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THE DERIVATIVE CONNECTING PROBLEMS FOR SOME CLASSICAL
POLYNOMIALS

Given two polynomial sets { P, (x) } >0, and {Qy(x) },>0 such that

deg(Pu(x)) = n,deg(Qu(x)) = n.
The so-called the connecting problem between them asks to find the coefficients «,, ; in the expres-
n
sion Qu(x) = Y a,kPi(x). Let {Su(x)}y>0 be another polynomial set with deg(S,(x)) = n. The
k=0
(n)

general connection problem between them consists in finding the coefficients «; j in the expansion

n
Qu(x) = Y alVP(x)8;(x).
i,j=0

The connection problem for different types of polynomials has a long history, and it is still of interest.
The connection coefficients play an important role in many problems in pure and applied mathe-
matics, especially in combinatorics, mathematical physics and quantum chemical applications. For
the particular case Q,(x) = P, (x) the connection problem is called the derivative connecting
problem and the general derivative connecting problem associated to { P, (x) },>0.

In this paper, we give a closed-form expression of the derivative connecting problems for well-
known systems of polynomials.

Key words and phrases: connection problem, inversion problem, derivative connecting problem,
connecting coefficients, orthogonal polynomials.
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INTRODUCTION
Given the two polynomial sets { P, (x) } >0, {Qn(x) }n>0 such that

deg(Py(x)) = deg(Qu(x)) = n,

for all n. The connection problem between them consists in finding the coefficients a,, ; in the
expansion

Qu(x) = Y g P(x).
k=0
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Let {Sn(x)},>0 be another polynomial sets with deg(S,(x)) = n. The general connection
problem between them consists in finding the coefficients ocl(’;) in the expansion

Z“z] )

i,j=0

For the particular case Q,(x) = P, (x) the connection problem is called the derivative

connecting problem and the general derivative connecting problem for the polynomial family
{Pa(x) buo.

The study of such a problem has attracted a lot of interest in the last few years. For in-
stance, the representations of parametric derivatives have been obtained by Froehlich [6] for
Jacobi polynomials, by Koepf [7] for generalized Laguerre polynomials and Gegenbauer poly-
nomials, by Koepf and Schmersau [8] for all the continuous and discrete classical orthogonal
polynomials, in [5,9,11, 13] for classic orthogonal polynomials.

The derivative connecting problem is considered for Chebyshev polynomials of the first
and the second types [10], for some Koornwinder polynomials in [1]. In [2, 3] the derivation
connection problem was solved for the Fibonacci, Lucas and Kravchuk polynomials and the
authors use the solutions to produce new combinatorial identities for these polynomials. Also,
the derivative connecting problem is solved in [4] for some hypergeometrical polynomials.

As an example let us consider the sequence of Appel polynomials { A, (x)},,>o with expo-
nential generating function

where A(z) is an arbitrary formal power series, A(0) # 0.
Then

00 n+1
——G(An(x),z) = A(z)e" z = G(An(x),2)z = ;An(X) o
On the other side
iQ(A z) —ii = io:A’(x)i
dx ) dx = ot

Equating the coefficients near z"" we will flnd

Lan(xy = ﬁfx“(x),

n:

and will obtain the solution of derivative connecting problem for Appel polynomials:

An(x) =nA,_1(x).

In the paper we solve these derivative connecting problems for many well-known classes
of polynomials P, (x).

In Section 2, a general appearance of the decomposition of the derivative of the polyno-
mial P)(x) is established, depending on the appearance of the logarithmic derivative of the
generating function. In Section 3, the derivative connecting problem is solved for Lagguerre,
Kravchuk, Charlier, Stirling, Bell, Bernoulii, Euler and Hermite polynomials. In Section 4, the
general derivative connecting problem is solved for Chebyshev, Gegenbauer and Legendre
polynomials.
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1 THE MAIN THEOREM

We propose a method for solving the derivative connecting problem based on the use of
the generating functions of polynomial families. The generation function of the family of poly-
nomials { P, (x) },,>0 is the formal functional series

G(Pa(x),2) = i@ 6uPa(x)2",

where ¢, is a certain numerical sequence. For case of ¢;, = 1 the generating function is called as

ordinary generating function, and when ¢, = — we obtain an exponential generating function.
n

Theorem 1. Let the logarithmic derivative of the ordinary generating function G (P, (x),z) of
the polynomials family {P,(x)} can be represented by the following series with rational coef-
ficients

d
P InG(Py(x),z) =

a;z'.

e

i=1

Then ;
Pn(x>/ = Z aipn—i(x)'
i=1

Let the logarithmic derivative of the exponential generating function G(x,z) of the polynomi-
als family {P,(x)} is written as formal series with rational coefficients

dg(x) & ‘zi
dx —;ﬂzn!~

Then
L n!
Py(x)" = X; ﬂimpnfi(x)-
i=

Proof. Assume that the generating function G(P,(x),z) and its particular derivative
G (Py(x),z)’ are connected

where R(z) = a1z + az> + - - - is a formal power series. Then
g(Pﬂ(x)/Z);c = Z cnp’;(x)zﬂ = (Z Cnpn(x)zn> (‘112 + ‘1222 + - )
n=0 n=0

o n
= Z Z aic,_iP,_i(x) | 2".
n=0 \i=1
Equating the coefficients at the same powers of z, we obtain that

n
Cﬂprg(x) = Z ﬂicn—ipn—i(x) = a1¢cy—1Py—1 +accy 2Py o+ -+ anCOPO(x);
i=1
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which will be a solution of the derivative connection problem for the polynomial family P, (x).
For the case of the ordinary generating function, we have ¢, = 1 and so

n
= Z a;P,_;(x
i=1

Similarly, for the exponential generating function for ¢, = -

i we obtain that

O

Proved theorem sets strict requirements for the generating function G(P,(x),z)-its loga-
rithmic derivative must be a function of the one variable, although the generating function
depends upon of two variables.

Suppose that the logarithmic derivative of the generating function is not a function of the
variable and it has the following expansion

d

P InG (P, (x Z”Z

where a;(x) — some polynomial. In this case for polynomials S, (x) their degree is equal n so
they form the basis of the vector space of all polynomials from the variable x. Therefore the
polynomials a;(x) can be expanded on this basis:

x) = XZ: 0;Sj(x)
=0

The following Theorem 1 may be proved similarly

Theorem 2. Let the logarithmic derivative of the generating function G(P,(x),z) of the poly-
nomials family {P,(x)} can be written as formal series

% InG(Py(x),z) = iai(x)zi,

and
ai(x) = ) a;;Sj(x),

for some coefficients a; ;. Then

2 THE DERIVATIVE CONNECTING PROBLEM

Let apply the proved theorems for solving of the derivative connecting problems for some
types of the classical polynomials.
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2.1 The Laguerre polynomials L)) (x)

The Laguerre polynomials are defined by the following formula

L,(f)(x) _ i(_l)z(wr)») X!

—i)ir
= n—i)il

with ordinary generating function

Xz
G(L}(x),2) = (1-2) "l 177
We find the derivatives by parameters
Xz N
A GMx)z) = — (1—2) 2P ze 1—2 = 29ULn(0).2)

dx z—1 !

and
Xz

) o
(L), 2) =~ (1-2) e T=ZIn(1-2).

Therefore, the logarithmic derivative has following form

d A e I
T InG(Ly(x),2) = — = ;Z
ilng(m(x) z) = —In(l-z2) = ilZi
A Y "

so we proved the theorem:

Theorem 3.
—Lp(x) =—) Li(x),
dx " =
d A n 1 A
ﬁLn(x) = Z ?Lnfi(x)

This coincides with results [8] and [13] obtained by other methods.

2.2 The Kravchuk polynomials

The Kravchuk polynomials are defined such formula

KN = Y- (T) (V)

= IVANEY

and have following generating function

G (x,N),z) = 1+ (p—1)2)N > (1-2)".

435
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Theorem 4.

d (p) & (Di(p-1) =1y
den (x,N) = Z K ,z‘(er)r

i n

)Ny = 3o DT =D g,

AN = i n—i

d () - i1 i~1 1 (p)

@Kn (x,N)=(N—x))_(-1)"" (p—1)" " K/”,(x,N).
i=1

Proof. We find derivatives of the generating function for Kravchuk polynomials with respect
to parameters x, N, p :

LGP (x4 N),2) = (1 (p =DV (1-2)" (In(1=2) =l (14 (p~1)2))
=9k (5 N), ) (3 )

A GV (e, N)2) = (1+ (p =1 2N In(14 (p—1)2) (1 — 2)%,

AN

d oop) _(+(p-1))"T(N-x)z(1-2)"

%Q(Knp (er)fZ)_ 1+(p_1>z )

So

L _ o) 1-z
TQMJ&AM@—GWJ&AW@m<rﬁ;fﬁﬁ'
iNg< '(x,N),2) = G(KP (x,N),2)In (1 + (p — 1) 2),
d _ (») (N—x)z
d_g( (X,N),Z) _g(Knp (x'N)’Z)m'

From here we find expansion of a logarithmic derivative in a formal series

d _ 1-z e DD -1
dx lng( (x,N),Z) =1In <m> —ZZX; ; z,
d _ -G R Vi,
Wlng( (x,N),z)—hr1(1+(p—1)z)—i:1 ; z!,
d (N=x)z v, il ayiel_i
4y MO N 2) = 5 T = (N R ()
Applying the Theorem 1 we get the required result. O

For a particular case p = 2 the problem is solved in [3].

2.3 The Charlier polynomials c,(f) (x)
(a)

The Charlier polynomials c;, ' (x)have such an exponential generating function

z

G(ek(x),2) =& (1- —)x.

a
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From here it’s easy to get that

d (a) B Z\ . © z!
—dxlng(cn (x),z) =In <1 a) =L 1“11,
d (a) Xz 1 & x
7 InG(cy'(x),2) =2 <1_E> _Z: s

Therefore, the following theorem holds.

Theorem 5.
d 1 n!
a(x) = =Y el (),
a

1
n!
da Cr(la)(x) == ﬂ(cga) (x) — 1) Z WC’(;Z_)Z(X).

2.4 The Stirling and Bell polynomials.

437

The Stirling and Bell polynomials S, (x) ( see [12]) are defined by the exponential generating

function

We have that the logarithmic derivatives is equal to

d z x+1 z
Eln<71_e_z> :1n<1_e_z>.

Let’s expand to series the function
z
h(z) =In | ——
(z) =In <1 — ez> ’

preliminary differentiating it.

We have
d _H(z) 1 e  f-1-z =z & z o Byz"
E(ln(h(z))) = h(Z) T, 1—ez 72 .ez—l _MXZ%)(H-FZ)! nX::O n!
0 By n - z" "o n+2 1 —  Bni1
_ b _ B, = - — ",
;(Z n_l+2)m)z 1;)(71+2)!];0< k > K72 ,;(n+1)lz

Here we used the known identity

and the fact that the generating function for the Bernoulli numbers B; is equal to

n
= Z Blzl
i=1

Note that the function /(z) has a removable gap point at z = 0 and

P 1
h0) = limh(z) = lim 73— = = 1
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Therefore, by integrating, taking into account that 1(0) = 1, we get

_ 1_00 Bn+1 n _E_oo n+1 nl
h(z)_/(z n;(nﬂ)!z) 2 Lt

Consequently, we have proved the theorem.

Theorem 6.

d%sn(x) = Xn: (?) % Sn—i(x).

i=1
The Bell polynomials ¢, (x) are determined through the Stirling numbers of second type

= Xn: S(n,i)x"
i=0

and have the generating function
gX(e=1),
In the same way as in the case of Stirling polynomials the following statement is proved.
Theorem 7.
n
2200 =L () oo
2.5 Generalized Bernoulli, Euler and Hermite polynomials

Generalized Bernoulli B,(f) (x), Euler E,(f) (x) and Hermite Hr(,”) (x) polynomials are defined
by the following exponential generating function

() =L
2 a o "
~(a2s) z

z':0
xz —at? Z H

With respect to the variable x these polynormals are the Appel polynomials, see [12], there-
fore for all three types of polynomials the following is performed

di B\ (x) = nB\", (x),
d
- EW(x) = nE", (),
d

—H(x) = nHY, (2).

Let’s find the logarithmic derivatives by parameter a:
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here B;, E;(1) — are the Bernoulli numbers and Euler numbers respectively. Expansion

z oz & (=1)"B;
ln<eZ—1>__§+Z T

i=2

is obtained in the same way as expansion in subsection 2.4.
So, the following statement takes place.

Theorem 8.

3 A GENERALIZED DERIVATIVE CONNECTING PROBLEM

3.1 The Chebyshev polynomials

The Chebyshev polynomials T;,(x) of the first kind and the Chebyshev polynomials U, (x)
of the second kind are determined by such ordinary generating function

1—xz 1

G(Tu(x),2) = G(Un(x),2) = 7

1—2xz + 2% —2xz+ 2%’
The following theorem take place.
Theorem 9.
d
%Tn(x) = To(x)Ty—1(x)+3T1(x)Ty—2(x)
0 . i—1 )
+) (To(x)Tl(x)Z_lﬂL2 Y. Tk(x)Tl(x)l_l_k> Tu—i(x),
i=3 k=1
d n
7 Un(®) =2) Ui q(x)Up—1-i(x)
i=1
Proof. We have
d z (22— 1)
o N9Tn0)2) = G A 2w )
= To(x)z + 3Ty (x)z +Z( )= 1+22Tk (x)i—l—k>z1
k=1

For the Chebyshev polynomials U, (x) of the second kind we have

d 2z
%mg(un(x)zz)—m Zuz 1

Therefore

=2 i U1 (x)Up—1-i(x).
i=1
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3.2 The Gegenbauer and Legendre polynomials
The Gegenbauer polynomials Cj (x) are determined by ordinary generating function

1
(1 —2xz+z22)N

G(Ch(x),2) =

It is logarithmic derivative is expressed through Chebyshev polynomials

P N _ 2Az . a
L n0(C(),2) = g5 s =

d |

ﬁan(C,ﬁ‘(x),z) = —In <1 —2xz+zz) = ZZ ?Ti(x)zi.

Theorem 10.

In [13] another expressions for the Gegenbauer polynomials were obtained. The Legendre
polynomials P, (x) are determined by generating function

1
G(Py(x),2) = —m———.
(Pu(x).2) V1 —2xz + 72
We have ; -
“ - _ . i
I InG(Py(x),z) = TR — Y Uiq(x)Z'.

i=1
Therefore there is the following assertion.
Theorem 11. i

EPH(X) = i Uj—1(x)Py—i(x).
i=1
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Hexait AaHO ABi MHOXXMHM MHOTOUAEHIB { Py (X) };>0 Ta {Qn(x) } ;>0 Takmx, mo

deg(Pu(x)) = n,deg(Qu(x)) = n.
Tax 3BaHa 3apava AMdpepeHITiaAbHOI 3B I3HOCTI MiXK HVMM IIOASITAE ¥ 3HAXOAXKEHHi KoedpillieHTiB
n
ty iy Bupasi Qn(x) = Yy,  Pe(x).
k=0

Hexait {S,(x) }n>0 — Ie iAmIa MHOXVHA nopsiaky deg(S,(x)) = n. Y3araabHeHa 3apava 3B 53

HOCT1 MK HVIMU IIOASTA€ Y 3HAXOAKEHH1 KO@CPILIIGHTIB (Xl(]) Yy BHMpasi

Qux) = Y & Pi(x)8)(x).

i,j=0

3apava 3B'S3HOCTI AASI Pi3HMX TUIIIB MHOTOUAEHIB Ma€ AOBIY iCTOpilo, IPOTe 3aAMIIAETHCS
nikasoio i Temep. KoedpirtieHTn 3B’ I3HOCTI IpafoTh Ba>KAMBY POAD y 6araTboX 3aAadax KAACHMYIHOI Ta
IIPUKAAAHOI MaTeMaTHMKM, OCODAMBO B KOMOIHATOpMIN, a TakoX y MaTeMaTuuHiit dismi Ta
TIPMKAAAHNMX 3aCTOCYBAHHSX KBAHTOBOI XiMil. AAsI 4acTKOBOTO BUTAAKY, KOAU Qu(x) = P (),
3apavy 3B'SI3HOCTI Ha3MBaIOTh AMdpepeHIiaAbHOIO 3aAavero 3B SI3HOCTI i BIAHOCSATD 1i A0 MHOXMHMA
{Pu(x) buzo.

Y cTaTTi HaBeA€HO BMpasM y 3aMKHYTilt dpopMi 3apau AMdpepeHIiaAbHOT 3B’ I3HOCTI AAST BIAOMIX
CICTeM MHOTOYAEHIB.

Kntouosi cnosa i ppasu: 3aprada 3B'SI3HOCTI, obepHeHa 3apava, 3apada AvidpepeHIiaAbHOI 3B SI3HOC-
Ti, KoedpillieHTN 3Bs13HOCTI, rinepreoMeTpuuHi (PYHKIII, rilmepreoMeTpuyHi MHOTOYAEHNA.



