^{(j)})^m, \quad j \in \mathbb{Z}_+, \quad m \in \mathbb{N}$$

are separately symmetric and algebraically independent.

In this paper we consider a complex Banach space X which is a weighted direct sum of infinity copies of $\ell_1 \oplus \ell_1$ and polynomials which are supersymmetric on each term of this sum. We show that under some assumptions, X/\sim is a real locally convex algebra which contains a normed subalgebra. This is an extension of results on supersymmetric polynomials, obtained in [11]. For details about analytic mappings on Banach spaces we refer the reader to [9].

1 The ring \mathcal{M}^{ω}

Let ω be a positive number, $0 < \omega \le 1$. We denote by $\ell_{1,\infty}^{\omega}$ a "weighted" version of the space ℓ_1^E . Namely, if $x \in \ell_{1,\infty}^{\omega}$, then

$$x = (x^{(0)}, x^{(1)}, \dots, x^{(n)}, \dots), \quad x^{(n)} = (x_k^{(n)}) \in \ell_1$$

and

$$||x|| = ||x||_{\ell_{1,\infty}^{\omega}} = \max\left(\sum_{n=1}^{\infty} \omega^n ||x^{(n)}||_{\ell_1}, \sup_{n,k} |x_k^{(n)}|\right).$$

We denote by Λ_1^ω the direct sum of two copies of $\ell_{1,\infty}^\omega$, $\Lambda_1^\omega = \ell_{1,\infty}^\omega \oplus \ell_{1,\infty}^\omega$. Elements of Λ_1^ω will be denoted by (y|x), $y \in \ell_{1,\infty}^\omega$, $x \in \ell_{1,\infty}^\omega$ and $\|(y|x)\| = \|y\|_{\ell_{1,\infty}^\omega} + \|x\|_{\ell_{1,\infty}^\omega}$. In other words,

any element $z \in \Lambda^{\omega}$ can be represented as

$$z = (y|x) = \begin{pmatrix} \dots y_k^{(0)} \dots y_1^{(0)} & | & x_1^{(0)} \dots x_k^{(0)} \dots \\ \dots & | & \dots & | & \dots \\ \dots y_k^{(n)} \dots y_1^{(n)} & | & x_1^{(n)} \dots x_k^{(n)} \dots \\ \dots & | & \dots & | & \dots \end{pmatrix}$$

or

$$z = \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} x_k^{(n)} e_k^{(n)} + \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} y_k^{(n)} e_k^{-(n)},$$
 (2)

where

$$x_k^{(n)} e_k^{(n)} = \begin{pmatrix} \dots 0 \dots 0 & | & 0 \dots 0 \dots \\ \dots & | & \dots \\ \dots 0 \dots 0 & | & 0 \dots 0 x_k^{(n)} 0 \dots \\ \dots 0 \dots 0 & | & 0 \dots 0 \dots \end{pmatrix}$$

and

$$y_k^{(n)} e_k^{-(n)} = \begin{pmatrix} \dots 0 \dots 0 & | & 0 \dots 0 \dots \\ \dots & | & \dots & | & \dots \\ \dots 0 & y_k^{(n)} & 0 \dots 0 & | & 0 \dots 0 \dots \\ \dots 0 \dots 0 & | & 0 \dots 0 \dots \end{pmatrix}.$$

Note that the expansion (2) is formal, that is, the series on the right is not convergent in general. We denote by $\Lambda_1^{\omega+}$ and $\Lambda_1^{\omega-}$ subspaces $\{(0|x)\colon x\in\ell_{1,\infty}^\omega\}$ and $\{(y|0)\colon y\in\ell_{1,\infty}^\omega\}$ respectively. If z=(y|x) we will use also notations $z_+=x$ and $z_-=y$ when it will be convenient. Let us define the following polynomials on Λ_1^ω

$$T_{m}^{\omega}(y|x) = \sum_{n=0}^{\infty} \omega^{n} F_{m}^{(n)}(x^{(n)}) - \sum_{n=0}^{\infty} \omega^{n} F_{m}^{(n)}(y^{(n)})$$

$$= \sum_{n=0}^{\infty} \omega^{n} \sum_{k=1}^{\infty} (x_{k}^{(n)})^{m} - \sum_{n=0}^{\infty} \omega^{n} \sum_{k=1}^{\infty} (y_{k}^{(n)})^{m}, \qquad (y|x) \in \Lambda_{1}^{\omega}.$$
(3)

Proposition 1. For every $m \in \mathbb{N}$ the polynomial T_m^{ω} is continuous on Λ_1^{ω} and $||T_m|| = 1$.

Proof. Let $||(y|x)|| \le 1$. Then $||y||_{\ell_1^{\omega}} + ||x||_{\ell_1^{\omega}} \le 1$, and $|x_k^{(n)}| \le 1$ and $|y_k^{(n)}| \le 1$ for all $k \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. Thus

$$|T_m^{\omega}(x)| \leq \sum_{n=0}^{\infty} \omega^n \sum_{k=1}^{\infty} \left(\left| x_k^{(n)} \right|^m + \left| y_k^{(n)} \right|^m \right) \leq \sum_{n=0}^{\infty} \omega^n \sum_{k=1}^{\infty} \left(\left| x_k^{(n)} \right| + \left| y_k^{(n)} \right| \right) \leq \|(y|x)\|.$$

So $||T_m|| \le 1$. Let now (y|x) be such that y = 0, $x^{(0)} = (1, 0, 0, ...)$, $x^{(n)} = 0$ for n > 0. Then ||(y|x)|| = 1 and $T_m(y|x) = 1$. Thus $||T_m|| = 1$.

Definition 1. Let us say that a polynomial $P: \Lambda_1^{\omega} \to \mathbb{C}$ is ω -supersymmetric if it is an algebraic combination of polynomials T_m^{ω} , $m \in \mathbb{N}$. We denote by $\mathcal{P}_s^{\omega} = \mathcal{P}_s^{\omega}(\Lambda_1^{\omega})$ the algebra of all ω -supersymmetric polynomials on Λ_1^{ω} .

Theorem 1. Let $\omega = 1/N$ for some $N \in \mathbb{N}$, N > 1. For every number $a \in \mathbb{R}$ there exists $z_{\{a\}} \in \Lambda_1^{\omega}$ such that

$$||z_{\{a\}}|| = \begin{cases} |a| & \text{if } |a| \ge 1\\ 1 & \text{if } |a| < 1 \end{cases}$$

and $T_m^{\omega}(z_{\{a\}}) = a$ for every $m \in \mathbb{N}$.

Proof. Let a > 0. Then we can write

$$a = \sum_{j=0}^{\infty} \frac{a_j}{N^j}, \quad a_j \in \mathbb{N}, \tag{4}$$

that is, $a_0 = [a]$ the integer part of a and $(0.a_1a_2...)_N$ is the representation of a - [a] in the positional base N numeral system. Let $z_{\{a\}}$ be of the form $z_{\{a\}} = (0|x_{\{a\}})$, where

$$x_{\{a\}} = \sum_{n=0}^{\infty} x_{\{a\}}^{(n)}$$

and

$$x_{\{a\}}^{(n)} = (\underbrace{1,\ldots,1}_{a_n},0,0,\ldots) = e_1^{(n)} + e_2^{(n)} + \cdots + e_{a_n}^{(n)}, \quad n = 0,1,2,\ldots.$$

Then for $|a| \ge 1$,

$$||z_{\{a\}}|| = \max\left(\sum_{n=0}^{\infty} \frac{a_n}{N^n}, 1\right) = \sum_{n=0}^{\infty} \frac{a_n}{N^n} = T_m^{\omega}(z_{\{a\}}) = a, \quad m \in \mathbb{N}$$

and $||z_{\{a\}}|| = 1$ for |a| < 1. If a < 0 we can consider b = -a > 0. By the same way, using (4) for b, we can find the vector $x_{\{b\}}$. Let us define now $z_{\{a\}} = (x_{\{b\}}|0)$. Then

$$||z_{\{a\}}|| = \begin{cases} \mu = |a| & \text{if } |a| \ge 1, \\ 1 & \text{if } |a| < 1, \end{cases}$$

and $T_m^{\omega}(z_{\{a\}}) = a$ for every $m \in \mathbb{N}$.

Let us recall that two operations on ℓ_1 " \bullet " and " \diamond " which preserve symmetric polynomials were introduced in [7] and [5]. Namely, let $x = (x_1, x_2, ..., x_k, ...)$ and $x = (y_1, y_2, ..., y_k, ...)$ are in ℓ_1 , then

$$x \bullet y = (x_1, y_1, x_2, y_2, \ldots, x_k, y_k, \ldots)$$

and $x \diamond y$ is the resulting sequence of ordering the set $\{x_i y_j : i, j \in \mathbb{N}\}$ with one single index in some fixed order. It is easy to check that for every symmetric polynomial P on ℓ_1 and fixed $y \in \ell_1$, polynomials $P(x \bullet y)$ and $P(x \diamond y)$ are symmetric. In [11] these operations were extended to $\ell_1 \oplus \ell_1$ with preserving supersymmetric polynomials. Now we propose natural extensions of these operations to Λ_1^ω .

Definition 2. Let $z=(z_-|z_+)$ and $r=(r_-|r_+)$ are in Λ_1^{ω} . We say that $h=z \bullet r$ if $h_-^{(n)}=z_-^{(n)} \bullet r_-^{(n)}$ and $h_+^{(n)}=z_+^{(n)} \bullet r_+^{(n)}$ for every $n \in \mathbb{Z}_+$. We also say that $s=z \diamond r$ if

$$s_{+}^{(n)} = (z_{+}^{(0)} \diamond r_{+}^{(n)}) \bullet (z_{+}^{(1)} \diamond r_{+}^{(n-1)}) \bullet \cdots \bullet (z_{+}^{(n)} \diamond r_{+}^{(0)}) \bullet (z_{-}^{(0)} \diamond r_{-}^{(n)}) \bullet (z_{-}^{(1)} \diamond r_{-}^{(n-1)}) \bullet \cdots \bullet (z_{-}^{(n)} \diamond r_{-}^{(0)})$$

and

$$s_{-}^{(n)} = (z_{+}^{(0)} \diamond r_{-}^{(n)}) \bullet (z_{+}^{(1)} \diamond r_{-}^{(n-1)}) \bullet \cdots \bullet (z_{+}^{(n)} \diamond r_{-}^{(0)}) \bullet (z_{-}^{(0)} \diamond r_{+}^{(n)}) \bullet (z_{-}^{(1)} \diamond r_{+}^{(n-1)}) \bullet \cdots \bullet (z_{-}^{(n)} \diamond r_{+}^{(0)}).$$

Proposition 2. $T_m^{\omega}(z \bullet r) = T_m^{\omega}(z) + T_m^{\omega}(r)$ and $T_m^{\omega}(z \diamond r) = T_m^{\omega}(z)T_m^{\omega}(r)$ for all $z, r \in \Lambda_1^{\omega}$ and $m \in \mathbb{N}$.

Proof. The first equality directly follows from the definition of T_m^{ω} (3). Also, in [5] it is proved that $F_m(x \diamond y) = F_m(x)F_m(y)$, $x, y \in \ell_1$, $m \in \mathbb{N}$. So, using (3) and Definition 2, we have for $s = z \diamond r$

$$\begin{split} T_{m}^{\omega}(s) &= T_{m}^{\omega}(z \diamond r) = \sum_{n=0}^{\infty} \omega^{n} F_{m}^{(n)}(s_{+}^{(n)}) - \sum_{n=0}^{\infty} \omega^{n} F_{m}^{(n)}(s_{-}^{(n)}) \\ &= \sum_{n=0}^{\infty} \omega^{n} \left(\sum_{j=0}^{n} F_{m}^{(n)}(z_{+}^{(j)} \diamond r_{+}^{(n-j)}) + \sum_{j=0}^{n} F_{m}^{(n)}(z_{-}^{(j)} \diamond r_{-}^{(n-j)}) \right) \\ &- \sum_{n=0}^{\infty} \omega^{n} \left(\sum_{j=0}^{n} F_{m}^{(n)}(z_{+}^{(j)} \diamond r_{-}^{(n-j)}) + \sum_{j=0}^{n} F_{m}^{(n)}(z_{-}^{(j)} \diamond r_{+}^{(n-j)}) \right) \\ &= \sum_{n=0}^{\infty} \omega^{n} \left(\sum_{j=0}^{n} F_{m}^{(j)}(z_{+}^{(j)}) F_{m}^{(n-j)}(r_{+}^{(n-j)}) + \sum_{j=0}^{n} F_{m}^{(j)}(z_{-}^{(j)}) F_{m}^{(n-j)}(r_{-}^{(n-j)}) \right) \\ &- \sum_{n=0}^{\infty} \omega^{n} \left(\sum_{j=0}^{n} F_{m}^{(j)}(z_{+}^{(j)}) F_{m}^{(n-j)}(r_{-}^{(n-j)}) + \sum_{j=0}^{n} F_{m}^{(j)}(z_{-}^{(j)}) F_{m}^{(n-j)}(r_{+}^{(n-j)}) \right) \\ &= \left(\sum_{n=0}^{\infty} \omega^{n} F_{m}^{(n)}(z_{+}^{(n)}) - \sum_{n=0}^{\infty} \omega^{n} F_{m}^{(n)}(z_{-}^{(n)}) \right) \left(\sum_{n=0}^{\infty} \omega^{n} F_{m}^{(n)}(r_{+}^{(n)}) - \sum_{n=0}^{\infty} \omega^{n} F_{m}^{(n)}(r_{-}^{(n)}) \right) \\ &= T_{m}^{\omega}(z) T_{m}^{\omega}(r). \end{split}$$

Corollary 1. Let $P(z) \in \mathcal{P}_s^{\omega}$. Then, for every fixed $r \in \Lambda_1^{\omega}$ polynomials $P(z \bullet r)$ and $P(z \diamond r)$ are in \mathcal{P}_s^{ω} .

For a given $z=(y|x)\in \Lambda_1^\omega$ we denote $z^-=(x|y)$. Clearly, the map $z\mapsto z^-$ is a continuous involution in $r\in \Lambda_1^\omega$ and $T_m^\omega(z^-)=-T_m^\omega(z)$.

Let us introduce the following relation of equivalence on Λ_1^{ω} . We say that $z \sim r$ if and only if $T_m^{\omega}(z) = T_m^{\omega}(r)$ for every $m \in \mathbb{N}$. Let us denote by \mathcal{M}^{ω} the quotient set Λ_1^{ω}/\sim and by [z] the class of equivalence which contains z.

Proposition 3. The following operations $[z] + [r] := [z \bullet r]$; $[z][r] := [z \diamond r]$, $z, r \in \Lambda_1^{\omega}$, of addition and multiplication are well-defined on $\mathcal{M}^{\omega} \times \mathcal{M}^{\omega}$ and $(\mathcal{M}^{\omega}, +, \cdot)$ is a unital commutative ring.

Proof. Let $z' \in [z]$ and $r' \in [r]$. By Proposition 2 and the definition of the equivalence we have that for every $m \in \mathbb{N}$,

$$T_m^{\omega}(z) + T_m^{\omega}(r) = T_m^{\omega}(z') + T_m^{\omega}(r') = T_m^{\omega}(z' \bullet r')$$

and

$$T_m^{\omega}(z)T_m^{\omega}(r) = T_m^{\omega}(z')T_m^{\omega}(r') = T_m^{\omega}(z' \diamond r').$$

So the operations on \mathcal{M}^{ω} do not depend on representatives. Let [u] = [z]([r] + [s]) and [v] = [z][r] + [z][s]. Since for every $m \in \mathbb{N}$

$$T_m^{\omega}(u) = T_m^{\omega}(z)(T_m^{\omega}(r) + T_m^{\omega}(s)) = T_m^{\omega}(z)T_m^{\omega}(r) + T_m^{\omega}(z)T_m^{\omega}(s) = T_m^{\omega}(v),$$

so [u] = [v] and we have the distributive law. Clearly that the associativity and commutativity of the addition and multiplication can be proved by the same way. Also, $-[z] = [z^-]$ and $\mathbb{I} = [e_1^{(0)}]$ is the identity. Thus \mathcal{M}^{ω} is a unital commutative ring.

For any $\lambda \in \mathbb{C}$ and $z \in \mathcal{M}^{\omega}$ we set $\lambda * [z] = [\lambda z]$. Since, $T_m^{\omega}(\lambda z) = \lambda^m T_m^{\omega}(z)$, the operation "*" is well defined on $\mathbb{C} \times \mathcal{M}^{\omega}$. But $(\mathcal{M}^{\omega}, +, *)$ is not a linear space. Indeed, if $z \in \Lambda_1^{\omega}$ and $z \neq 0$, then $[z] + [z] = [z \bullet z] \neq 2 * [z]$ because $T_m^{\omega}([z \bullet z]) = 2T_m^{\omega}(z)$ but $T_m^{\omega}(2z) = 2^m T_m^{\omega}(z)$.

2 Operators and seminorms on $\mathcal{M}^{1/N}$

For a given $z=(y|x)\in \Lambda_1^\omega$, we denote by supp z the *support* of z, that is, the following pair of sets of indexes

$$\operatorname{supp} z = (\{i \in \mathbb{N}, j \in \mathbb{Z}_+ : y_i^{(j)} \neq 0\}, \{k \in \mathbb{N}, n \in \mathbb{Z}_+ : x_k^{(n)} \neq 0\}).$$

Let us define the following maps on $\Lambda_1^{1/N}$:

$$S_k^{+(n,m)}(z) = (z - x_k^{(n)} e_k^{(n)}) \bullet (\underbrace{x_k^{(m)} e_k^{(m)} \bullet \cdots \bullet (x_k^{(m)} e_k^{(m)})}_{N^{m-n}})$$

and

$$S_k^{-(n,m)}(z) = (z - y_k^{(n)} e_k^{-(n)}) \bullet (\underbrace{y_k^{(m)} e_k^{-(m)} \bullet \cdots \bullet (y_k^{(m)} e_k^{-(m)}}_{N^{m-n}}),$$

where $m \ge n$ and $z = (y|x) \in \Lambda_1^{1/N}$ for some $N \in \mathbb{N}$, N > 1. Let $\sigma \colon \mathbb{N} \to \mathbb{N}$ be a permutation. We denote by $S_{\sigma}^{+(i)}$ and $S_{\sigma}^{-(i)}$ linear operators on $\Lambda_1^{1/N}$ such that

$$S_{\sigma}^{+(i)}(e_k^{(j)}) = e_{\sigma(k)}^{(i)} \text{ if } i = j \text{ and } S_{\sigma}^{+(i)}(e_k^{\pm(j)}) = e_k^{\pm(j)} \text{ otherwise,}$$

and

$$S_{\sigma}^{-(i)}(e_k^{-(i)}) = e_{\sigma(k)}^{-(i)} \text{ if } i = j \text{ and } S_{\sigma}^{-(i)}(e_k^{\pm(j)}) = e_k^{\pm(j)} \text{ otherwise.}$$

Lemma 1. For every $z = (y|x) \in \Lambda_1^{1/N}$, permutation σ on \mathbb{N} and $m \ge n$ we have

$$[z] = [S_{\sigma}^{+(i)}(z)] = [S_{\sigma}^{-(i)}(z)] = [S_{k}^{+(n,m)}(z)] = [S_{k}^{-(n,m)}(z)].$$

Proof. The proof follows from the definitions and direct calculations.

Proposition 4. Let $z=(y|x)\in \Lambda_1^{1/N}$ for some $N\in\mathbb{N}$, N>1 and z has a finite support. If [z]=[0], then there is a number $j\in\mathbb{N}$ and a composition S of a finite set of mappings $\{S_k^{\pm(n,m)},S_\sigma^{\pm(j)}\}$ defined above such that

and $x_k^{'(j)} = y_k^{'(j)}$ for every $k \in \mathbb{N}$.

Proof. Let j be a minimal number such that $x_k^{(j)}=0$ and $y_k^{(j)}$ for every $k\in\mathbb{N}$. Using a finite number of mappings $S_k^{\pm(n,m)}$ and Lemma 1 we can find z'=(y'|x'), $z'\sim z$ which satisfies (5). So, for every $m\in\mathbb{N}$

$$\sum_{k=1}^{\infty} \left(y_k^{\prime(j)} \right)^m = \sum_{k=1}^{\infty} \left(x_k^{\prime(j)} \right)^m.$$

From [1] it follows that vectors $(y_k^{'(j)})_k$ and $(x_k^{'(j)})_k$ coincide up to a permutation σ of coordinates (x_1,\ldots,x_k,\ldots) . So, applying $S_{\sigma}^{(j)}$ to z' we have $x_k^{'(j)}=y_k^{'(j)}$ for every $k\in\mathbb{N}$.

Corollary 2. Let $z=(y|x)\in \Lambda_1^{1/N}$ for some $N\in\mathbb{N}$, N>1, and z has a finite support. Then there is an element $z'=(y'|x')\in \Lambda_1^{1/N}$ such that $z\sim z'$ and z' has the following property: if ${y'}_i^{(j)}\neq 0$, then ${x'}_k^{(n)}\neq {y'}_i^{(j)}$ for all $k\in\mathbb{N}$, $n\in\mathbb{Z}_+$.

Proof. To get a proof it is enough to apply Proposition 4 to $z \bullet z'^- = (y \bullet x' | x \bullet y')$.

Due to Theorem 1, we can introduce an alternative multiplication by *real* constants in \mathcal{M}^{ω} , at least for the case $\omega = 1/N$, $N \in \mathbb{N}$, N > 1.

Theorem 2. Let $N \in \mathbb{N}$, N > 1. Then $\mathcal{M}^{1/N}$ is a real linear commutative unital algebra with respect to the operations of addition and multiplication defined in Proposition 3 and the following multiplication by constants:

$$a[z] := [z_{\{a\}}][z] = [z_{\{a\}} \diamond z], \quad a \in \mathbb{R},$$

where $z_{\{a\}}$ is as in Theorem 1.

Proof. Note first that from Theorem 1 and Proposition 2 it follows that for every $m \in \mathbb{N}$, $T_m^{\omega}(z_{\{a\}} \diamond z) = aT_m^{\omega}(z)$. So $\mathbb{I} = z_{\{1\}}$ is the unity in $\mathcal{M}^{1/N}$ and $[z_{\{a_1+a_2\}}] = [z_{\{a_1\}}] + [z_{\{a_2\}}]$, $a_1, a_2 \in \mathbb{R}$. Thus,

$$a([z] + [r]) = a[z] + a[r]$$
 and $(a_1 + a_2)[z] = a_1[z] + a_2[z]$,

where a, a_1 , $a_2 \in \mathbb{R}$ and [z], $[r] \in \mathcal{M}^{1/N}$.

Let us denote by Ω the class of functions $\gamma \colon \mathbb{C} \to \mathbb{C}$ such that the mappings $\Phi_{\gamma} \colon \Lambda_{1}^{\omega} \to \Lambda_{1}^{\omega}$ defined by

$$\Phi_{\gamma}(z) = \Phi_{\gamma}(y|x) = \begin{pmatrix} \dots \gamma(y_k^{(0)}) \dots \gamma(y_1^{(0)}) & | & \gamma(x_1^{(0)}) \dots \gamma(x_k^{(0)}) \dots \\ \dots & | & \dots \\ \dots \gamma(y_k^{(n)}) \dots \gamma(y_1^{(n)}) & | & \gamma(x_1^{(n)}) \dots \gamma(x_k^{(n)}) \dots \\ \dots & | & \dots \end{pmatrix}$$

are well defined and $z \sim z'$ implies $\Phi_{\gamma}(z) = \Phi_{\gamma}(z')$. Such class is nonempty, for example, $\gamma(t) = t^m \in \Omega$, $m \in \mathbb{N}$.

Theorem 3. Let $\gamma \in \Omega$. Then Φ_{γ} generates a linear operator $\widehat{\Phi}_{\gamma} \colon \mathcal{M}^{1/N} \to \mathcal{M}^{1/N}$ defined by $\widehat{\Phi}_{\gamma}([z]) = \Phi_{\gamma}(z)$.

Proof. From the definition of Ω it follows that $\widehat{\Phi}_{\gamma}$ is well defined. Also, it is clear

$$\widehat{\Phi}_{\gamma}([z] + [r]) = \Phi_{\gamma}(z \bullet r) = \Phi_{\gamma}(z) \bullet \Phi_{\gamma}(r) = \widehat{\Phi}_{\gamma}([z]) + \widehat{\Phi}_{\gamma}([r]),$$

 $z, r \in \Lambda_1^{1/N}$. Let now $z_{\{a\}} = (y_{\{a\}} | x_{\{a\}})$ be as in Theorem 1, that is,

$$x_{\{a\}} = \sum_{n=0}^{\infty} \sum_{i=1}^{a_n} e_i^{(n)}, \quad y_{\{a\}} = 0 \text{ if } a \ge 0 \qquad \text{and} \qquad y_{\{a\}} = \sum_{n=0}^{\infty} \sum_{i=1}^{a_n} e_i^{-(n)}, \quad x_{\{a\}} = 0 \text{ if } a < 0,$$

where

$$|a| = \sum_{j=0}^{\infty} \frac{a_j}{N^j}, \quad a_j \in \mathbb{N}.$$

If $a \ge 0$, then $[z_{\{a\}}][z] = a[z]$, $a \in \mathbb{R}$, $z = (y|x) \in \Lambda_1^{1/N}$ and

$$\Phi_{\gamma}(z_{\{a\}} \diamond z) = \Phi_{\gamma}((\underbrace{z \bullet \ldots \bullet z}_{a_0}) \diamond e_1^{(0)} \bullet \ldots \bullet (\underbrace{z \bullet \ldots \bullet z}_{a_n}) \diamond e_1^{(n)} \bullet \ldots)$$

$$= (\underbrace{\Phi_{\gamma}(z) \bullet \ldots \bullet \Phi_{\gamma}(z)}_{q_0}) \diamond e_1^{(0)} \bullet \ldots \bullet (\underbrace{\Phi_{\gamma}(z) \bullet \ldots \bullet \Phi_{\gamma}(z)}_{q_{rr}}) \diamond e_1^{(n)} \bullet \ldots = z_{\{a\}} \diamond \Phi_{\gamma}(z).$$

If a < 0, we have to replace $e_1^{(n)}$ by $e_1^{-(n)}$, $n \in \mathbb{Z}_+$. So $\widehat{\Phi}_{\gamma}(a[z]) = a\widehat{\Phi}_{\gamma}([z])$. Therefore, $\widehat{\Phi}_{\gamma}$ is a linear operator.

Let us denote $\tau_m([z]) = T_m^{1/N}(z)$, $[z] \in \mathcal{M}^{1/N}$, $m \in \mathbb{N}$. Clearly, τ_m are complex valued real-linear and multiplicative functions, that is, τ_m are homomorphisms from $\mathcal{M}^{1/N}$ to \mathbb{C} . By the definition of $\mathcal{M}^{1/N}$ we have that functionals $\tau_m \colon m \in \mathbb{N}$ separate points of $\mathcal{M}^{1/N}$. Let us denote by $\overline{z} = \Phi_{\gamma}(z)$, where $\gamma(t) = \overline{t}$ is the complex conjugate of t. It is easy to check that $\tau_m([\overline{z}]) = \overline{\tau_m([z])}$ and so $\gamma(t) = \overline{t}$ belongs to Ω . So $[z] \mapsto \tau_m([\overline{z}])$ is a complex valued functional for every $m \in \mathbb{N}$. Thus $\tau_m + \overline{\tau}_m$ and $-i(\tau_m - \overline{\tau}_m)$ are real valued linear functionals on $\mathcal{M}^{1/N}$.

Corollary 3. If $\gamma \in \Omega$ is multiplicative, then $\widehat{\Phi}_{\gamma}$ is an algebra homomorphism.

Proof. Let [z], $[r] \in \mathcal{M}^{1/N}$,

$$z = \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} z_{+k}^{(n)} e_k^{(n)} + \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} z_{-k}^{(n)} e_k^{-(n)}$$

and

$$r = \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} r_{+k}^{(n)} e_k^{(n)} + \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} r_{-k}^{(n)} e_k^{-(n)}.$$

Since $\Phi_{\gamma}(z_{+k}^{(n)}e_{k}^{(n)}) = \gamma(z_{+k}^{(n)})e_{k}^{(n)}$, we have

$$\Phi_{\gamma}(z_{+k}^{(n)}e_{k}^{\pm(n)} \diamond r_{+i}^{(j)}e_{i}^{\pm(j)}) = \gamma(z_{+k}^{(n)}r_{+i}^{(j)})e_{k}^{\pm(n)} \diamond e_{i}^{\pm(j)},$$

 $k, i \in \mathbb{N}, n, j \in \mathbb{Z}_+$. From the linearity and multiplicativity of τ_m it follows

$$\tau_m(\widehat{\Phi}_{\gamma}([z]))\tau_m(\widehat{\Phi}_{\gamma}([r])) = \tau_m(\widehat{\Phi}_{\gamma}([z])\widehat{\Phi}_{\gamma}([r])) = \tau_m(\widehat{\Phi}_{\gamma}([z][r])).$$

Since it is true for every *m*, we have

$$\widehat{\Phi}_{\gamma}([z])\widehat{\Phi}_{\gamma}([r]) = \widehat{\Phi}_{\gamma}([z][r]).$$

Proposition 5. Let $\gamma \in \Omega$ and $\gamma(0) = 0$. Then the following formula defines a seminorm on $\mathcal{M}^{1/N}$:

$$p_{\gamma}([z]) = \inf_{(y|x) \in [z]} \sum_{n=0}^{\infty} \frac{1}{N^n} \sum_{k=1}^{\infty} \left(\left| \gamma(x_k^{(n)}) \right| + \left| \gamma(y_k^{(n)}) \right| \right).$$

Proof. Since the infimum is taken over all representations $(y|x) \in [z]$, the norm is well defined. It is easy to check that p_{γ} is nonnegative and satisfies the triangle inequality and is homogeneous.

Definition 3. Let us define the following seminorms on $\mathcal{M}^{1/N}$:

$$p_m([z]) = p_{\gamma_m}([z])$$
 for $\gamma_n(t) = t^m$.

It is clear that $|\tau_m([z])| \le p_m([z])$, $[z] \in \mathcal{M}^{1/N}$ and so, if $[z] \ne 0$, then there is $m \in \mathbb{N}$ such that $p_m([z]) > 0$.

Let us denote $(\mathcal{M}^{1/N}, (p_m))$ the linear space $\mathcal{M}^{1/N}$ endowed with the projective topology, generated by seminorms (p_m) . So we have the following proposition.

Proposition 6. The space $(\mathcal{M}^{1/N}, (p_m))$ is a locally convex metrisable topological vector space and each functional τ_m is continuous on $(\mathcal{M}^{1/N}, (p_m))$.

Let us denote by \mathcal{D} the following subset of $\mathcal{M}^{1/N}$:

$$\mathcal{D} = \left\{ u \in \mathcal{M}^{1/N} \colon \text{ there is } z \in u \text{ such that } \left| z_k^{(n)} \right| \le 1, \, n \in \mathbb{Z}_+, \, k \in \mathbb{N} \right\}.$$

Theorem 4. \mathcal{D} is a subalgebra in $\mathcal{M}^{1/N}$ and the restriction of the topology of $(\mathcal{M}^{1/N}, (p_n))$ to \mathcal{D} is generated by a norm on \mathcal{D} .

Proof. From the definition of addition and multiplication in $\mathcal{M}^{1/N}$ it follows that $u+v\in\mathcal{D}$ and $uv\in\mathcal{D}$ for all $u,v\in\mathcal{D}$. Also, for every $a\in\mathbb{R}$, $[z_{\{a\}}]\in\mathcal{D}$ and so $au=[z_{\{a\}}]u\in\mathcal{D}$. Hence, \mathcal{D} is a subalgebra in $\mathcal{M}^{1/N}$. Note that for every $u\in\mathcal{D}$ and $m\in\mathbb{N}$, $p_m(u)\leq p_1(u)$. Also, p_1 is a norm on \mathcal{D} . Indeed, if $u\neq 0$, then there is $m\in\mathbb{N}$ such that $\tau_m(u)\neq 0$. So

$$0 \neq |\tau_m(u)| \leq p_m(u) \leq p_1(u).$$

So (\mathcal{D}, p_1) is a normed space and all p_m are continuous with respect to p_1 . So the restriction of topology of $(\mathcal{M}^{1/N}, (p_n))$ to \mathcal{D} coincides with the norm topology of (\mathcal{D}, p_1) .

REFERENCES

- [1] Alencar R., Aron R., Galindo P., Zagorodnyuk A. *Algebra of symmetric holomorphic functions on* ℓ_p . Bull. Lond. Math. Soc. 2003, **35**, 55–64. doi:10.1112/S0024609302001431
- [2] Aron R.M., Cole B.J., Gamelin T.W. *Spectra of algebras of analytic functions on a Banach space*. J. Reine Angew. Math. 1991, **415**, 51–93.
- [3] Aron R., Galindo P., Pinasco D., Zalduendo I. *Group-symmetric holomorphic functions on a Banach space*. Bull. Lond. Math. Soc. 2016, **48** (5), 779–796. doi:10.1112/blms/bdw043
- [4] Chernega I.V. A semiring in the spectrum of the algebra of symmetric analytic functions in the space ℓ_1 . J. Math. Sci. 2016, **212**, 38–45. doi:10.1007/s10958-015-2647-3
- [5] Chernega I., Galindo P., Zagorodnyuk A. *A multiplicative convolution on the spectra of algebras of symmetric analytic functions*. Rev. Mat. Complut. 2014, **27** (2), 575–585. doi:10.1007/s13163-013-0128-0

- [6] Chernega I., Galindo P., Zagorodnyuk A. *Some algebras of symmetric analytic functions and their spectra*. Proc. Edinb. Math. Soc. 2012, **55**, 125–142. doi:10.1017/S0013091509001655
- [7] Chernega I., Galindo P., Zagorodnyuk A. *The convolution operation on the spectra of algebras of symmetric analytic functions*. J. Math. Anal. Appl. 2012, **395** (2), 569–577. doi:10.1016/j.jmaa.2012.04.087
- [8] Chernega I., Holubchak O., Novosad Z., Zagorodnyuk A. Continuity and hypercyclicity of composition operators on algebras of symmetric analytic functions on Banach spaces. Eur. J. Math. 2019, 12 P. doi:10.1007/s40879-019-00390-z
- [9] Dineen S. Complex analysis on infinite-dimensional spaces. Springer-Verlag, London, 1999.
- [10] Jawad F. Note on separately symmetric polynomials on the Cartesian product of ℓ_1 . Mat. Stud. 2018, **50** (2), 204–210. doi:10.15330/ms.50.2.204-210
- [11] Jawad F., Zagorodnyuk A. Supersymmetric Polynomials on the Space of Absolutely Convergent Series. Symmetry 2019, 11 (9), 1111 (19 p.). doi:10.3390/sym11091111
- [12] Galindo P., Vasylyshyn T., Zagorodnyuk A. *The algebra of symmetric analytic functions on L* $_{\infty}$. Proc. Roy. Soc. Edinburgh Sect. A. 2107, **147** (4), 743–761. doi:10.1017/S0308210516000287
- [13] Galindo P., Vasylyshyn T., Zagorodnyuk A. *Symmetric and finitely symmetric polynomials on the spaces* ℓ_{∞} *and* $L_{\infty}[0, +\infty)$. Math. Nachr. 2018, **291** (11-12), 1712–1726. doi:10.1002/mana.201700314
- [14] García D., Maestre M., Zalduendo I. *The spectra of algebras of group-symmetric functions*. Proc. Edinb. Math. Soc. 2019, **62** (3), 609–623. doi:10.1017/S0013091518000603
- [15] Gonzaléz M., Gonzalo R., Jaramillo J. *Symmetric polynomials on rearrangement invariant function spaces*. J. London Math. Soc. 1999, **59**, 681–697.
- [16] Kravtsiv V., Vasylyshyn T., Zagorodnyuk A. On Algebraic Basis of the Algebra of Symmetric Polynomials on $\ell_p(\mathbf{C^n})$. J. Funct. Spaces 2017, **2017** (7), Article ID 4947925, 8 p. doi:10.1155/2017/4947925

Received 04.08.2019

Джавад Ф., Карпенко Г., Загороднюк А. Алгебри, породжені спеціальними симетричними поліномами на ℓ_1 // Карпатські матем. публ. — 2019. — Т.11, №2. — С. 335–344.

Нехай X — зважена пряма сума нескінченної кількості копій комплексного простору $\ell_1 \oplus \ell_1$. Ми розглядаємо алгебру, яка складається з поліномів на X, котрі є суперсиметричними на кожному доданку $\ell_1 \oplus \ell_1$. Функціонали значень в точках на цій алгебрі задають відношення еквівалентності ' \sim ' на X. У роботі досліджено фактор-множину X/\sim і показано, що за деяких умов на цій множині є структура дійсної топологічної алгебри.

Ключові слова і фрази: симетричні і суперсиметричні поліноми на банахових просторах, алгебри аналітичних функцій на банахових просторах, спектри алгебр аналітичних функцій.