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SHEVCHUK R.V.1, SAVKA 1.YA.2, NYTREBYCH Z.M.!

THE NONLOCAL BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL
BACKWARD KOLMOGOROV EQUATION AND ASSOCIATED SEMIGROUP

This paper is devoted to a partial differential equation approach to the problem of construction
of Feller semigroups associated with one-dimensional diffusion processes with boundary condi-
tions in theory of stochastic processes. In this paper we investigate the boundary-value problem for
a one-dimensional linear parabolic equation of the second order (backward Kolmogorov equation)
in curvilinear bounded domain with one of the variants of nonlocal Feller-Wentzell boundary con-
dition. We restrict our attention to the case when the boundary condition has only one term and it
is of the integral type. The classical solution of the last problem is obtained by the boundary inte-
gral equation method with the use of the fundamental solution of backward Kolmogorov equation
and the associated parabolic potentials. This solution is used to construct the Feller semigroup cor-
responding to such a diffusion phenomenon that a Markovian particle leaves the boundary of the
domain by jumps.

Key words and phrases: parabolic potential, boundary integral equation method, Feller semi-
group, nonlocal boundary condition.
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INTRODUCTION
LetTI[0,T] = {(s,x): 0<s<T, x € R} and letS; C IT[0, T] be the curvilinear domain
St={(5,x): 0<s<t<T,ri(s) <x<rs)},

where T is a fixed positive number, and r1, 7, are given functions defined on [0, T]. Denote by
D; the interval (r1(s),r2(s)) and by S; and D, the closure of S; and D; respectively. Denote
also by C; the curves {(s,7i(s)) : s € [0,T]} (i =1,2) and let C = C; UCy.
In 1[0, T] we consider the parabolic operator of the second order with bounded continuous
coefficients
d 0 1 02 d
—+Li=—+=b — —.
s T2 (S'x)axz —HZ(S'x)ax
The main problem is to find a classical solution u(s, x, t) of equation
ou

% +Lu=0, (s,x)€S, (1)

YAK 519.21
2010 Mathematics Subject Classification: 60J60, 35K20.

@ Shevchuk R.V,, Savka I.Ya., Nytrebych Z.M., 2019



464 SHEVCHUK R.V., SAVKA I.YA., NYTREBYCH Z.M.

which satisfies the “initial” condition

ligm(s, x,t) = @(x), x€Dy (2)
S
and two boundary conditions

/[u(s,ri(s),t) —u(s,y,H)pi(s,dy) =0, 0<s<t<T, i=1,2, 3)

D

where ¢ is the given function and y;(s,-) (s € [0,T], i = 1,2) are given finite nonnegative
measures on Ds, s € [0, T].

The problem (1)-(3) appears, in particular, in the theory of stochastic processes while study-
ing the diffusion processes with boundary conditions. Recall that the most general form of
boundary conditions for one-dimensional diffusion processes was established in works of W.
Feller [2] and A. D. Wentzell [12] (see also [13], where the multidimensional case is consid-
ered). From the assertions proved there, it follows that if the ordinary differential operator
of the second order is a generator of the Feller semigroup in C[ry, o] (71, 72 are fixed, —oo <
r1 < rp < 00), then its domain of definition consists of functions satisfying nonlocal boundary
conditions. In the general case, these boundary conditions contain the values of the function
and its first-order derivatives with respect to the time variable and with respect to the spatial
variable at points 7;, i = 1,2, and the nonlocal component of the integral type that correspond,
respectively, to such properties of process after it reaches the boundary point 7; as its termina-
tion, delay, reflection and jump out of ;.

In the present paper we shall establish the classical solvability of problem (1)-(3) by the
boundary integral equation method with the use of the fundamental solution of the equation
(1) and the associated parabolic potentials, and prove that its solution u(s, x, f) = Ts+@(x) can
be treated as the two parameter semigroup of operators describing an inhomogeneous Feller
process in R which trajectories are located in curvilinear domain St. It is easy to understand
that the trajectories of this process in St \ C can be treated as the trajectories of the diffusion
process generated by the operator L; and at the points of curves C; (i = 1,2) their behavior is
determined by Feller-Wentzell boundary conditions in (3). The conditions in (3) correspond to
jump discontinuity of trajectories of process which is caused by inward jump of a Markovian
particle from the boundary.

It is necessary to note that the scheme we shall use to solve the problem (1)-(3) is partially
presented in work [6], where the similar problem was investigated in the case when the back-
ward Kolmogotov equation is given in U%ZlSEZ) =2 {(sx): 0<s<t<T, (—1)(x—
r(s)) > 0} and, at the common boundary x = r(s) of domains St(l) and St(z), the Feller-
Wentzell conjugation condition, which, in addition to the integral term, contains also the lo-
cal term corresponding to the termination of process, is imposed. We should also mention
works [8], [11], which give the results concerning the construction of diffusion processes with
nonlocal boundary conditions of the integral type by the methods of stochastics [8] and func-
tional analysis [11].

We need the following conditions:

I. The operator d/0ds + Ls is uniformly parabolic in IT[0, T], i.e., there exist constants b and
Bsuch that 0 < b < b(s,x) < B < oo forall (s,x) € IT[0, T].
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II. The coefficients of Ls are bounded and continuous functions in IT[0, T| which belong
to Holder class H2*(I1[0,T]), 0 < a < 1 (to recall the definitions of Holder classes
see [7, p.16]).

III. The function ¢ in (2) is assumed to be defined on R and belongs to the space of bounded
continuous functions on R, which we will denote by C,(IR). The norm in this space is
defined by the equality ||¢|| = sup, g |¢(x)|. Furthermore, two fitting conditions

[lo0i(®) = 9w)li(tdy) =0, i=1,2, hold.
Dy

IV. The nonnegative measures y; in (3) are such that y;(s,Ds) = 1, s € [0,T] and for all
f € Cy(R) the integrals

/ fyui(s, dy), i=12,
o}

belong to H = ([0, T]) as functions of s.
V. The functions r;(s), i = 1,2, are continuous and belong to H = ([0, T)).

Conditions I, II ensure the existence of the fundamental solution of the parabolic operator
d/0s + Ls in T1[0, T] (see [7, Ch.1V, §15], [9, Ch.II, §3]), i.e., a function G(s, x, t, i) defined for all
(s,x) and (t,y) in II[0, T], s < t, satisfying the following condition:

for any ¢ € Cy(IR), the function

uo(s, x,t) = / G(s, x,t,y)g(y)dy 4
R
satisfies the equation (1)if 0 < s < t < T, x € R and the condition (2) if t € (0, T], x € R.
Note that the function G admits the representation
G(s,x,t,y) = Zo(s, x, t,y) + Z1(s,x, t,y), i=1,2,
where

1 —x 2
Zo(s,x, t,y) = [2mb(t,y)(t —s)] "2 exp {—m} ,

t
Z1(s,x,t,y) = /dT/ZO(s,x,T,z)Q(T,z, t,y)dz,
s R

and the function Q(s, x, t, ) is the solution of some singular Volterra integral equation of the
second kind. Note also that

. Y
IDIDEZo(s, %, t,y)| < C(t—s)" 7 exp {—C%} , (5)

r+p—a — 2
|DIDYZy (s, x,t,y)| SC(t—s)’HZZﬂ} exp{—c%} (6)
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(0<s<t<T, xy € R), and that for the function uy defined by (4) (¢ € C,(R)) which is
called the Poisson potential in the theory of parabolic equations, the inequality

2r
|DIDYug(s, x,t)| < Cllgl|(t —s)" 7, 0<s<t<T xeR, (7)

holds. Here C and c are positive constants (we shall subsequently denote various positive
constants by symbols C or ¢ without specifying their values), r and p are the nonnegative
integers for which 2r + p < 2, D}, is the partial derivative with respect to s of order r, DY is the
partial derivative with respect to x of order p.

In addition to the integral u(s, x, t) we need to consider two more integrals

t
i (s, %, £) = / G(s, x, 7, r(0)Vi(t, Hdt, i=1,2,
S

where 0 < s <t < T, x € R and Vj, V, are some functions. The function u;; is called
the parabolic simple-layer potential. If we assume that the density V;(7,t) is continuous for
T € [s,t) and admits a weak singularity with an exponent of not less than —3 when 7 = ¢,
then the function u;(s, x,t), i = 1,2, is bounded continuous in0 < s < t < T, x € R and
satisfies the equation (1) in (s, x) € [0,¢) x (R \ ;(s)) with the initial condition: u; (s, x,t) — 0
ifstt(xeR,i=1,2).

The important property of the function u;; is reflected in the so-called theorem on the jump
of conormal derivative of parabolic simple-layer potential (see, e.g. [3, Ch.V, §2], [7, Ch.IV,
§15]). In the present paper this assertion is not used, and therefore we do not formulate it.

1 SOLVING THE PARABOLIC BOUNDARY VALUE PROBLEM

We shall find a solution u of problem (1)-(3) as a sum of Poisson potential 1y and two
simple-layer potentials 177 and up;, namely:

2 t
u(s,x, ) = / G(s,x,ty)gy)dy + Y / GG, 2T r(T)Vi(T, dr, (s,x) €5 (8)
R =1

Here ¢ is the function in (2) and V;, i = 1,2, are the unknown densities to be determined.
Note that since y;(s, Ds) = 1 for every s € [0, T] (see the condition IV), the conditions (3)
and the fitting conditions in III can be reduced to

u(s,ri(s), t) — /u(s,y, Dui(s,dy) =0, 0<s<t<T,i=1,2, 9)
Ds
and
o(ri(®) — [ oWm(tdy) =0, i=12, (10)
D¢

respectively.
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Substituting (8) into (9), we get the system of two Volterra integral equations of the first
kind for the unknowns V;, i = 1,2, namely

t
2
Z/Kij(s,r)vj(r,t)dr =®(s,t), 0<s<t<T,i=1,2, (11)

jzls

where

Ky(s,7) = Gls, (), 715(x)) = [ Gl w1y (x)puls, dy),
Ds

D;(s,t) = /uo(s,y,t)]/ti(s, dy) —ug(s,ri(s), t).
Dy

Using Holmgren’s method [4] (see also [5]) we shall reduce (11) to an equivalent system
of Volterra integral equations of the second kind. For this purpose we consider the integro-
differential operator

E(s,t)f = \/%% /(p—s)‘%f(p,t)dp, 0<s<t<T

and apply it to the both sides of each equation in (11).
The application of the operator £ to the left-hand side of (11) gives the expression which
after interchanging the order of integration takes on the form

) 59 t T B
Li(s,t) =) \/;g/v]-(r,t)dr/(p — )" 2K;i(p, T)dp.
j=1 s s
Write K;; as Kij(p, T) = KZ.(].l) (o, T) + KZ-(]-Z) (p,7T) — KZ.(]?) (p, T), where

Kz‘(jl)(Pf T) = Zo(p, 1i(7), T, 7(T)),
Ki(]-z) (0, T) = Z1(p, 7i(7), T, 7j(T)) + [G(o, 7i(p), T, 7i(T)) — G(p, 7i(T), T, 7j(T))],

KP(0,7) = [ Zolo v mri(Opilody) + [ Zi(o,y, w0l dy),
D, D,

T
and denote by Jij(s,7) the integral [(p — s)’%Kij(p, T)dp, and by ]l-(]-k)(s, T) the integral
S

T

[0 =) 2K (0, 0)dp, k=1,2,3.

S

Note that | 1.(].1) (s,7) is equal to

1 T
(p—s) 2dp = M’

NI

1 /T(T_ -
\/27tb(T,1i(7)) J 2

when i = j, and tends to zero as s T T when i # j. Note also that application of the mean value
theorem to difference G(p,7i(p), T, 7j(T)) — G(p,7i(T), T, 7{(T)) together with the condition V
and the estimates (5), (6) lead to the estimate

K (0, 7)| < |Za(p,7i(7), 7, 7i(7))| + [DLG(p, x0,7,7;(7))| - [ri(T) — ri(p)| < C(x —p) 274

NI
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(xo is a point in the open interval with endpoints 7;(7) and r;(p)) from which it follows that
](2)(5 T) > 0ass?TT.

1
st \/ia/V 1] srdr—[/V ,T)dt (12)

Hence,
. - . . . o o ) (k) _ VI'(S,t)
ifk=1,i#jorifk =2 Ifk=1and i = j, then IZ.]. (s,t) = NI
Let us show that the relation (12) is true also for k = 3. For this it suffices to prove that

hm] ( T) =0. (13)
sTT
Let us denote by Kffl) the first term in the expression for K Z.(].3) and by ]1(131) the integral ]1(13) with

Ki(]'?)) replaced by Kz‘(]?ﬂ)- In view of (5) and (6), we may verify (13) only for ]l.(].?’l)

Write ]1.(].31) in the form ]1.(].31)(5, T) = Ll(].l)(s, T)+ Ll(]-z) (s, T)+ Ll(]-g) (s,7),i=1,2,j =1,2, where
1

% —>7dp

Ly o wen@?
W” / D/ P{ zb<r,rj<r>><r—p>}“”’dy)
O U A

/ P{ zb<r,r]-<r>><r—p>}“l('d”}'

Ds
/ / xp { b(t,r; (:'])()?T)Z— s) }
27tb(T, r j

<y )
o {_2b<n =) } [t vt

y —1(s))?

W/GXP{ 2b(7,7;(1)) (7 — )}Rj(S'T'yM(S'dy)'

and R;(s, T,y) denotes the integral

T

Ri(s,7y) = [(o—5)"

S

NI—=

o) texpd o W@ s
(T=p) p{ 2b(7,7i(7))(T = 5) T—p}dp’

which after the change of variables z = g—:; takes on the form

(o) . 2
Rj(s:my) = 0/ 1) exp {_Zb(grj(rj)(;()r)— 5) 'Z} =

and so

IR;(s, 7,y)| < C. (14)
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From this and IV it follows immediately that

14a
2

Ly (s, 1) < C(r—5)'7", (15)

16,01 = € (ts, st (o) +ep { - 1), (16

T—5)

where Us(ri(s)) = {y € Ds : |y —rj(s)| < J}, 0 is any positive constant, B is the constant
from I. Applying the mean value theorem to the difference of exponents within the braces in

the expression for Lf]-z), we get, after using the condition V as well as the estimate (14) and the
inequality 0¥ exp{—co} < C(0 <0 <00, 0 <v < ),

L (s, 1) < C(T—5)%. (17)

The estimates (15)—(17) imply that ]1(131) (s,7) — 0 ass T 7. This completes the proof of (13).
Thus, the relation (12) holds also for k = 3.

Let us apply the operator £ to the right-hand side of (11). In order to simplify the expression
for Yi(s,t) = E(s,t)P;(s, t) we need to prove the following two relations:

®;(s,t) - 0ass Tt, (18)

|@;(s, ) — D5, 1) < Cllgl(t—s) T (s—3) T, 0<5<s<t<T. (19)

Passing to the limit as s 1 ¢ in the expression for ®; (i = 1,2), and recalling that the Poisson
potential 1 satisfies the condition (2), we get the expression which equals the left side of (10)

taken with the opposite sign and which therefore vanishes. Thus (18) holds.
We proceed to prove (19). Write the difference ®;(s, t) — ®;(s, t) in the form

Pi(s,1) = @u(5,1) = [ luo(s,,1) = wo(&,y, )]s, dy)

Ds
| oGy mits,dy) = [ oy, G5, dy) 20)
D D;s

+ [uO(gl T’i(g/), t) - uO(S/ 7’1-(5), t)] + [uO(SI T’i(g/), t) - uo(S, T’i(S), t)]

and note that for s < s

o (s, 1) — uo(5,y,1)| = [uo(s,y,t) — o3y, )| = [uo(s, y, £) — uo(3,y, )| ="
1+a

dug(8,y,t : ~ 1-a
oS, 1) (Jofs, v, Bl + 05,1, )))

14a

< Cllgl[(t—5-0 w@»*@—@{T

< Cllgll[((t—5)+(s—5)(1—8)) (s —5)] =
< Cllo|l(t - r%@—@#,o<e<r

(s—9)

§=5+60(s—5)

Using this inequality for differences ug(s, y,t) — uo(S,y,t), uo(s, ri(s),t) — uo(s, ri(s), t) and the
condition IV to estimate the difference of integrals in the second line of the expression (20)
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as well as the Lagrange formula together with the condition V and the inequality (7) (with
r =0, p = 1) to estimate the last term u(s, 7;(5), t) — uo(s, ri(s), t) in (20), we arrive at (19).

Taking into account (18) and (19) we see thus that the application of the operator £ to the
function ®; gives

I\J\U)

Yi(s,t) = —= [ (0 —s) " 2[Pi(p, 1) — (S,t>]dp—\/g(t—@‘%@(s,t) (21)

Having considered the action of the operator £ on both sides of (11), we can now write the
system of Volterra integral equations of the second kind for the unknowns V;, i = 1,2, which
is equivalent to (11) and has the form

ZNZ]ST (T, H)dt +¥i(s,t), 0<s<t<T,i=1,2, (22)

where

]z‘(ig)(sf T))/ i=j,

a_
b(s,ri(s)) o .,
Nij(s, T) = \/ ! 8]1]51' i

Note that from (21), (19) and (7) (with r = p = 0), it follows that

”ST

1

[¥ils, )] < Cllgll(t —s)™2.

Unfortunately, the kernels Nj; do not have a weak singularity. We can not find the estimate for
Ni;(s, T) better than C(7 — s) . However this difficulty arises due to only one term

d

/ 5, 20(8, 3, T ri(0)pils, dy)
Y

Us(ri(s))

which appears after writing %]z‘(]‘?ﬂ) (s, 7) in the form

T
0 (31) . 0 _1
g i (S,T) = g/(p 2 </ZO 0,97, 7’( ))]’ll(p’dy)

5 Dy

d f 1
- [ Zoloyri(x ))Vz(sordy)> 5 [to=5)4dp [ Zolp,y, () pils0,d)
50=S5 S So=s

qu 50

and then taking the derivative of the last term in this expression. Namely,
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2 / (0 s>%dst/O Zoloy @] = (L el

x (%D/O exp {—Zbg{(ij)(f@z— 5) } Rils T y)uilso dy)| = an(lr, (1)
X %DS/O 1i(s0, dy) Zz% z+1) lexp {—%(gr;(;f)(;()f_ 5 (z + 1)} dz .
- \/7 ) D/ 2 Zalsy et dy) = | T

x <u§( rj/(s)) %ZO 8,9, T,7;(T)) i (s, dy) +Ds\u 5{ . %ZO(S/% r,rj(r))ui(s,dy))

All other terms in the expression for N;; can be estimated by C(6) (T — s)~1*2, where C(9)
is the positive constant depending on 4.

Despite the strong singularity of kernels Nj;, the system of equations (22) has a solution
and this solution can be found by the method of successive approximations:

2\/ (s,t), 0<s<t<T,i=1,2, (23)

where
2 t
vO(s,t) =¥i(s,1), VI (s,)=) / Nis, V" V(e d, n=12,....
j:l s

The convergence of series (23) and so the existence of the function V; follows from the next
inequality

n
V" (s, 6)| < Cllgll(F—s)"2 Y. Cha" Mk, 0<s<t<T,i=12 (24)
k=0

where
 (2cTin®) T)
T

m = max {ZVZ (s, Usy(ri(s))), i = 1,2}

s€[0,T]

k=0,1,...,n,

al

and the constant 6 = Jy is chosen to be sufficiently small so that m < 1. One can prove the
estimate (24) by induction and by using the scheme analogous to those used in the proofs of
(15), (16) and (17). Note also that the similar scheme was used in [10] in the study of the system
of Volterra integral equations of the second kind with strong singularity in the kernels.
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From (24) it also follows that the function Vj(s, t), i = 1,2, satisfies the inequality
1
Vi(s, )] < Cllel|(t —s) 2. (25)

Thus, the formula (23) represents the unique solution of (22), which is continuous in the
domain 0 < s < t < T and satisfies the inequality (25).

From estimates (5) (with r = p = 0) and (25) it follows that there exist the simple-layer
potentials u;1 (s, x,t), i = 1,2, in (8), and for them the condition u;; (s, x,t) — 0if s T t and the
inequality

uia(s,x,5)l < Cllgll, (s,x) €Sy, (26)

hold. It is obvious (see (7)) that the same inequality is also true for the Poisson potential
up(s, x,t) in (8) and thus for the function u(s, x, t) as well. Recalling that ug(s, x,t) — ¢(x) if
s 1 t and that the functions u(s, x, t) and u;; (s, x, t) satisfy equation (1) in the domain (s, x) €
St we conclude that u(s, x, t) is the desired classical solution of problem (1)-(3).

Let us prove the uniqueness of the solution of the problem (1)-(3). Suppose that the prob-
lem (1)-(3) has two solutions u1(s, x,t) and u,(s, x,t) which are continuous in S;. Then the
function 7 = 11 — uy satisfies equation (1), the initial condition (2) with ¢ = 0 and two bound-
ary conditions

u(s,ri(s), t) =gi(s,t), 0<s<t<T,i=1,2,

where
ils,t) = [ (s, y, Opils,dy).
D
The above problem is the first boundary value problem and since the function g; is continuous
in s, it has a unique classical solution, continuous in S, which can be represented in the form
(8) with ¢ = 0. Thus, the function u can be expressed in the form (8) where there are no Poisson
potential and V; are the unknown functions, continuous in s € [0, ), which are determined by
gi(s, t). Further, if we repeat the considerations of this section concerning the construction of
solution of the problem (1)-(3), we obtain the system (22) with ¥; = 0 for the unknowns V.
Then V; = 0 and hence u# = 0. This completes the proof of the uniqueness.
Thus we have proved the following theorem:

Theorem 1. Let conditions I-V hold. Then problem (1)-(3) has a unique classical solution,
continuous in S; for all t € (0, T]. Furthermore, this solution has the form (8) and satisfies the
inequality (26).

2 FELLER SEMIGROUP

Suppose that the conditions I-V hold and consider the two-parameter family of linear op-
erators Ty, 0 < s < t < T, acting on the function ¢ € C,(R) by the rule:

2 t
Tyo(x) = / GG, ty)p(y)dy + Y / G(s, %, 7, 7i(T))Vi(T, t)dr, 27)
R i=1%

where the pair of functions (V;, V;) is the solution of (22). Recall that the function V; (i = 1,2)
has the form (23) and satisfy the inequality (25).
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We introduce the subspace Cyo(R) of Cp(IR) which consists of all functions ¢ € C,(R) for
which the fitting conditions in III holds. Since the subspace Cy(IR) is closed in Cy(R), it is a
Banach space. Furthermore, it is invariant under the operators Ty, i.e.,

(ONS Co(IR) = Tsp € Co(]R).

Let us study properties of the family of operators Ty in Cy(IR).
First we note that if the sequence ¢, € C,(IR) is such that 1211 ¢on(x) = @(x) forall x € R
n—oo

and, in addition, sup ||¢,| < co, then nh_r}n Tot@n(x) = Tspp(x) forall0 < s <t < T, x € D;.
n o0

The proof of this property is based on well known assertions of calculus on passage of the
limit under the summation and integral signs (here this concerns series (23) and integrals on
the right-hand side of (8)). This property allows us to prove the following properties of the
operator family Ts; without loss of generality, under the assumption that the function ¢ has a
compact support.

Now we prove that the operators Ts;, 0 < s < t < T, remain the cone of nonnegative
functions invariant.

Lemma 1. If 9 € Cy(R) and ¢(x) > 0 for all x € R, then Typ(x) > 0 for all x € D;,
0<s<t<T.

Proof. Let ¢ be any nonnegative function in Cy(IR) with a compact support. Denote by 7 the
minimum of Ts@(x) in S; and assume that 4 < 0. From the minimum principle [3, Ch.II]
it follows that the value v may be attained only when s € (0,f) and x = r(s), i = 1,2. Fix
so € (0,t) and ip € {1,2} for which Ts;¢(r;,(s0)) = - But then

/ [Tsot @ (riy(50)) — Tsot@(y) i (S0, dy) < O
Dy,

which contradicts (3). Therefore v > 0 and the assertion of the lemma follows. O

Note also that Tst@g(x) = 1forall0 < s < t < T, x € D if ¢y = 1. This property together
with the assertion of lemma 1 allow us to assert that operators T;; are contractive, i.e.,

[ Tseqll < [l

forall0<s<t<T.
Finally, we show that the operator family Ts; has the semigroup property

TSt:TSTTTtI O§S<T<t§T.

This property is a consequence of the assertion of uniqueness of the solution of the problem
(1)-(3). Indeed, to find u(s, x,t) = Ts¢(x), when it is given that u(s,x,t) — ¢(x) ass T ¢,
one can solve the problem first in time interval [7, ] and then solve it in the time interval [s, 7|
with that initial function u(7, x,t) = Tr¢(x) which was obtained; in other words, T (x) =
TST(Tth))(JC), (NS Co(IR) or Ty = Tsr Tt

The above properties of operators Ts; imply the following assertion (see [1, Ch.IL, §1]).

Theorem 2. Let conditions I-V hold. Then the two-parameter family of operators Ts;, 0 <
s < t < T, defined by formula (27) describes the inhomogeneous Feller process in R which
trajectories are located in curvilinear domain St. In St \ C, the trajectories of this process can
be treated as the trajectories of the ditfusion process generated by the operator Ls and at the
points of curves C; (i = 1,2) they behave according to boundary conditions in (3).
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CrarTs npucssiieHa BUBUEHHIO MeTOAAMM Teopil AndpepeHITiaAbHIX PiBHSHD B YaCTMHHMX IIO-
xiaHMX TIpobaemy TobyaoBy HamiBrpym deanepa, sKi OmiCyIOTh OAHOBUMMIpHI AMdpy3iliHi mporte-
Ci B 0OAACTSIX 13 3apaHMMM KpalfOBMMM yMOBaMM. Y Hilf CTATTi MM AOCAIAXKYEMO KpaltoBy 3aravy
AAST OAHOBMMIPHOTO AiHIMHOTO IapaboAidHOTO PiBHSHHSI APYTOTO HMOPSIAKY (06epHEHOTO piBHSIH-
=5 KoaMoroposa) y KpMBOAiHilHIN o6MeXeHilt 06AacTi 3 0OAHNMM i3 BapiaHTiB HeAOKaABHOI Kpaiio-
Boi ymoBu Tuny @eanrepa-Benrieas. Mmu 30cepeaxyeMo yBary Ha BUIIAAKY, KOAM KpalioBa yMO-
Ba ®earepa-BeHTIIeAsT MiCTUTH AMIIle KOMIIOHEHTY iHTerpaAbHOro Tumy. Kaacuuny po3s’si3HICTH
OCTaHHBOI 3aAa4i OAEPXaHO HaMl METOAOM I'PaHMYHUX iHTErPaAbHMX PiBHSHD 3 BUKOPUCTAHHSIM
dyHAAMEHTAABHOTO PO3B’I3Ky 0bepHeHOro piBHSHHI KoAMOroposa i mopoaXeHNX HUM Mapaboai-
YHMX TIOTeHIiaAiB. [ell po3B’sSI30K BUKOPMUCTAHO AASI OOy A0BM HamiBrpymi dearepa, sika ommicye
sByIIe Adpy3ii B 06MeKeHill 06AaCTi 3 BAACTUBICTIO IIOBEPHEHHSI AVIPYHAYIOUOI YaCTUMHKI B cepe-
AVHY 06AacTi cTpubKamm.

Kntouosi cnosa i ¢ppasu: mapaboAiIHIIL TIOTEHITiaA, METOA I'PaHNYHMX {HTETpaAbHIX PiBHSHD, Ha-
nisrpyna ®Mearepa, HeAOKaAbHA KpalioBa yMOBa.



