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PROPERTIES OF SOLUTIONS OF A HETEROGENEOUS DIFFERENTIAL EQUATION
OF THE SECOND ORDER

Suppose that a power series A(z) = Y ;—a,2z" has the radius of convergence R[A] € [1,+o].
For a heterogeneous differential equation

20" + (Boz? + P1z)w’ + (1022 + Mz + 12)w = A(2)

with complex parameters geometrical properties of its solutions (convexity, starlikeness and close-
to-convexity) in the unit disk are investigated. Two cases are considered: if 7, # 0 and 7, = 0. We
also consider cases when parameters of the equation are real numbers. Also we prove that for a
solution f of this equation the radius of convergence R[f] equals to R[A] and the recurrent formulas
for the coefficients of the power series of f(z) are found. For entire solutions it is proved that the
order of a solution f is not less then the order of A (¢[f] > ¢[A]) and the estimate is sharp. The same
inequality holds for generalized orders (0u5[f] > 0aplA]). For entire solutions of this equation the
belonging to convergence classes is studied. Finally, we consider a linear differential equation of the

endless order OZO: %ww = ®(z), and study a possible growth of its solutions.
n=0 "

Key words and phrases: differential equation, convexity, starlikeness, close-to-convexity, general-
ized order, convergence class.
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INTRODUCTION

An analytic univalent in D = {z : |z| < 1} function

f(z) = fo fur" &

is said to be convex if f(ID) is a convex domain. It is well known [4, p.203] that the condition
Re{1+zf"(z)/f'(z)} > 0(z € D) is necessary and sufficient for the convexity of f. By
W. Kaplan [7] the function f is said to be close-to-convex in ID (see also [4, p. 583]) if there
exists a convex in D function ® such that Re (f'(z)/®'(z)) > 0(z € D). A close-to-convex
function f has a characteristic property that the complement G of the domain f(ID) can be
filled with rays L which go from 0G and lie in G. Every close-to-convex in ID function f is
univalent in D and, therefore, f'(0) # 0. Hence it follows that the function f is close-to-convex
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in D if and only if the function (f(z) — £(0))/f’(0) is close-to-convex in ID. Therefore, f is
close-to-convex in D if and only if the function

g(z) =z+ ) gu7" (2)
n=2

is close-to-convex in ID, where g, = f,/f1. We remark that a function defined by (2) is said
to be starlike in D, if g(ID) is a starlike domain with respect to the origin and the condition
Re{z¢'(z)/g(z)} > 0(z € D) is necessary and sufficient for the starlikeness of g. It is clear
that every starlike function is close-to-convex. We remark also that if the function g is starlike,
then the function cg is starlike, where c = const.

S.M. Shah [9] indicated conditions on real parameters Bo, B1, Yo, Y1, 72 of the differential
equation

20" + (Boz® + pr12)w’ + (102° + Mz +12)w =0

under which there exits a transcendental solution given by (1) such that either all its derivatives
or even derivatives or odd derivatives are close-to-convex functions in ID. The investigations
of Shah are continued in the papers [12-15].

Here we consider a heterogeneous differential equation

220" + (Boz’ + rz)w’ + (y02 + iz +m)w = ) anz", @)
n=0

where parameters o, B1, Yo, Y1, 72 are complex and the power series A(z) = Y ja,z" has
the radius of convergence R[A] € (0, +o0]. We will investigate conditions such that equa-
tion (3) has convex or close-to-convex solutions, and in the case if a solution is entire function
we will study its possible growth and belonging to convergence classes.

1 PRELIMINARY LEMMAS

At first we remark that an analytic in some neighborhood of the origin of coordinates func-
tion given by (1) is a solution of equation (3) if and only if

n(n—1)fuz" + Po Z (n—1)fu12" + 70 Z fu2z"
n=2 n=2 n=2
B Y nfuz+ Y farZ' 2 Y fu" = Y an",
n=1 n=1 n=0 n=0

ie.

Yofo = a0, (B1+72)fi+r1fo=a (4)
and forn > 2

(n(n+pB1—1) +72)fu + (Bo(n — 1) +71) fu—1 + Y0 fu—2 = an. 5)

Lemma 1. If a function defined by (1) is a solution of equation (3) and n(n+ 1 —1) + 2 # 0
foralln > 2, then R[f] = R[A].
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Proof. Suppose at first that R[A] < +co. From (5) for n > 2 we have
PBo(n—1)+m Y0 an
= _ 4= At .
N T T | Ea L T U g
Let ny = ng(R[A]) is such that for all n > ng
Bon + 71 1 2 Y0 1
RIA < -, R|A < .
[A] (m+1)(n+pB1)+72] ~ 4 4] m+2)(n+p1+1)+72] ~ 4
Then for each r < R[A]
+')’1 1
[l < 1ot
HZI’ZO I’ZZ?IO 1’1"—‘3 "
LY ‘|fn N lan|r”
n=ng n+ﬁ n= no’Tlﬂ—Fﬁl—l)—F’)’z‘
= 50ﬂ+’h n
=7 r
RN (e ey AER L
. Y0 |an|r
+72 ' r
n_%_z (m+2)n+p1+1)+7 fulr” nzno n(n+p1—1) + 72|
- Bon + 711 " Bo(no —1) + 11 ‘ o1
=7 rt+r 0~
ngno (m+1)(n+p1)+7 [l no(no — 14 B1) + 72 [fro-1lr
2 Y0 Y0 no—2
nzno n+2)(n+pB1+1)+7 "f"v +r no(ng +/31—1)+72‘|f”02|r
Y0 1 |an|r
+r2 ' no— +
CERVTET e [ W orr v
whence
i <1—r Bon + 1 2 70 D AL
e (n+1)(n+ﬁ1)+vz (m+2)(n+p1+1)+7
Bo(no —1) + 711 m Yo o
( 0_1+’31 _{_,Y ’fﬂo 1‘ 7’10(7’10—{—’3 ‘f?lo 2’7’
70 o+1 !ﬂn\r
+ T+
TSV nEE s [ s et
In view of (7) hence we obtain
Bo(no —1) + 71 ' Yo '
- r
nzno ’fn’ — ”0(”0 1+’31 +,Y ’fﬂo 1‘ ] no(no_{_ﬁl ‘f?lo 2‘ ]
Y0 n +1 |‘1ﬂ|r
+ 0Fl 4 < +oo,
(no+1)(no+ B1) + 72 ‘|fn0 1R( nX,;O In(n+B1—1) + 72

i. e. R[f] > R[A]. On the other hand, from (5) we get

i|an|r” < f:z|(n(n—|—,31 — 1)+ )|l fult"

r Y 1Bo(n = 1) +millfama [ 72 Y |0l fumal 2,
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oo
and, since the convergence of the series Y. |f,|r" implies the convergence of each series in
n=ny

right-hand side of the last inequality, we have R[A] > R[f]. In the case if R[A] < +co the
equality R[A] = R[f] is proved.

If R[A] = +oo0, then the proof of the equality R[A] = R[f] is similar. Now it is enough to
choose 1y = np(R) for every R € (0, +0c0) so that inequality (7) holds with R instead of R[A].
Then instead of the inequality R[f] > R[A] we obtain the inequality R[f] > R, whence in view
of the arbitrariness of R we get the equality R[f] = +o0. Lemma 1 is proved. O

For the investigation of the convexity and the starlikeness of solutions of differential equa-
tion (3) we will use the following lemma ( [1,5, 6]).

Lemma 2. If ¥ n|gy| < 1, then function (2) is starlike, and if Y n?|g,| < 1, then it is convex

. n=2 n=2
inD.

From Lemma 2 the following lemma follows.

(e 9]

Lemma 3. If Y n|f,| < |f1|, then function (1) is close-to-convex, and if Y n?|f,| < |f1|, then
n=2 2

n=
it is convex in ID.

From the first equality (4) it is clear that the choice of coefficients f, of solution (1) of equa-

tion (3) depends on the equality of the parameter 7, to zero.

2  CLOSE-TO-CONVEXITY AND CONVEXITY IN THE CASE 7 # 0

From (4) we get fo = ap/v2 and (B1 + 72) f1 = a1 — Y1 fo. Since we find univalent solutions,
f1 must be not equal to zero. In view of (4) two cases are possible:

2a) a1 —vy1fo # 0and By + 72 # 0;

2b) a1 —y1fo=pB1+72=0.

a1 —v1fo 7241 — 7140

= , and thus the solution
Bi+72  72(B1+72)

By the conditions 2a) from (4) we get f| =

is of the form

4o | 7281 — MAo o n
fle) = 2 Bt nX::anZ ’ ®)
where the coefficients f, are defined by the recurrent formula (5). Supposing that
n(n+ By —1)+v2 # 0 forall n > 2, this formula can be rewritten in the form (6).
Suppose that |B1] < 1 and |y2//2 < (1= |B1]). Then |n(n+ B1 —1) + 72| >
> n(n—1—|B1]) — |72| and, since the function x2 — (1 + |B1|)x — |y2] is increasing on [2, +-c0),
we have n(n — 1 — |B1|) — |72| > 2(1 — |B1]) — |r2| > 0 for all n > 2. Therefore, (6) implies

|70l x|

Bol(n— 1) + Il
R 1y iy B 1 Y A TN el

n—=1—1[p1]) = ||

|fn| < n( |fn—1|+n(
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Hence it follows that

Salfy <y Bl =V ml gy

n=2 n2 _1n(n_1_’ﬁ1‘)_‘72‘
c ol )
*EZ o ey e (UL '*2 T B) =l
o 141 |Boln + |11] n+2 70|
L )= Bi) — " ’f””z " (n+2)(n+1—Iﬁll)—lvzln‘fn‘ (10
- n‘an’ _ Z n+1 ‘50’n+ ’71’ n‘fn‘
a1 1B — Tl & n (r D)= JBi) — 72l
\Bo| + |71 n+2 70|
+2 n
2<1—\ﬁlr>—m'f1' Z S CEs e e
2|0 3]70| - nlay|
+ + + :
TTR TR R LU oy o UL Bl cromy wg sy oy
Since forn > 2
n+1 [Boln + || _ [Bol + 11|/ <« __Bol +Iml/2
n (n+1)(n—IB1]) = |2l (m—1B1]) = |12l/(n+1) = (2—|B1]) — |72|/3
and
n+2 70l B 70| /1 |70[/2

= < ,
n (n+2)(n+1—[p1]) =|r2l  (n+1=1|p1]) = |n2l/(n+2) = B —I[p1]) = |72|/4
from (10) it follows that

- > |Bol + /2 [70]/2 2(|Bo| + 71D If1l
Llfl < L g — i 3" ’f””z “B) — A" T 20— a ) - e

2|70

(e 9]

3|’YO| n|an|
R TGy oSl ek rpn gy £ R e crpm g
and by the condition
|Bol + |71]/2 170]/2
@16 - 273 T BB —al/d < ()
we obtain
Bl +Iml/2 [70]/2 \Bol + |71
(1 @15~ 73~ GTh) - mm)z il <230 18— !
2|70 3]70] . n|ay|
R Tg oty oS kv py gy e £ e g gy e
whence
= 2(|Bo| + [71l) 3|70 2|0
L nlfal < <<2<1— B —Inal T3 1B - mw) Al a1 — Tl !

(o]

n|an| _|BolFml/2 |70]/2 !
*,;Zn(n—l—rm\)—m\)(l 2—1B1]) — 12173 <3—rﬁ1\>—m\/4> |
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By Lemma 3 solution (1) of equation (3) is close-to-convex if the right-hand side of (12) is
less than |f1], i. e.

(1Bo| + 1) 3|70 2|0
< 201 B wzﬁa(z—\ﬁlr)—mr)'f1'+z<1—r/s1\>—m\'f0' o
i njay| <1_ Bol + [11l/2 70]/2 >|f1|
Lot i) Tl =\ T @B a3 BIa) — al/a) 1

Thus, the following proposition is proved.

Proposition 1. Let v # 0, a172 —apy1 # 0, B1+ 72 # 0, [B1] < 1, |72]/2 < (1 —|B1]) and
R[A] > 1. If

i n|ay| <1_ Bol +Iml/2 [70]/2
=on(n—1—[B1]) —[r2| ~ 2= 1B1]) = |72/3 B =|B1]) — |72[/4 (14)
~ 2(|Bol tImlD) 3|70 ) 7201 — M40 2|70 o]

20 =p1l) = 2l 32 =1Bal) = 72/ [m2(Br+72)| 20 = |Ba]) = [72] |72’

then there exists a solution given by (8) of differential equation (3) with R[f] = R[A]|, which is
close-to-convex in ID. If moreover ay = 0 it is starlike.

Indeed, the condition (14) is equivalent to condition (13), and (13) implies (11).
We will pass to the convexity. From (9) we get

(e 9]

2 =P |Bol(n —1) + [711] 0 1)2
Lmin] Sg Baln— 1= Jpl) — ] "~ ) V1l

= "YO‘ nz!an\
+,§<n—z>2n<n—1—|ﬁ1|> 7 ("~ 21 2”2 RS EA

i n+1 |[30|1’l—{—|’)/1| n2|fn|
L NI
= (02 70 ) 2
+ 2| fal +
20 G- " Pt L a1 By =l
> ”+1 |Boln + | 11| 2 |Bol + |71
n +4
; arDm =B =" = e = e
> (02 70 ) ol
n +
; mre - =T P aa—ia) e
9")”0‘ oo nz!an\
+ + .
5e=1a) el Lt —1i— B =il
Since now forn > 2
(n+1)? [Boln + 7] 23 |Bol+Iml/2
2 _
n (n+1)(n—|B1]) — 72| — 2(2—1B1l) —|72//3
and )
(n+2) |70l <9 |v0]/2

n2  (n+2)(n+1—|B1]) —[r2] = B —|[B1]) = |72]/4
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by the condition
3 |Bol +|ml/2 |70l
2@ 1B1]) — |mal/3 T G-I —al/d ="
as above we obtain
N 70l ) 4(|Bo] + 1))
(1 2@ 1) — vl /3 G1Ail) - mw)z Ul < g g —
4|0 9|70 - n?|ay|
BTGy oS kv gy e o L £ W g gy e
1. €.
o 2 4(1Bo| + [71l) 4|y 9]0
L wifal < <z<1— B = T e~ T s s -

(15)

i n?Ja,| <1_§ Bol +Iml/2 |70l >_1

=z 1 —=1—|B1]) = [72] 22— 1[pl) = nal/3 G=1pl) = [n2l/4) 7

By Lemma 3 a solution given by (1) of equation (3) is convex if the right-hand side of (15) is
less than |f1], 1. e.

4(|1Bo| + [71l) 4|y 9]0
20— 161D — vl T 21 — Tl P T 3 e — Tl

n?|an| 3 [Bol+Iml/2 70
R By mr(l 2T 1B~ 11l <3—|ﬁ1|>—|vz|/4>‘f1"

Thus, the following proposition is proved.

Proposition 2. Let v, # 0, a172 —apy1 # 0, B1+ 72 # 0, [B1] < 1, |72]/2 < (1 —|B1]) and
R[A] > 1. If

i nla,| < (1_§ Bol + [1l/2 70
=onn—1—[B1]) —[7r2| ~ 22— B1]) = |12l/3 B —|B1]) = [72[/4 (16)
4Bl +ml) 970l ) [7281 — 1140| 4|70 |ao|

20 =p1) =2l 32 =[B1l) = 72/ [r2(Br+72)[ 20 = [Ba]) = |72 |72’

then there exists a solution defined by (8) of differential equation (3) with R[f] = R[A], which
is convex in ID.

Uniting Propositions 1 and 2 we get such theorem.

Theorem 1. Lety; # 0,a172 —apy1 # 0, B1+72 # 0, |B1] < 1, |72]/2 < (1—|B1|) and R[A] >
1. Then there exists a solution given by (8) of differential equation (3) with R[f] = R[A], which
by the condition (14) is close-to-convex and by the condition (16) is convex in D. If ay = 0 and
(14) holds then (8) is starlike.

The conditions |B1] < 1 and |y2|/2 < (1 —|B1]) in Theorem 1 can be weakened if f; and
72 are real numbers. We will consider a simple case, when 7y, > 0, 81 > —1and 72 4+ B1 > 0.
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Suppose also that ypa; — y140 # 0. Then from recurrent formula (6) we have

Yol < 3 Bl 2Dl yyp )

n=2 n:2n_1n(n+ﬁ1_ )_}"Y

S 70| nlay|
+;§2”_2”(”+51—1)+’7( 2 2|+Z nn+p1—1)+7

o |Bol +1ml/(n—1) © ygl/(n—2)

S Iy s | vy UL L I D e s e U IR

v nan| ol + 711/ — 1)
+n;z"(n+ﬁ1—1 )+72 Z’z (n+pg1—1) (2 = Dlfa]

o |[70l/(n —2) n|ay|
LB £ gty
:iw ’f’+i "YO\/” ’f"f‘i nlay|

= ntp T g+ T St pi— 1) 7

n

1Bol + |1l ’,30\+’71!/2 70l 70l
1+ B |f|+2ﬁ”|fﬂ|+ |f|+2+’31|f1|

‘70‘/2 C ”’ﬂn‘
i Z 23+ B1 el + Zg”(”ﬂﬂ@l -1+’

| /\

whence by the condition
Bol + [71[/2 | |70]/2

<1
2+ By 3+ B4

we obtain

Bol + 111172 |70]/2 & 1Bol + ]
(1 - ot T2 - 02 ) 5 i < BLEI

(17)

|70l |70l an]
o U A e e e
Similarly we get

Zn2|fn| < Z n |,30|+|’)/1|/£1’l—1) (n_1)2|fn—1|

= n— n+ B
n|yol/ (n — 2)? n|ay]
+nX::2 (1’1—}—[3—)( ’fn 2‘+Z n+’31 )+72

- ”+1![50\+!71!/” 2 = (”+2)!70\/” 2 n?|ay|
n+ By ful + nz‘b (n+pB1+1) ‘an—Z nn+pr—1)+7

|l30|+|’h| 3|,30|+|71|/2 2 2|70l 3|70|

[ee]

> la
+ /
234'5 ol + X:Z”(”+ﬁl—1)+’¥2

whence by the condition
3 |Bol +[11]/2 L 1ol

<1
2 24pB 3+ B
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we get

_31Bol+1ml/2 | ) 2 |Bol + |71
(1 > arpavp) Bt = )

2|’Y0| 3]70| n?|ay|
TRl ol 2 it Pr—1)+ 72

From (17) and (18) we obtain the following propos1t10n.

Proposition 3. Lety, > 0, B1 > —1, 72 + B1 > 0, 7241 — 1140 # 0 and R[A] > 1. Then there
exists a solution (8) of differential equation (3) with R[f] = R[A], which by the condition

2 njay| < (1_ 1Bol + [7111/2  |v0l/2  |Bol + |71l
— n(n+p1—1) + 72 2+ B 3+ b1 1+ 61

|70l >|’Yzﬂ1—’hﬂ0| ol lao

24B1) 12(Bi+72)  Pr+1|r
is close-to-convex (starlike if ag = 0) and by the condition
3 ?ay| <(1-Ylrinl2_ twl L+t
=nm+pr—1)+7 2 24P 3+ B 1+ p1

_ 37l ) 7201 — 140l 2|70 lao
24+B1) mBi+72) 1417
is a convex function in D.

Now we suppose that the condition 2b) holds, that is, 7y, # 0 and a1 — y1fo = B1 + 72 = 0.
Then fy = ag/72 and f; can be arbitrary number, in particular we can choose f; = 1. Thus, the
solution will have a form

@) =2 gz4 Y fuz, (19)
T2 n=2
where the coefficients f, are defined by the recurrent formula

(n=1)(n +B1)fu + (Bo(n = 1) +711) fa1 + Y0fn-2 = an.
Supposing that n + 1 # 0 for all n > 2, this formula can be rewritten in the form

__Bo(n=1)+m B 70 ay
fu= (n— 1)(11—|—,31)f”71 (n —1)(n+[31)fn_2+ (n—1)(n+pB1)’
whence by the condition | 51 | < 2 we have
—Dlbol +ml,
Z |fﬂ| < Z )( |ﬁ |) (Vl 1)|fn—1|

nlay|

\70\ " 3
Ty e [ L R W s ey

+ C n+1 + /n 2
:2|!30| |71l Ly Bol + || ful + 70
2—|pl sz om o n+1-|p] 2—|pl

3|70
—|B1l)

|f|+(

n—+2 ”)’0’ d n‘an‘
+n>:2 n (n+1)(n+2—Ifﬂll)n‘f”’+Z —1)(n—|B1])

3|ﬁ0|+|’¥1|/2 - |70| |ﬁo|+|71|
—nzz o " Ly e

2\70\ Bl & nlay|
LR TN *EQ CESCEE)
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i. e. by the condition
32lBol +Iml) . _ 27l
AB—1pl) 34 —1pl)

<1

we get
@Bl D) 2l ) &
<1 G- 1p1]) <—rm>>z”'f"' o0
<olPol +Iml | 2!70! ol + ratol_ _ SBlml iy njan|
R = R s L7y Rl B g Ty
Similarly,
S —1){ol + 1]
nX::zn |fﬂ| < X:: )(Tl—‘ﬁ ’)( ) |fn 1|
o 2 m\ L o e
R By ey Yo 1o K B ) DY e gy
Bl e Dl /el 97o|
AT ,1;2 it 1= 1m0 e aE e
= (2 - oS a
*Z CER T LR Y ey epray
9|,30|+|’Y1|/2 2 — 16 |70| 2
\5o\+m\ 4!70! 9\70\ - n2|ay|
S ST Ty |’f‘+ G- 1A |)+Z(n—1)(n—|ﬁ1|)
i. e. by the condition
9(2|Bo| + |711) 4|0 <1
8G—1B) 30— |6
we get
~9Q2[Bol + ) 4ol 2
(1 SG—1p1l)  3(- |ﬁ1|>2”'f” o
Bol+lnl . Svl . 4l laol ]
<4 TR Tae-mD Tz \muwr*Z(n—l)(n—mlw

In view of Lemma 3 from (20) and (21), as in the proof of Proposition 1, we obtain the following
theorem.

Theorem 2. Lety; # 0, a172 —apy1 = B1+ 72 =0, |B1| < 2 and R[A] > 1. Then there exists a
solution given by (19) of differential equation (3) with R[f] = R[A], which by the condition

> e @B+ D) 2l
Lo Dm—TBD S 46-TA) G- A
Bl Iml 3l 2l aof

2= g1l 2@ —1Al) 2=l |2l
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is close-to-convex (if ag = 0 then starlike) and by the condition

(e 9]

|| <1 2@+ [ml) 4l

LoD ST 8G-1A)  3G- ]
Bl Il vl 4ol aof
2B 26— 2-1B]

is a convex function in ID.
In the case of real parameters 7y, and 1 as above it is easy to obtain following statement.

Proposition 4. Let v, > 0, a17y2 —apy1 = P1+ 72 = 0, p1 > —2 and R[A] > 1. Then there
exists a solution given by (19) of differential equation (3) with R[f] = R[A], which by the
condition

i njay| <1 32Bol+Im| 2|70 1Bol + |71 3lvl  2[vollaol
S m—1)(m+p1) ~ 4 4B+p1) 3(4+p) 24+B1 283+B1) (Q2+B)n

is close-to-convex (starlike if ag = 0) and by the condition

£ ol 92lsin /90l Al inl (/2] sl
= (n—1)(n+p1) 8 3+ 4+ By 2+ By 3+ B (24 B1)72

is a convex function in D.

3 CLOSE-TO-CONVEXITY AND CONVEXITY IN THE CASE 7, = 0

In this case from (4) it follows that ayp = 0, i. e. fy can be arbitrary number, and we choose
fo = 0. Then B4 f1 = a;. Since we are finding univalent solutions f; # 0. Therefore, two cases
are possible:

3a) a1 # 0and B # 0;
3b) a; = ﬁl =0.

By the condition 3a) a solution of equation (3) has the form

fz) = %z + i fuz", (22)
n=2

where the coefficients f, are defined by recurrent formula
1’1(1’[ + ﬁl - 1)f" + (ﬁO(n - 1) + ’Yl)fn—l + 'YOfan = Ap,
from which by the condition n + 1 — 1 # 0 for all n > 2 it follows that

Bo(n—1)+m
n(n+p—1)

_ Y an
f?l__ fnfl_—o_l)fn—Z‘i‘ (

n(n+ B nn+p—1)"
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whence by the condition |B1| < 1 we get

ylfil < 3t B I Gy g,y

n=2 n:2 - (1’l—|[31|
70l |an|
+ |y —
L el X
!ﬁoH\%\ |Bol + |71l/n |70l = |vol/n
+ Y P TL R )l + p
EETARA ,;2 S R U AR Vs ]
|an| |Bol + |71]/2 o |v0l/2
+ nl + n
I I IR PRt
|Bol + |71/ |a1] la1]] 0l - |an|
+ + ,
TR R TG RyR DY oy
i. e. by the condition
Bol +ml/2  Ivol/2 _
2— B 3—|B1]
we obtain
+ 2 2 s
(1_|f30|_|’71|/ B |ﬁ)|/ )anfnl
2 ’.Bl‘ 3 ‘51’ n=>2 (23)
|Bol + |71/ |a1] n la1]] 0l +i |an| .
= 1—=B1] Bl 2= B1l) = (n—B1] 1)
Similarly,
2 n?  (n—1)|Bol + 7
nX_:Z |fﬂ|_nX:2(n_1)2 n(ﬂ—\ﬁll ) ( )|fn 1|
n? "70’ ”’an‘
+ wal+ Y
,E(n—z>2n<n—|ﬁ|—>< Plhal+ X et
|Bol + |71] |a1] ”+1|ﬁo|+|’h|/” 2 3|70l
T L 4 5 A
> n+2 |yl 2 njay| — 32(Bol + |71 2
+ A+ Y e < Y ST e
L e e L S L e
|70l o |l30|+|’h||ﬂl| 3|ﬂ1||70| nla,|
+ al 2 + vy
L gl + 2 e e L Ty
i. e. by the condition
32[Bol + [71] 70l
— 1
2B 3-1pl T
we get
< 32|Bo| + |71 70 )“’ 2
11—+ - Y | ful
4 2 — 3 —
|B1] B1l ) = )

ol il lor] . Bmllvol @
e R TR N R Ty R W crpme vy pu

In view of Lemma 3 from (23) and (24) in the usual way we obtain the following theorem.
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Theorem 3. Let v, = 0,41 # 0, 1 # 0, |f1| < 1 and R[A] > 1. Then there exists a solution
given by (22) of differential equation (3) with R[f] = R[A], which by the condition

i |ax] <1_ |Bol +1711/2+ |70l |70l/2 \50’+’71’> |a1]

= (n— g1 =1) — |1l 3-8l 1|1l / Il
is starlike, and by the condition

i njay| < < ~32|Bol + il + 4ol ol _2|ﬁo|+|’h|> |a1]

= (n—[B1| = 1) 4 2 — B 3—|B1] 1—1[B1| / |B1

is a convex function in ID.
For a real parameter $; in the usual way we obtain the following proposition.

Proposition 5. Lety, = 0,a7 # 0, B1 # 0, 1 > —1 and R[A] > 1. Then there exists a solution
given by (22) of differential equation (3) with R[f] = R[A], which by the condition

i el <1_ [Bol + [11l/24 |70l [70]/2  |Bol + |')’1|> |a1|
Tl—l—ﬁl—l) 2+ B 3+ B 14 B |B1]

is starlike, and by the condition

i nla| << ~32|Bol + il +4lvol ol _2|ﬁo|+|71|> |a1]
= (n—i—ﬁl—l) - 4 2+ B 3+ B 14+ B ‘51‘

is a convex function in D.

If the condition 3b) holds then we can choose f; = 1 and search a solution in a form

flz)=z+ ) fuz", (25)
n=2
where the coefficients f, are defined by recurrent formula
Bo(n —1) +m Yo ay
= - [P (R T [ 2
fi n(n—1) fu-1 n(n—l)f” 2+n(n—1) (26)
Then
= ol +1m Y| o« |70 a
L nlfal < Ipol+ bl 1 P g Do 3 g+ 3
n=2 n=2 n=2
— 2|Bo| + |71 Y0 Y0 a
< M \fn\+2’ | !fn!+!ﬁo\+wr+‘ ‘+Z ‘”’
n=2

and by the condition (2|Bo| + |v1])/4 + |70|/6 < 1 we get

oo oo ‘

(1= @Bol + 1) /4~ 1301/6) Y. nlful < B0l + il + lvol/2+ 3 AL @)
n=2 n=2
Similarly,
o 2 o 2|Bol(n—1) + |71 o 2 |70| . ”|ﬂn|
2££n|fh|§ 2:’1 n(n__ ) Uﬁ—1|+'2:71 _ )Uh*2y+ 2: _

Yo — 1|a
< 2(1Bol + ) + X 2(2lol + Il 2|fn|+3|vo|/z+2’3’ A+ L
n= 2 n=2
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i. e. by the condition 3(2|Bo| + |71])/8 + |y0]/3 < 1

[ee]

(1=3(2lBol + 111)/8 = 70l /3) }_ m?Iful < 2(1Bol +[71]) +3lvol /2 + Z

n=2 n= 2

nlan|

— (@8

In view of Lemma 2 from (27) and (28) in the usual way we obtain the following theorem.

Theorem 4. Let v, = a9 = p1 = a1 = 0 and R[A] > 1. Then there exists a solution given by
(25) of differential equation (3) with R[f] = R[A], which by the condition

(e 9]

a 3 5 2
DR NES R NI PRI (29)
n=2

is starlike, and by the condition

© |ay| 11 19 11
<1——|Bo| = —|m| - — 30
n§:2', 1 = 1= lBol = g Iml =l (30)

is a convex function in D.

4 GROWTH OF ENTIRE SOLUTIONS

If n(n+pB1 —1)+ 72 # 0forall n > 2 by Lemma 1 a function given by (1) can be an entire
solution of equation (3) only if the function A is entire.

For an entire function (1) let M¢(r) = max{|f(z)| : |z| = r}, and for the characteristic of
the growth of My (r) we will use generalized orders. To give a definition of generalized order
we denote, as in [11], by L a class of continuous nonnegative on (—oo, +00) functions « such
that a(x) = a(xg) > 0 for x < xp and a(x) T +o0as xg < x — +oo. We say thata € L°,
ifa € Land a((1+4+0(1))x) = (1 +o0(1))a(x) as x — +oo. Finally, « € Ly, if « € L and
a(cx) = (14 0(1))a(x) as x — oo for each fixed ¢ € (0, +00), i. e. « is slowly increasing
function. Clearly, Ly; C L°. The value

rm n Mg (r))
uplf] = HHOW

is called [11] generalized order of f. The following lemma is true.

(weL,Bel)

Lemmad4. Ifa € Ly, B € L, B(x +0(1)) = (1+0(1))B(x) as x — +oco and f is an entire
transcendental function then g,5[f'] = 0aplf]-

Proof. Indeed, from the integral formula of Cauchy it easily follows that M f/( r) < Mg(r+1),
whence we get 0,5[f'] < 0up[f]. On the other hand, since f(z) f f'(t)dt, we have

Mg(r) < rMgp(r)+|f(0)] and, thus, In M¢(r) < In Mg (r) +1n r+0(1) = (1 +0(1))In Mg (r)
as 7 — 00, because the function f is transcendental. Hence we get 0,4(f] < 0ap[f’]. Lemma 4
is proved. O

We will use the theory of the value distribution of Nevanlinna. For an entire function f we
put

27
T(r,f) = 5 [ 10" £e)]dg.
0

This function is said to be a characteristic function of Nevanlinna. It is known that
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Lemma 5. If« € Ly, B € L, B(x +0(1)) = (1 +0(1))B(x) as x — +oo and f is an entire
transcendental function then

= a(T(r,f))
0uplf] = YETJ{‘OOW- (31)
Proof. Indeed, in [3, p. 54] it is proved that for 0 < r < rq
T(r,f) <Wn* My(r) < 25000, ). (32)
=

Choosing r; = 2r and using (32), in view of the conditions a € L; and 8 € L hence we obtain

— a(T(r,f)) _ 7= a(nMs(r)) _ — a(3T(2r,f))
rgl}rloo B(In ) = r—>+wW = rllffoow
_ G I S) o 2T )

r—+ f(Inr—1In2) rot+e0 B(lnr) ~
Lemma 5 is proved. 0
Now we prove the following theorem.

Theorem 5. Leta € Ly, B € L, a(ln x) = o(a(x)), B(x +0(1)) = (1+0(1))B(x), a(x) =
o(B(x)) as x — +o0 and f be an entire transcendental solution of the differential equation

ag(2)w + a1 (2)w' + - -+ aw(2)w™ = A(z), (33)
where a; are polynomials, 0 < j < m, and A is an entire function. Then g,4[f] > 0ap|A].

Proof. If gup[f] = oo then theorem is obvious.
So we consider the case g,p[f] < -+o0. At first we remark that if Py, is a polynomial of
degree m > 1 then [3, p.47] T(r, Pyy) = mIn r + O(1) as r — +oo. Further we put

Qui(z, f) = a0(z)f(2) + a1(2)f (2) + -+ aw(2) " (2),

where 4;(1 < j < m) are polynomials and f is an entire functions. Using well-known [3, p.44]
inequalities

q q q q
T (r, f]> <Y T(r.f), T (r, f]> <Y T(r.f;) +Ing
=1 =1 =1 =1

we have
T(r, Qu(, ) <T@ f)+T(r, f)+---+T(r, f™)+0(Inr), r— +oo. (34)

By the lemma about a logarithmic derivative [3, p.122] T(r, f'/f) = Q(r, f) for each entire
function f, where Q(7, f) is denoting [3, p.122] an arbitrary function such that:

1) if f has a finite order then Q(r, f) = O(In r) as r — +o0;

2) if f has an infinite order then Q(r, f) = O(In T(r, f) +In r) as r — +o0 outside, possibly,
some set of finite measure.
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Clearly, Q(r, f) £ Q(r, f) = Q(r, f) and AQ(r, f) = Q(r, f) [3, p-122]. We remak also that
since f has a finite generalized order then in view of (31) T(r, f) < a~!(gB(In 1)) for ¢ > 0up|f]
and r > rg. Hence it follows that Q(r, f) = O(In a~'(¢B(In 7)) +1In r) as r — -+oo and by
Lemma4 Q(r, f') = O(In a1 (0B(In 7)) +1In r) as r — +co.

Therefore,
T(r,f'Y=T <r,ff7/> <T(r,f)+T <r,f7/> =T(r,f)+Q(r,f)
=T(r,f)+O0(na YoB(In 7)) +1Inr), r— +oo.
Similarly,

s =T <r'f/]}_/’l> < T(r, f)+Q(r, f) =T(r, f) + Oin a™ (of(In 1)) +1n 1), r = +00,

et cetera. As a result from (34) we will get
T(r, (-, ) < (m+1D)T(r, ) +O(n a  (0B(In 7)) +1In7r), r— +oo. (35)

Since f is an entire solution of the differential equation (33), we have (), (z, f) = A(z). There-
fore, since a € Lg;, in view of (31) and (35) we obtain

— a(T(r,4) _ — a((m+1)T(r,f) +Kiy(In a1 (eB(In 7)) +In 1))
onplA] = lim “Blnr) = AT é(ln )
< Tm a(Ky max{T(r, f), In a=1(0B(In 7)), In r})
T r—+oo ,3(11’1 7’)
_ T a(max{T(r, f), ma=(eB(In 1)), Inr})
r—-oo B(In r)
_ Tm max{a(T(r, f)), a(ln a=(gB(In 7))), a(In r)}
r—oo B(In r)
_ I a(T(r, f)) +a(ln a=(0B(In 1)) + a(In r)
r—>+o00 [S(ln 1’)
(T, f) | allna(oB(n 1) | — a(in)
= rglfoo B(In r) R B(In r) * VEI—IJOO B(lnr)
Since a(x) = o(B(x)) as x — 400 we have ggi :3 — 0 as r — +oco. Simultaneously,
o a(In a=(oB(In r))) _ a(ln a~'(ox)) _ o a(lnx)
r—-oo B(In r) x—+00 x x—too  w(x)
Therefore, g,5[A] < 04p[f] and Theorem 5 is proved. O

If we choose a(x) = In x and B(x) = x for x > x( then we come to the following statement.

Corollary 1. If function f be an entire transcendental solution of the differential equation (3)

then o[f] > o[A], where o[f] = lim M

r—oo Inr

is the order of f.
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We remark that the contrary inequality is not true in general. Indeed, if for example By =
-1, 1 =71 = 72, —1 < 79 < 0and all a, = 0, then [13] there exists an entire solution f of
equation (3) such that

in (s, ) = Z50 (Igol + o+ 0l ) v, 1 4o

Clearly, in this case 0[A] =0 < 1 = ¢[f].
Suppose that 72 = a9 = 1 = a1 = Bo = 71 = Y0 = 0and A(z) = Y ,a,z" is an

entire function. Then equation (3) has the form w” = Y%° ,a,z"~2 and the function f(z) =
z+ Yo ﬁz” is a solution of this equation. Using the formula of Hadamard of the

order it is easy to prove that o[A] = ¢[f], i. e. the estimate g[A] < o[f] is sharp.

If 045[f] = 0 then for the characteristic of the growth of f it is used the belonging to gener-
alized convergence classes. For « € L and B € L we will say that an entire function f belongs
to generalized convergence class if

T a(ln My(r))

Choosing r; = 2r from (32) we get T(r, f) < In™ M(r) < 3T(2r, f). On the other hand, in [10]
itis proved thatif & € L0 then « is RO-increasing [8], 1. e. forevery hh € [1,4],1 < a < +0c0, and
all x > xg the inequality a(hx)/a(x) < M(a) < +oo is true. Therefore, if & € LY, B € L and
B(x+ O(1)) = O(B(x)) as x — +oo then (36) holds if and only if

[ (T, f))

/ iy < oo 37)
ro

Using (35) we prove the following theorem.

Theorem 6. Leta € L%, B € L, B(x + O(1)) = O(B(x)) as x — +oo and
tfmmalwu»>

dx < +oo. (38)
VN 6y
0
Suppose that f is an entire transcendental solution of the differential equation (33) where a;
are polynomials, 0 < j < m, A is an entire function and 0up [f] = 0. Then in order that f

belongs to generalized convergence class, it is necessary that A belongs to this class.
Proof. Since gup[f] = 0, we have Q(r, f) = O(In &~ (B(In r)) 4 In r) as r — +o0 and from (35)
as above in view of the condition « € L° we obtain
a(T(r,A)) o _ [ a(T(, Q- f)))
dr = d
rB(In r) rB(In r)
o

Tal((m+1)T(r, f) + Ki(ln a1 (B(In 7)) +In 7))
Sm/ rB(In r) dr

/ a(Ky max{T(r, f), na='(B(In r)), In r})
B(In r)

< M(K,) / a(T(r, f)) +a(In a1 (B(In 7)) + a(In 7) "

r

IN

rB(In r)
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® a(lnr)

Since f is an entire function, from (36) it follows that [

o rB(In r)

dr < 400, and in view of (38)

7a(ln a1 (Bn 1)), _ ]%(m a~1(B(x)))

dx < 4-o0.
rp(In ) B(x)
Therefore, (37) implies [ Mdr < +o00. Theorem 6 is proved. O
ro rlB(ln 1’)

For entire functions of the minimal type of the order ¢ € (0, +c0) G. Valiron [16, p.18]

°In Mg (r)

introduced the convergence class by the condition f =S| dr < +oo. If we choose a(x) = x
r

and B(x) = e for x > xp, then from Theorem 6 we get the following statement.

Corollary 2. If an entire function f is a solution of the differential equation (3), then in order
that f belongs to the convergence class of Valiron, it is necessary that A belongs to this class.

Clearly, from the belonging of the function A to the convergence class of Valiron the be-
longing of the function f to this class does not follow. On the other hand, an entire solution of
the differential equation z>w” = A(z) belongs to the convergence class of Valiron if and only
if A belongs to this class.

Finally we will consider a linear differential equation of the endless order

Y- 2l = @), (39)
= n!
where the characteristic function ¢(t) = Z —t” is entire and has a growth not higher than

=0
the normal type of the first order, and ® is an ent1re function.

A.O. Gelfond [2] proved that equation (39) for every 6 > 1 has an entire solution f such
that

In My(r) < C(6) In Mo(6r), r>rq, (40)

In Mf(t)

where C(0) does not depend on r and In M((r) = rmax { ;

1<t < r}. Using this
result we prove the following statement.

Proposition 6. Equation (39) has an entire solution f such that:

1) ifa(e*) € Ly, p € L, B(x +0(1)) ~ B(x) and a(x) = o(B(Inx)) as x — +oo, then
Qaﬁm < szﬁ[q)]/'

2) ifa(e*) € L9 B € L, B(x +O(1)) = O(B(x)) as x — +oo and f dr < +oo, then

rB( ln r)

the belonging of ® to the generalized convergence class implies the belonging of f to this
class.



PROPERTIES OF SOLUTIONS OF A HETEROGENEOUS DIFFERENTIAL EQUATION OF THE SECOND ORDER 397

Proof. Clearly, In M¢(r) < In Mg(r) < rln My(r) for r > 1. Therefore, if a(e*) € L and
B(x+ O(1)) ~ B(x) as x — +oo then from (40) we have

_ oo aInMg(r) o a(nMy(r)) _ —— a(C(f)In Mo(6r))
eaplf] = Bim —z i< lm —ra e < m =
— a(InMo(r)) _ — a(rlnMo(r)) - a(exp{lnr+Inln Me(r)})
= iy ST pinn = Binr)
< Tm a(exp{2max{In r,Inln Me(r)}}) _ m a(exp{max{In r,Inln Me(r)}})
r—+oo B(In r) F—400 B(In r)
= max{a(r),a(In Me(r))} = —— a(r)+a(ln Mo(r))
B rEToo B(In r) = rgrpoo B(In r) = Qupl®l:
The firs part of Proposition 6 is proved.
Similarly, if a(e¥) € L, B(x + O(1)) = O(B(x)) as x — 4o0 and [ %d?’ < oo,

then

T a(In My (r)) T 4(C(6) In Mo (6r)) 7 a(rln Mo (r))
/ rB(In r) ar < / rB(In r) ar < My / ’ﬁ(l—n”)dr

ro

<M / a(exp{2max{In 7,Inln Mcp(”)}})dr < Mle/ a(r) +aln McD(r))dr < 400,
o

rB(In r) rB(In r)

0

where M; = M;(0) and M, = M;(2). The proof of Proposition 6 is completed. O
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Hexait creneresmi psia A(z) = Y 5 anz" Mae paaiyc 36ixHOCTi R[A] € [1, +00]. AAst HEOAHO-
piaHOTO AMdpbepeHIiaAbHOTO PiBHSIHHS

2w + (Boz® + P1z)w’ + (7022 + Mz + 12)w = A(z)

3 KOMIIAeKCHMMM KoedpillieHTaMl BMBUAIOThCSI TeOMeTPUUHI BAACTUBOCTI B OAMHIMYHOMY KpPY3i 110ro
PO3B’sI3KiB (OIMYKAICTB, 3ipKOBiCTb, 6AM3BKICT A0 OMYKAOCTi). PosrasiaaeTbest ABa Bumaaku: o 7# O
iy, = 0. TakoX MM PO3TASIAQEMO BMITAAKM AIVICHMX IIapaMeTpiB IIbOrO PiBHSIHHs. AOBeAeHO, IO
AASL PO3B’SI3Ky f LIBOTO PiBHSIHHS paaiyc 36ixHOCTi R[f] AopiBHIOe R[A] i 3HaIAEHO peKypeHTHi
pOpMyAM AAST BHAXOAKEHHS KOe(pillieHTiB CTEIIeHeBOro pO3BMHEHHS f(z). AAS IIAOTO PO3B’SI3KY
AOBEAEHO, III0 TIOPSIAOK PO3B’SI3KY f He MeHIt HiX mopsiaok dpyskuii A (o[f] > o[A]) i ouinka e
TOYHOI. AHAAOTiUHA HEPiBHICTh AOBEAEHA AAST y3araAbHeHMX MOPSAKiB (0up[f] > 0up[A]). Anst mi-
AOTO PO3B’sI3Ky IBOTO PiBHSHHSI BUBUEHO HAAEXKHICTb AO KAacy 36ixHocTi. Hampukiani posrasiaae-
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ThCSI AiHiliHe AMdpepeHITiaAbHe piBHSHHS HeCKIHUeHHOTO TIOPSIAKY ) —|w(”) = ®(z), i BUBUaETHCS
n=0 1
MOXKAVBE 3POCTaHHSI JIOr0 pO3B’SI3KiB.

Kntouosi cnoea i ppasu: AmdpepeHITiarbHe piBHSHHSI, OIYKAICTD, 3ipKOBICTD, 6AM3BKICTH A0 OIIy-
KAOCTi, y3araAbHEHMIT TIOPSIAOK, KAAC 361KHOCT].



